Parallel-Search Trie-based Scheme for Fast IP
Lookup

Roberto Rojas-Cessa, Lakshmi Ramesh, Zigian Dong, Lin Cai, and Nirwan Ansari
Department of Electrical and Computer Engineering,
New Jersey Institute of Technology,
Newark, NJ 07102.
Email: {rrojas, Ir9, zd2, 1c76, ansari}@njit.edu.

Abstract—As data rates in the Internet increase, the Internet
Protocol (IP) address lookup is required to be resolved in shorter
resolution times. IP address lookup involves finding the longest
matching prefix from a database of prefixes that better matches
the destination address of a packet. The fastest IP-address lookup
solutions are based on ternary content addressable memories
(TCAMs), which can resolve the IP lookup in one memory-access
time. However, TCAMs have a high power consumption and large
complexity that may limit their scalability and storage capacity.
An alternative is to use random access memory (RAM) that stores
a forwarding table in a trie form. Proposed trie-based solutions
for IP lookup require three or more memory-access times in the
worst-case scenario. This makes them unattractive despite their
reduced power consumption. In this paper, we propose a flexible
and fast trie-based IP-lookup algorithm where parallel searching
is performed. This algorithm performs lookup in two memory-
access times whith a feasible amount of memory or three memory
access times with reduced memory.

Index Terms—Trie search, parallel search, prefix expansion,
hashing, RAM based

I. INTRODUCTION

Classless inter-domain routing (CIDR) allows Internet
routers to store a large number of Internet addresses compactly.
While reducing the number of entries in the forwarding
table, CIDR increases the complexity of the address-lookup
procedure because the longest prefix match is sought rather
than the exact prefix match. An efficient IP-lookup algorithm:
1) performs a small number of memory accesses, if not one, for
a single lookup, and 2) uses a feasible amount of memory to
store the prefix information. Because of long memory-access
times and slow advances in improving memory speed, we
consider that reducing the number of memory-access times is
critical in keeping up with the ever-increasing data link rates.
Furthermore, it is required to keep the memory amount within
a feasible amount for an algorithm to be practical.

The fastest IP-lookup engines are based on ternary content
addressable memory (TCAM). Basically, in a TCAM-based
IP-lookup engine, the packet destination address is compared
to all entries in every memory location. Therefore, it is
possible to retrieve the longest prefix match in a single TCAM
memory-access time. However, this performance is achieved

This work was supported in part by National Science Foundation under
Grant Award 0435250.

at the cost of having high power consumption and complex
circuitry surrounding the memory cells.

A known alternative is a trie-based scheme that uses random
access memory (RAM). In the basic trie-based scheme, a bi-
nary tree represents all combinations existing in the forwarding
table. In this scheme, the worst-case time takes up to 32
memory-access times to find the longest prefix match for IPv4,
as described in PATRICIA trees [1]. Other improved schemes
are presented in [2], which uses small forwarding tables at
the expense of requiring up to 12 memory-access times, in
[3], which uses 4-bit strides, requiring up to 8 memory-access
times, and in [4], using a small amount of memory and up to
3 memory-access times.

In this paper, we propose a trie-based IP-lookup scheme,
which performs parallel search of the matching longest prefix.
To reduce the search complexity, the proposed scheme uses
controlled prefix expansion [5]. Our scheme uses independent
memories for allowing parallel access, and finds the longest
prefix match in two memory-access times with a feasible
amount of memory or three access times with a reduced
amount of memory. The presented algorithm is flexible for
routing tables with diverse prefix length distributions. This
scheme presents high scalability since memories are assigned
separately per prefix length.

The remainder of the paper is organized as follows. Section
Il describes the proposed scheme, the data structures and
components used in it. Section III describes the implemen-
tation of our proposed scheme. Section IV describes the
lookup procedure. Section V discusses the complexity and
performance. Section VI presents our conclusions.

II. PARALLEL-SEARCH TRIE-BASED SCHEME

The proposed scheme is based on performing parallel access
to independent memory blocks, where each block stores the
entries existing for each group of a given prefix length. In this
paper, we refer to a prefix length as a tree level, i.e., there are
up to 32 levels for IPv4 prefixes. Table I shows an example
of the contents of a routing table using CIDR as prefixes
and Figure 1 shows these entries in a binary-tree structure.
In this case, the tree has eight levels, where level one is
indicated by the first node below the root, and level eight at the
lowest nodes of the tree. Since each level can be provisioned
independently of the existence of a prefix node, each level

Prefix Next Hop
o1+ 21
10* 28
110* 9

1011%* 1

0000* 68

01011* 51
00110* 3
10001* 6
100001* 33
10000000* 54
TABLE I

EXPANDED FORWARDING TABLE.

Original Prefix | Expanded Prefix | Next Hop Pointer | Length
01* 01+ 21 2
10%* 10* 28

0000* 00000* 68 5
00001* 68
1011+ 10110* 1
10111* 1
110* 11000%* 9
11001* 9
11010* 9
11011* 9
00110* 00110* 3
0I01T1* 0101T* 51
10001* 10001* 6
100001* 10000100* 33 8
1000010T* 33
10000110* 33
10000111%* 33
10000000* 10000000* 54
TABLE II

EXPANDED FORWARDING TABLE.

can be searched in parallel. However, this would require a
large amount of memory. To decrease the memory amount,
the number of levels (with prefixes) is minimized, into a small
number of target levels. To minimize the number of levels, we
use controlled prefix expansion [5]. The target levels can be
selected by using the most populated levels of a forwarding
table while considering the memory amount required by each
level. Once the levels are selected, the existing prefixes in the
removed levels are expanded to the immediate-longer target
level. For the sake of brevity, we use an example to describe
our scheme, without losing generality.

Table IT shows the expanded prefixes that result from Figure
1. Figure 2 shows the expanded prefixes in a tree structure for
levels 2, 5, and 8, as target levels.

In order to do the prefix expansion, we select all the prefixes
whose lengths ar other than the target set of prefix lengths and
expand them to the next allowable prefix length. For example,
from Table II, the original prefix 1011* (P4) is of length four,
which is not a predefined prefix length. This prefix is extended
to the closest allowable predefined prefix length which is
length five. This results in two prefixes of length five: 10110*
and 10111%*, which are expansions of P4 by adding a 0 and a 1
to the least significant bit of the expanded prefixes respectively.
Both expanded prefixes inherit the next hop number of the

Fig. 1.

Binary tree representing the forwarding table.

original prefix. In addition to the procedure mentioned above,
the condition where one of the expanded prefixes is the same
as a prefix with original length equal to the selected level is
also considered. In this case, the original prefix overrides the
expanded prefix, meaning that only the original prefix is stored
along with its port number.

To select the target levels in our scheme, we looked into
actual routing tables in [6] and observed that a large number of
the prefixes are found between levels 16 and 24. Considering
that population, we selected levels 8, 16, 24, and 32 as the
target levels in our scheme. This selection can be changed
according to the prefix-length distribution of a given routing
table where this scheme is applied.

Second level
Bit vector

)

Fifth level
Bit vector

Eighth level

Fig. 2. Bit vectors and stored prefixes in extended-prefix tree.

A. Data Structures at Target Levels

The combined contents of the target levels must contain
all the existing prefixes in the original forwarding table.
The set of all possible nodes at each level are represented
with bitmaps, where each bit position represents a binary
combination corresponding to the bits indicated by the prefix
length. In a bitmap, a bit with value of 1 indicates the presence

of a stored prefix, and a 0 denotes the absence of it. The left-
most bit of the bitmap corresponds to the decimal 0, and the
right-most bit corresponds to the decimal 2!¢*¢!-1, where level
is the level number. The bitmaps of level 8 and 16 are called bit
vectors as 2% and 2'6 bits are used, respectively, independently
of the existence of prefixes for each bit in the bitmap. The
bitmaps for level 24 and 32 are called bit segments as only
partial bit vectors containing one or more prefixes are used.
Figure 3 shows a general representation of binary tree of the
expanded forwarding table with bit vectors and segments. The
data structure in each level carries the following information:

Level-8 bit vector

Level-16 bit vector

N AN e
WA

Fig. 3. General representation of binary tree of the expanded forwarding
table with bit vectors and segments.

Level-32 segments

The level-8 bit vector uses one bit for each node at this
level. It includes all the prefixes between level 1 and 7, which
are expanded to level 8, and level-8 prefixes. The level-8 bit
vector, denoted as prefixVal8, has 256 bits. Each bit represents
an 8-bit prefix at this level. Note that, since this level contains a
small number of bits, the bit vector can be stored in a memory
block together with the next-hop information.

A level-16 bit vector includes all nodes at level 16. Each
node indicates the existence of all the prefixes between level 9
and 15, which are expanded to level 16, and level-16 prefixes.
The level-16 bit vector, denoted as prefixVall6, has 216 bits. In
addition to the prefixVall6 bitmap, there are two other bitmaps
at this level: childVal24, which indicates whether there is one
or more prefixes of length between 17 and 24 that share each
16-bit combination indexed by prefixVall6, and childVal32,
which indicates whether there is one or more prefixes with
a length between level 25 and 32 that share each 16-bit
combination indexed by prefixVall6.

Furthermore, the level-16 bit vectors are physically divided
into 32-bit chunks. For every 32-bit chunk, there is an offset
value. offsetVall6 is the offset value for prefixVall6, offset-
Val24 is the offset value for childVal24, and offsetVal32 is the
offset value for childVal32. The offset value of bit-chunk of bit
N1, Where nig is the bit at level 16 in prefixVall6, childVal24,
or childVal32, stores the total number of ones accumulated
from all previous chunks. The size of each chunk of these
three offset fields is 16 bits. Figure 4 depicts the data structure
for level 16 with all bitmaps.

offsetVall6 | 16 232

offsetVal24 | 5 156
offsetVal32 0 0 . 45
prefixVall6 | 011 ... 010 900 ... 010 000 ... 000
childVal24 | 110 ... 000 o109 ... 100 | *-- |111 ... 000
childVal32 {010 ... 000 |110 ... 000 000 <00 001
bbb bbb
Bit chunk 0 Bit chunk 2047

Fig. 4. Bit vector at level 16.

A level-24 bit segment carries 256-bit intervals of the level-
24 bitmap that correspond to the subtrees rooted by prefixi6,
that have one or more stored prefixes located between level
17 and 24. These intervals are stored in a pseudo-continuous
way to reduce memory use. This bit segment is denoted as
prefixVal24. The sum of offsetVal24 and the number of ones
to the left of the childVal24 bit in the chunk is used to find the
corresponding interval at level 24. The data structure described
so far is enough to find the longest match if each prefixVal bit
gets assigned a port number directly. However, although this
data structure allows to complete the lookup in two memory
access times, it is not economical. To reduce the amount
of memory to store the next hop information, we use 256-
bit intervals, called portlnterval24, to indicate which nodes
share port numbers, and 24-bit fields, called offsetPort24, in
another bitmap to indicate the an offset value of the memory
location of the next hop information for prefixes at level 24.
The value of offsetport24 indicates the number of prefixes that
has next hop information in the previous segments of level
24. The value of portlnterval24 indicates the existence of the
next hop information that is duplicated to reduce the number
of port number memory. The memory location of the next
hop information is calculated by adding the decimal value of
offsetPort24 with the ones of portinterval24 at and the left of
the matching bit. Figure 5 depicts the data structure for level
24 with all bitmaps.

Chunk 0 Chunk r
preﬁxVa124|000 eee 000 |111 eee 000 | ---|000 e 000 |
portlnterval24 | 000 ...010 | 100 ... 000 | |100 ees 000 |
0ffsetP0rt24| 0 | 1 | | 45 |

Fig. 5. Bit vectors at level 24.

A level-32 bit segment carries 2'6-bit intervals at level 32,
which correspond to the subtrees, rooted by prefix16, with one
or more stored prefixes between level 25 and 32. This segment
bitmap, denoted as prefixVal32, is used in the same way as
level-24 bit segment. The 2'6-bit portInterval32 and 32-bit
offsetPort32 fields are used to indicate the memory location of
the next hop information for prefixes at level 32. The memory
location for next hop information is calculated by adding the
decimal value of offsetPort32 with the ones of portInterval32
at and the left of the prefix match point.

The next-hop information for prefixes in each level
is stored in several tables, one table per level, called
tableNextY, where Y = {8,16,24,32} for the case of
reduction of port number memory. In general, we use two
schemes in storing the next-hop information in memory. One
is to associate every bit within a segment with a 15-bit next-
hop information without considering whether the prefix exists.
The memory amount required is 7'x2Y ~16x 15, where T is the
number of segments in level Y, Y = 24, 32. Another scheme is
to store the next-hop information for the positions where prefix
exists. We use portinervalY and offsetPortY, where Y = 24,32
for level 24 and level 32 to find the location of the next-
hop information as explained previously. The memory amount
needed in this scheme is S X 15+ 2 x T x 2Y~16 1 ¥V x T,
where S is the number of expanded prefixes between level 16
and 24 for Y = 24 and between level 25 and 32 for ¥ = 32.
This scheme may require one extra memory-access time if
the longest prefix match is found on level 24 or 32 to find
the memory location for the next-hop information. Each port
number is cosidered to be stored in 15-bit fields for large
routers.

III. IMPLEMENTATION

To allow a parallel IP lookup process at the target levels, the
implementation of our scheme uses separate memory blocks.
Specialized hardware can be used to execute the search and
match process, and the building of the tree structure with
prefix data. The specialized hardware are blocks where address
comparisons and other processes are performed, and a control
logic to sequence the memory access and data flow.

Since the dominant term that determines the maximum
processing time is the memory access, the following memory
partitioning is used. The bit vectors and bit segments are stored
in a memory block per level. Figure 6 shows the memory
blocks for each bitmap and next-hop tables. The table for level
8 (tableNext8) stores the next-hop information. Therefore,
prefixVal8 and tableNext8 can be accessed at the same time.
Tables for level 16, 24, and 32 have a number of locations
proportional to the number of entries for level 16, and to a
number of intervals, with 256 and 65536 entries per interval,
for level 24 and 32, respectively.

IV. SEARCH PROCEDURE

Consider the destination address x of a packet in transit,
which can be represented in binary as x31, ..., zg, Where x3;
is the most significant bit. During the first memory-access
time, the following fields are accessed: prefixVall6, childVal24,
childVal32, offsetVall6, offsetVal24, and offsetVal32 with bits
r31, ... , T16. In addition, prefixVal§8 and tableNext8 are
accessed, however, with bits z3q, ..., To4.

During the second memory-access time, the following fields
are accessed: prefixVal24, using xs3, ..., T16, Of the interval
indicated by the value stored in offsetVal24 plus the number
of ones on the left of bit childVal24 in the bit chunk, if
the bit corresponding to the root childVal24 was found to be
set in the first memory-access time. The same is done for

Destination IP address of packet in transit

[xy o x|

Xoq Y23 - Mg Xus X8 X7
AN J
\ J
l [[vy
Level-8 bit vector Level-16 bit vector Level-24 bit Level 32 bit
segment segment
l | [} !
I — —
] L] Y v Y v
TableNext8 TableNext16 TableNext24 TableNext32
il
™ -

Next hop selection

Fig. 6. Separate blocks of memory for independent access.

prefixVal32, using childVal32 and offsetVal32. At the same
time, tableNext16, tableNext24, and tableNext32 are accessed.

During the second memory-access time, the combined re-
sults of the fields prefixValS, prefixVall6, childVal24, and
childVal32 are considered to determine which level has a
possible matching prefix, or candidate levels, according to
the values as shown by Table IIl. Note that a match at
level 16 is confirmed after the first memory-access time. The
retrieved next-hop information from those tableNextY that are
considered candidates are kept.

After the second memory-access time, the next-hop infor-
mation of the longest prefix value is selected according to the
result of prefixValueY, where Y = {8, 16, 24, 32}. If memory
reduction scheme is used in storing the next-hop information,
one more memory-access time may be needed to find the
location for the next-hop information according to the values
of portintervalY and offsetPortY.

A. Determining the Longest Prefix Matching

The search starts by looking at the bit indicated by x3i,
..., T1g, Or bit I which is the decimal value of binary (x31,
..., 1) in level 16, or prefixVall6. According to Table III,
the remaining of the search procedure follows according to the
case number based on the values of prefixVal8, childV al24,
and childV al32.

Case 1. Only the segment prefixVal8 in level 8 is
matched. The bit of the variables shown in this case of Table
III, other than prefizV al8 are 0. The bit I of level 8, denoted
by the binary equivalent of bits 31, ..., z24 is checked. If bit
I of prefizVal8 is 1, the location of the next hop in the
table N ext8 is indexed by the sum of ones to the left of node
I of level 8. The next hop can be retrieved from the table. If
bit I is 0, the default next hop value is used.

Case 2. Search for a prefix in level 8 is performed as
indicated in Case 1. As the other possibility is to find a match
in level 32, the pointer p to the memory location mem32,
where prefixVal32 is stored, is indicated by of fsetVal32
plus the number of ones in the childV al32 chunk found to the

case | prefixVall6 | childVal24 | childVal32 match level
1 0 0 0 8
2 0 0 1 8, 32
3 0 1 0 8, 24
4 0 1 1 8, 24 and 32
5 1 0 0 16
6 1 0 1 16% and 32
7 1 1 0 16 and 24
8 1 1 1 16%, 24, and 32
TABLE III

POSSIBILITIES OF MATCHING PREFIX VAL BITS AT DIFFERENT LEVELS.

left of bit /. At the same time, the next 16 bits from address
x, say Tis, ..., T9, Whose binary equivalent is denoted as j,
indicate the position of next hop location in table Next32 for
level 32. If the j** bit of prefizVal32 is 1, then a match is
found and the next hop for level 32 is used. If the value at the
4" bit is 0 and there is a prefix match found at the 8" level,
then the search for match in level 8 is used. If no match is
achieved, the default next hop is used instead.

Case 3. Search for a prefix in level 8 is performed as
indicated in Case 1. The other possibility is a match in level 24.
In this case, the pointer p to the memory storing pre fixV al24
is indicated by of fsetVal24 plus the number of 1s in the
childV al24 chunk found to the left of bit /. At the same time,
the following 8 bits of x, x5, ..., xg, whose binary equivalent
is denoted as j, are used to indicate the position of the next
hop entry number in tableNext24 for the segment of level
24. If the value of the j* bit of prefizVal24 is 1, then a
match is found and the next hop for level 24 is used. If the
value at the ;' bit is 0 and if the matching prefix found at
the 8" level is matched, the next hop information for level
8 is extracted from table Next8. Otherwise, the default next
hop information is used instead.

Case 4. The search in levels 8, 24, and 32 are performed
as indicated in Cases 1, 2, and 3.

Case 5. In this case, as the match in level 16 is found and
no possible match in levels 24 and 32, the only remaining
procedure is to find the next hop information. To find the
pointer to the location where the next hop information is
stored, of fsetVall6 of the chunk where I is located is added
to the number of ones at and to the left of bit I within
the chunk. The resulted value is the offset value used in the
portion of tableNext16 corresponding to prefix of length 16
indicating the next hop information.

Case 6. A search for a prefix in level 32 is performed with
similar procedure as for Case 2. If no match in achieved at
that level, the prefix match in level 16, as mentioned in Case
5, is performed.

Case 7. A search for level 24 is performed according to
the procedure mentioned in Case 3. If no match is achieved
at that level, the prefix match in level 16 is used.

Case 8. In this case, levels 24 and 32 levels are considered.
The longest prefix in levels 32, 24, or 16 is used.

V. COMPLEXITY AND PERFORMANCE

Matchings at level 8 are resolved in a single memory-access
time, and matching at levels 16, 24, and 32 are resolved in two
memory-access times. Using the memory reduction scheme for
the next-hop information may require up three memory-access
times.

We tested our scheme with a recent routing table AS65000
(August 1, 2007) [6], which has 82835 entries and average
prefix length of 22. The number of segments for level 24 is
6305 and 82 for level 32. The total amount of memory required
by this scheme is 1.6 Mbytes with reduction of memory
for next hop information and 10 Mbytes without memory
reduction for next hop information.

VI. CONCLUSIONS

We proposed a trie-based IP lookup algorithm that performs
parallel search for the longest prefix. Controlled prefix expan-
sion is used to reduce the number of different prefix lengths or
levels, and separate memory blocks to reduce the number of
memory-access times. As a result, the proposed scheme finds
the longest match in up to two memory-access times or three
memory-access times if memory reduction scheme is used in
storing the next hop information.

As an example, we selected four prefix levels (prefix
lengths): 8, 16, 24, and 32. The algorithm searches for a match
in level 16 and 8 at the first memory access. Then it verifies
possible matches at levels 24 and 32, and retrieves all possible
next hops, one per level, in the second memory access. If
matches are achieved at different levels, the match belonging
to the longest prefix is selected. This results in a maximum
of two memory-access times for the lookup process. We
introduced memory reduction scheme for next hop information
which reduces the total amount of memory by at least six times
in our example. However, this memory reduction mechanism
may add one more memory-access time.

This scheme uses a feasible amount of memory for large for-
warding tables that make a heavy use of CIDR. An additional
advantage of using separate memories is the feasibility for
pipelining the search process, thus achieving address lookup
in a single memory-access time.

REFERENCES

[1] D. R. Morrison, “PATRICIA - Practical Algorithm to Retrieve Informa-
tion Coded In Alphanumeric,” Journal of the ACM, 15(4), pp. 514-534,
October 1968.

[2] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” Proc. ACM SIGCOMM, pp.3-14, 1997.

[3] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B.
Parlour, “Scalable IP Lookup for Internet Routers,” IEEE J. of Select.
Areas in Commun., Vol. 21, Issue 4 , pp. 522-534, May 2003.

[4] N-F. Huang, S-M. Zhao, J-Y. Pan, and C-A. Su, “A Fast IP Routing
Lookup Scheme for Gigabit Switching Routers,” Proc. IEEE Infocom
1999, Vol. 3, pp. 1429-1436, March 1999.

[5] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled prefix
expansion,” ACM Trans. Comput. Syst., pp. 1-40, Feb. 1999.

[6] BGP Table Data, http://bgp.potaroo.net.

[71 H. Lim, J-H Seo, and Y. Jung, “High Speed IP Address Lookup
Architecture using Hashing,” IEEE Commun. Letters, vol. 7, No. 10.
October 2003.

