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Abstract—Queuing delay is a dynamic network parameter that
plays an important role in defining the performance of Internet
applications over an end-to-end path. However, measurement
of queuing delay is challenging because it requires a large
infrastructural support from the path under test. In this paper,
we propose an active scheme to measure queuing delay on a
router using a probe-gap model. The scheme uses a popular
data-clustering algorithm to process its data samples; therefore,
its measurement efficacy is not dependent on the issues related to
infrastructural access, certain variations (e.g., compression) in the
probe gaps, and the number of clusters in the data processing.
Here, we present a detailed evaluation of the scheme against
the current state-of-the-art on a single-hop path through ns-
3 simulation. Our results show that the proposed scheme is
robust, consistent, quick, and highly accurate under different
traffic conditions.

Index Terms—Network measurement, queuing delay, cluster-
ing algorithm, wired networks, ns-3 simulator.

I. INTRODUCTION

Queuing delay refers to the waiting time of data packets
inside the intermediate nodes (i.e., routers) over an end-to-
end path [1]. It is a dynamic network parameter that is
dependent on the instantaneous states (e.g., rate and number)
of the competing traffic flows on the routers. Even though
high transmission speeds of the network links are expected
to minimize queuing delays on routers, non-trivial (i.e., non-
zero) queuing delays on Internet paths are still commonplace
[2], [3]. Therefore, accurate measurement of queuing delay is
essential for ensuring optimal performance of various appli-
cations in the conventional Internet (e.g., IP geolocation) and
Tactile Internet (e.g., telesurgery) environments [4], [5].

Multiple schemes are available for measuring queuing de-
lay through passive or active measurement [5], [6]. Passive
schemes are popular among Internet Service Providers that
use ongoing data traffic on the path under test for mea-
suring queuing delay. However, their strict requirements for
infrastructural support (e.g., specialized equipment [7], [8] or
specific network architecture [9]) and administrative access
(e.g., direct access to the router under test [10]) make them less
deployable on the Internet. On the contrary, active schemes
are not as restrictive for wider deployments on the Internet
because they use commodity equipment (e.g., workstations)
and synthetic probing packets for measuring the parameter.
However, the limiting issue of these schemes is either in-
consistent accuracy due to their specialized probing packets

(i.e., Internet Control Message Protocol, ICMP, packets [11],
[12]) or strict topological configurations (e.g., tree-structured
network topology [13]) for the path under test.

To overcome the limitations of the existing schemes, an
active scheme, called COMPRESS, was recently proposed to
perform accurate measurement without any support from the
networks [4], [5]. COMPRESS uses User Datagram Protocol
(UDP) packets in its packet-pair structure, consisting of a
small heading packet (Ph) and a large trailing packet (Pt). It
exclusively uses compression in the gap between Ph and Pt to
estimate queuing delay on the router under test. For example,
Figure 1 shows the transmission of multiple packet pairs
through an intermediate router (router) after each pair is sent,
with no separation between Ph and Pt, from the input link (Li)
to the output link (Lo). Lo illustrates three possible scenarios,
i.e., compression (co), no change (nc), and decompression
(de), in the packet pair, as identified by the corresponding
intra-probe gaps: Gco, Gnc, and Gde. These scenarios occur
due to the sizes of Ph and Pt along with the interference
from cross-traffic packets (Cs) inside router. COMPRESS
ignores Gde and calculates Gnc as a prior knowledge from the
transmission times of Ph and Pt on Lo and Li, respectively
[5], [6]. It then determines queuing delay on router from the
differential between Gnc and Gco. In short, COMPRESS relies
on a restrictive set of its probing data that has the potential to
compromise the measurement accuracy.

In this paper, we propose an enhanced scheme based on a
packet-pair model for actively measuring queuing delay on an
Internet router. This scheme has two important properties: i)
It uses an unsupervised learning algorithm that allows robust
and self-sufficient measurement of queuing delay without any
prior information from the infrastructure. ii) It uses both com-
pression and decompression in pairs of packets. We perform a
comparative evaluation of the proposed scheme over a single-
hop path through computer simulation. Our simulation results
show that the proposed scheme is robust enough to consistently
measure queuing delay with a high accuracy under different
traffic conditions.

II. PROPOSED SCHEME

We propose an active scheme, called Compression and
Decompression (CoDe), based on an unsupervised learning
algorithm for measuring queuing delay on a router. CoDe uses
both the compression and decompression phenomena in pairs
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Fig. 1: Packet pairs, each with a small heading packet (Ph) and a large trailing packet (Pt), experience compression, no change,
and decompression in the intra-probe gaps (i.e., Gco, Gnc, and Gde, respectively, where Gco < Gnc < Gde) in the presence
of cross-traffic flows.

of UDP packets after their transmissions through the router
under test.

We outline the working principle of CoDe using Figure 2,
which shows a trimodal distribution of intra-probe gaps for
multiple packet pairs following their transmissions through a
router with cross traffic. Here, the local peaks refer to the
individual modalities of co, nc, and de in the packet pairs due
to different cross-traffic interferences, as discussed in Section
I. Given the statistical means of these local peaks: Mco, Mnc,
and Mde, queuing delay on the router can be estimated from
the magnitude of compression (i.e., Mnc - Mco) and the
magnitude of decompression (i.e., Mde - Mnc).
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Fig. 2: A trimodal distribution of intra-probe gaps for a train of
packet pairs in the presence of cross-traffic flows on a router
that represents compression, no change, and decompression
with three local means Mco, Mnc, and Mde, respectively.

However, the primary challenge in the above mechanism is
the identification of modalities in the dataset (i.e., measured
intra-probe gaps) that represent co, nc, and de during queuing-
delay measurement. We mitigate this challenge in CoDe by
utilizing the k-means clustering algorithm [14]. Here, we use
a fixed cluster size, i.e., k = 3, to incorporate the required
modalities in the dataset. Therefore, there is no ambiguity in
optimally processing the dataset using the k-means clustering
algorithm for producing a consistent measurement.

We chose the k-means clustering algorithm in the proposed
scheme because it is a popular unsupervised learning algorithm
that is efficient, easy to implement, and guarantees conver-
gence [15], [16]. Our choice of algorithm was also motivated
by the prior futile use of a supervised learning algorithm,

i.e., linear regression, in an ICMP packet-based scheme,
called Pathchar [11], which produces inconsistent results in
its measurement [18]. Moreover, advanced machine learning
approaches, e.g, deep learning algorithms, are not suitable
for measuring queuing delay because of two fundamental
reasons. Firstly, our dataset is one-dimensional and small;
therefore, its complexity is simple. Secondly, deep learning
algorithms only provide enhanced performance with a very
large dataset in complex problems [16], [17]. In a few words,
k-means clustering algorithm came out as the best candidate
for processing the dataset of the proposed scheme.

An important characteristic of CoDe is its robustness and
self-sufficiency as an active scheme. For example, COM-
PRESS requires prior information about the link capacities
over a path to determine the reference value (i.e., no change
gap) on the router under test for estimating queuing delay [5],
[6]. The prior information is obtained through link-capacity
measurement which, however, is prone to high errors on the
Internet paths [22]. This infers that erroneous capacities are
a source of performance bottleneck for COMPRESS towards
estimating queuing delay accurately. Because CoDe identifies
the no-change gaps from the k-means clusters, its performance
is strictly reliant on its dataset consisting of intra-probe gaps,
not on additional information.

We present the detailed steps of CoDe for measuring
queuing delay over a single-hop path, consisting of a router
(router) connecting a source (src) and destination (dst)
nodes, below:

1. Send a train of n packet pairs, each consisting of a small
Ph and a large Pt without any separation in between,
from src to dst. Details about sizing Ph and Ph over
the single-hop path are available in [6].

2. Timestamp Ph and Pt of each packet pair at dst to
measure n intra-probe gaps.

3. Process the measured gaps using the k-means clustering
algorithm to partition them into three different clusters.

4. Label the clusters as co, nc, and de for compression, no
change, and decompression, respectively, in the packet
pairs such that the cluster centroids (Mco, Mnc, and
Mde) have the following relationship:

Mco < Mnc < Mde (1)



5. Truncate every intra-probe gap (i.e., member gap) in
each cluster that has a frequency less than 0.2si, where
si is the (population) size of its holding cluster, i.e., sco,
snc, or sde. Then update the centroid of each cluster
using its remaining member gaps.

6. Determine queuing delay on router from the centroids:
a. Calculate queuing delay (wco) from compression:

wco = Mnc −Mco (2)

b. Estimate queuing delay (wde) from decompression:

wde = Mde −Mnc (3)

c. Estimate overall queuing delay (w):

w =
∑

i={co,de}

wis̄i, (4)

where s̄i is the weighted cluster size, e.g., s̄co =
sco

sco+sde
.

d. Estimate the variability (σ) in w:

σ =

√√√√ 1

n′ − 1

n′∑
j=1

(xj − w)2, (5)

where xj ∈ {co, de} and n′ = sco + sde.
7. Report a range of queuing delay estimated over the

single-hop path as w ± σ.

III. SIMULATION RESULTS

We implemented CoDe in ns-3 [19] to evaluate its perfor-
mance over an end-to-end path, as shown in Figure 3. We
identify this path as single-hop because it consists of only one
router [6]. We incorporated the standard k-means algorithm
(i.e., Lloyd’s algorithm [20]) in the scheme. Our implemen-
tation of CoDe also utilized the k-means++ algorithm [21] to
initialize the cluster seeds for optimal data processing.

src dstrouter

Traffic flow 1

Traffic flow m

LoLi

Cross-traffic flow Probing-traffic flow

Fig. 3: Simulation setup with multiple cross-traffic flows
over a single-hop path, where a router under test (router)
connects src and dst using input (Li) and output (Lo) links,
respectively.

Figure 3 shows the intermediate router (router) over the
single-hop path carries m = 4 cross-traffic flows between
src and dst nodes. These flows are made up of constant-bit-
rate (CBR) traffic that create packet queuing on the router
from collision probabilities. For example, these flows carry
approximately 457 (400), 229 (267), 152 (160), and 152

(160) Mb/s of cross traffic when the single-hop path has 1-
Gb/s links. In case of 100-Mb/s links on the path, these flow
rates are 47, 24, 16 and 12 Mb/s.

In Figure 4, we present sample distributions of queuing (i.e.,
the first 400 samples of the output-queue size for every 0.5 µs)
that we have induced on router using (a) 400-, (b) 600- and
(c) 900-byte packets in the cross-traffic flows considering a
1-Gb/s speed over the single-hop path. In each graph of this
figure, the x-axis is the sampling sequence of the output queue
and the y-axis is the size of the queue in cross-traffic packets.
On average, these distributions generate (4 ± 3), (7 ± 3), and
(9 ± 5) µs of queuing delays for the respective packet sizes.
In the generated queuing delays, the first digit corresponds to
the average value whereas the second digit corresponds to the
standard deviation, i.e., variability of the parameter.

We performed a comparative evaluation of CoDe against
COMPRESS using Ph = 64 bytes and Pt = {800, 1000,
1400} bytes in reference to the generated queuing delays
under 1 Gb/s. We chose these packet sizes in Ph and Pt

for both schemes because i) they create large enough gaps
between Ph and Pt for estimating the actual queuing delays
using COMPRESS and ii) they provide an unbiased evaluation.
Note that we did not evaluate CoDe against other active
schemes because of their specialized requirements, e.g., ICMP
packets as probes, which cannot be emulated through computer
simulation for a useful performance evaluation [6].

Figure 5 presents a summary of the comparative evaluation
under 1 Gb/s. Here, the x-axis refers to the size of Pt, and the
y-axis refers to the rounded queuing delay in microseconds.
The (grey) solid bars with whiskers are the actual (i.e., gener-
ated) queuing delays, whereas the (blue) dotted and (orange)
tiled bars with whiskers are the queuing delays estimated by
COMPRESS and CoDe, respectively. The estimated queuing
delays correspond to a statistical summary of five measurement
runs by both schemes in our simulation. We used 500 packet
pairs, each separated by 10–50 ms, in every measurement run
to avoid self-interference among our probing packets.

Overall, Figure 5 shows that the ranges of the measured
values, identified by the corresponding whiskers for both
COMPRESS and CoDe, heavily overlap with the actual queu-
ing delays for all Pt sizes. Considering the fact that queuing
delay is a dynamic parameter, this phenomenon infers that both
schemes have a high measurement accuracy. The same phe-
nomenon has also been used for characterizing measurement
accuracy in [5], [6].

Besides producing a high accuracy, CoDe shows more
consistency than COMPRESS in Figure 5. The performance of
COMPRESS is characterized by a varied degree of underesti-
mation in its measurements for all queuing delays under test.
Due to the fact that COMPRESS strictly uses compression in
the packet pairs, underestimation in its results is expected. On
the contrary, the results of CoDe are closely aligned with the
actual values for Pt = {1000, 1400} bytes when we compare
the bar graphs and their whiskers in Figures 5(b) and 5(c).
This suggests that the performance of CoDe is not dominated
by underestimation.
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(b) 600-byte packets
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Fig. 4: Distributions of output-queue size on the router when it is carrying cross-traffic flows with (a) 400-, (b) 600-, and (c)
900-byte packets generating queuing delays of (4 ± 3), (7 ± 3), and (9 ± 5) µs, respectively.
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(a) Queuing delay: (4 ± 3) µs
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(b) Queuing delay: (7 ± 3) µs
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(c) Queuing delay: (9 ± 5) µs

Fig. 5: Comparative performance between CoDe and COMPRESS over the single-hop path, consisting of 1 Gb/s links, with
(a) (4 ± 3), (b) (7 ± 3), and (c) (9 ± 5) µs of queuing delays.
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Fig. 6: Measured gaps for estimating (9 ± 5) µs of queuing delay using CoDe with Pt = 1400 bytes in the packet pairs.

We present a sample dataset from our simulation to provide
insight into the data processing in Figure 6. This figure illus-
trates the intra-probe gaps from the first run of measurement
by CoDe using Ph = 1400 bytes for estimating (9 ± 5) µs
of queuing delay, where the expected no-change gap is 21 µs.
This gap is the theoretical intra-probe gap that refers to the dif-
ference between the transmission times of Ph and Pt through
the input and output links, respectively, without cross traffic
on the router [5], [6]. For the k-means clusters outlined in this
figure, we present Table I to detail the member gaps, size, and
centroid of all clusters that represent compression, no change,
and decompression in the gaps. These values correspond to
the outcome from 100 iterations of the k-means algorithm on
the measured gaps in the above-mentioned measurement. Note
that the cumulative size of the three clusters in Table I is not
equal to the probing-train size of 500 packets that was used

during the measurement. It is because two member gaps (40
and 43 µs) in cluster 3 did not comply with the 20% rule
discussed in Step 5 of Section II.

TABLE I: k-MEANS CLUSTERS IN FIGURE 6

Cluster Cluster Member Cluster Cluster
ID label gaps size centroid
1 compression 11 µs 114 11 µs
2 no change 18 µs 187 18 µs
3 decompression 26 µs, 33 µs 147 30 µs

The queuing delays used so far were challenging because of
their high (43% or more) variability. However, the magnitudes
of the queuing delays were below 10 µs. Therefore, we ran
additional simulations with heavier queuing delays of (10 ±
7), (17 ± 13), and (25 ± 18) µs, each with a very high (70%
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(b) 200-byte packets
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Fig. 7: Distributions of output-queue size on the router when it is carrying cross-traffic flows with (a) 100-, (b) 200-, and (c)
300-byte packets generating heavy queuing delays of (10 ± 7), (17 ± 13), and (25 ± 18) µs, respectively.

0
2
4
6
8

10
12
14
16
18
20
22

800 1000 1400

Q
ue

ui
ng

 d
el

ay
 (µ

s)

Trailing packet (bytes)

Actual COMPRESS CoDe

(a) Queuing delay: (10 ± 7) µs
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(b) Queuing delay: (17 ± 13) µs
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Fig. 8: Comparative performance between CoDe and COMPRESS over the single-hop path, consisting of 100 Mb/s links, with
(a) (10 ± 7), (b) (17 ± 13), and (c) (25 ± 18) µs of queuing delays.
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Fig. 9: Measured gaps for estimating (25 ± 18) µs of queuing delay using CoDe with Pt = 1400 bytes in the packet pairs.

or more) variability, on the router. Figure 7 illustrates the
distributions of these queuing delays over a sampling period
of 100 µs, generated with (a) 100-, (b) 200-, and (c) 300-byte
packets in the cross-traffic flows.

Figure 8 summarizes the comparative performance of CoDe
and COMPRESS under the heavier queuing delays. As in Fig-
ure 5, the accuracies of both schemes are high, as demonstrated
by the consistent overlapping of the actual and estimated
queuing delays. Each graph of Figure 8 also proves the
tendency of underestimating queuing delays by COMPRESS.
In the case of CoDe, the close alignment between the estimated
and actual values is primarily visible in Figures 8(b) and 8(c)
for larger Pt sizes, e.g., 1400 bytes. We, however, observe a
degree of overestimation by CoDe. This phenomenon is an
effect of the high variability in the generated queuing delays.
For example, the actual queuing delays in Figure 8 tend to
create more frequent decompressions in the packet pairs with

a few outlier (i.e., very large) gaps that eventually resulted in
overestimations in the measurements.

It may appear that COMPRESS outperforms CoDe con-
cerning the bar-graph values of smaller Pt sizes, i.e., 800 and
1000 bytes, in Figure 8. Note that we manually provided the
link capacities of the single-hop path to COMPRESS in our
simulations, as was also done for evaluating this scheme in [5],
[6]. This, therefore, eliminated the performance degradation in
COMPRESS from the link-capacity estimation over the path.
For example, capacity estimation for 100-Mb/s and above links
is prone to high errors on the Internet [22]. Because CoDe does
not require link-capacity information and its performances
presented in Figures 5 and 8 are consistently high, all these
aspects suggest the robustness of the proposed scheme.

We also show a sample dataset from the first run of CoDe,
using Pt = 1400 bytes, for estimating (25 ±18) µs of queuing
delay in Figure 9. In addition, Table II presents a detailed



summary (i.e., member gaps, size, and centroid) of the three
k-means clusters that we initially outlined in Figure 9. This
table shows that all three clusters consist of only one member
gap and their corresponding cluster sizes are relatively smaller
than those in Table I. This phenomenon is primarily because of
the high variability in the measured gaps, as Figure 9 shows.
Also, there are multiple member gaps in each cluster that fell
short of the required 20% rule during centroid calculation. For
example, CoDe discarded four, three, fourteen member gaps
from clusters 1, 2, and 3, respectively.

TABLE II: k-MEANS CLUSTERS IN FIGURE 9

Cluster Cluster Member Cluster Cluster
ID label gaps size centroid
1 compression 184 µs 80 184 µs
2 no change 208 µs 146 208 µs
3 decompression 232 µs 100 232 µs

One essential requirement in estimating any network pa-
rameter through active means is to induce a small probing
load so that the accuracy of measurement is not affected [18],
[23]. CoDe fulfills this requirement in reference to the results
presented in Figures 5 and 8. For example, both COMPRESS
and CoDe generated a maximum of 4.78 Mb/s of probing
load for measuring queuing delays using the largest Pt, i.e.,
1400 bytes, in the packet pairs. This probing load is insignif-
icant considering the 1-Gb/s and 100-Mb/s links used in the
simulation setup. Moreover, CoDe generated all measurement
results, presented in the above figures, over a small time period
of 200 s. This implies that the proposed scheme can quickly
measure queuing delay with a high accuracy using a small
probing load.

IV. CONCLUSIONS

Queuing delay is a dynamic network parameter that is
challenging to measure without substantial support from the
networks. In this paper, we proposed a scheme to measure
queuing delay on a router. The scheme uses an efficient
unsupervised data-clustering algorithm to analyze the varia-
tions (i.e., no change, compression, and decompression) in
the pairs of UDP packets for estimating the queuing delay
on the router under test. It does not require prior knowledge
of link capacities (i.e., infrastructural support) over an end-
to-end path or of a specific variation (i.e., compression only)
in the packet pairs for successful measurement. Moreover, it
uses a fixed number of clusters in the clustering algorithm
for effectively measuring queuing delay. As for a detailed
evaluation, we simulated the proposed scheme over an end-to-
end path, consisting of a single router, under different traffic
conditions using the ns-3 simulator. Our results showed that
the proposed scheme is robust, consistent, quick, and highly
accurate without requiring any infrastructural support over
the end-to-end path. For future work, we will explore the
measurement of queuing delays on multiple routers over an
end-to-end path using the proposed scheme.
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