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Abstract—This paper proposes a pipeline-based concurrent round-robin
dispatching scheme, called PCRRD, for Clos-network switches. Our previ-
ously proposed concurrent round-robin dispatching (CRRD) scheme pro-
vides 100% throughput under uniform traffic by using simple round-robin
arbiters, but it has the strict timing constraint that the dispatching schedul-
ing has to be completed within one cell time slot. This is a bottleneck in
building high-performance switching systems. To relax the strict timing
constraint of CRRD, we propose to use more than one scheduler engine,
up to P , so called subschedulers. Each subscheduler is allowed to take
more than one time slot for dispatching. Every time slot, one out ofP sub-
schedulers provides the dispatching result. The subschedulers adopt our
original CRRD algorithm. We show that PCRRD preserves 100% through-
put under uniform traffic of our original CRRD algorithm, while ensuring
the cell-sequence order. Since the constraint of the scheduling timing is
dramatically relaxed, it is suitable for high-performance switching systems
even when the switch size increases and a port speed is high (e.g., 40 Gbit/s).

Keywords— Packet switch, Clos-network switch, dispatching, arbitra-
tion, pipeline, throughput

I. INTRODUCTION

The explosion of Internet traffic has led to a greater need for
high-speed switches and routers that have over 1-Tbit/s through-
put. To meet this demand, several high-speed packet switching
systems have been described [1], [2]. Most high-speed packet
switching systems adopt a fixed-sized cell in the switch fabric.
Variable-length packets are segmented into several fixed-sized
cells when they arrive, are switched through the switch fabric,
and are reassembled into packets before they depart.

For implementation in a high-speed switching system, there
are mainly two approaches. One is a single-stage switch ar-
chitecture. An example of the single-stage switch architectures
is a crossbar switch. There are many studies on developing
crossbar-based high-speed switches [1], [3], [4], [5], [6]. Al-
though this crossbar-based approach is effective up to a certain
switch size, the number of the switching elements is propor-
tional to the square of the number of switch ports. This makes a
large-scale switch difficult to implement.

The other approach is to use a multiple-stage switch archi-
tecture, such as a Clos-network switch [7]. The Clos-network
switch architecture, which involves a three-stage switch, is very
attractive because of its scalability. We can categorize the Clos-
network switch architecture into two types. One has buffers to
store cells in the second-stage modules, and the other has no
buffers in the second-stage modules.

A gigabit ATM (Asynchronous Transfer Mode) switch using
buffers in the second-stage was presented in [8]. In this architec-
ture, every cell is randomly distributed from the first-stage to the
second-stage modules to balance the traffic load in the second-
stage. Implementing buffers in the second-stage modules re-
solves contention among cells from different first-stage modules
[9]. The internal speed-up factor was suggested to be set more
than 1.25 in [8]. However, it requires a re-sequence function at
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the third-stage modules, or the last modules, because the buffers
in the second-stage modules cause an out-of-sequence problem.
Furthermore, as the port speed increases, this re-sequence func-
tion makes it more difficult to implement.

In [10], an ATM switch using non-buffered second-stage
modules was developed. This approach does not suffer from
the out-of-sequence problem. Since there is no buffer in the
second-stage modules to resolve contention, dispatching cells
from the first stage to the second stage becomes an important
issue. There are some buffers to resolve contention at the first
and third stages. A random dispatching (RD) scheme is used for
cell dispatching from the first stage to the second stage [10], as
adopted in the case of the buffered second-stage modules in [8].
This is because this scheme can fully distribute traffic evenly to
the second-stage modules. However, RD is not able to achieve
a high throughput unless the internal bandwidth is expanded,
because the contention at the second stage cannot be avoided.
In [11], we derived the relationship between the internal expan-
sion ratio and switch size when the RD scheme is employed.
To achieve 100% throughput by using RD, the internal expan-
sion ratio is set to about 1.6 when the switch size is large [10].
This makes a high-speed switch difficult to implement in a cost-
effective manner.

It is a challenge to find a cost-effective dispatching scheme
that is able to achieve a high throughput in Clos-network
switches, without allocating any buffers in the second stage to
avoid the out-of-sequence problem and without expanding inter-
nal bandwidth.

We introduced a solution to the challenge in [11], where a
round-robin-based dispatching scheme, called the concurrent
round-robin dispatching (CRRD) scheme, was proposed for a
Clos-network switch. The basic idea of CRRD is to use the
desynchronization effect [12] in the Clos-network switch. The
desynchronization effect has been studied using simple schedul-
ing algorithms as iSLIP [12], [13] and Dual Round-Robin
Matching (DRRM) [3], [14] in an input-queued crossbar switch.
CRRD provides high switch throughput without expanding the
internal bandwidth, while the implementation is simple because
only simple round-robin arbiters are employed. We showed that
CRRD achieves 100% throughput under uniform traffic.

However, CRRD has a constraint in terms of dispatching
scheduling time. The dispatching scheduling has to be com-
pleted within one cell time slot. The constraint is a bottleneck
when the switch size increases or a port speed becomes fast.
This is because the time needed for arbitration becomes longer
than one time slot.

Therefore, we need a dispatching scheme that meets the fol-
lowing requirements for practical high-performance switching
systems.

� Dispatching timing relaxation: The dispatching time
should be relaxed into more than one time slot to support
the large switch size and a fast port speed.

� High throughput
� Cost-effective implementation: No queuing buffer in the

second stage is allocated to avoid the out-of-sequence prob-
lem. In addition, the internal bandwidth is not expanded for
a cost-effective implementation.

This paper presents a solution to these requirements. We



propose a pipeline-based concurrent round-robin dispatching
scheme, called PCRRD, for Clos-network switches. To relax
the strict timing constraint of CRRD, we propose to use more
than one scheduler engine, up to P , so called subschedulers.
Each subscheduler is allowed to take more than one time slot
for dispatching. One of them provides the dispatching result ev-
ery time slot. The subschedulers can adopt our original CRRD
algorithm. We show that PCRRD provides 100% throughput
under uniform traffic, while preserving the properties of CRRD.

The remainder of this paper is organized as follows. Sec-
tion II describes a Clos-network switch model that we refer-
ence throughout this paper. Section III describes our previously
proposed CRRD scheme. Section IV introduces the PCRRD
scheme to relax the dispatching timing constraint of CRRD.
Section V describes the performance of the PCRRD scheme.
Section VI summarizes the key points.

II. CLOS-NETWORK SWITCH MODEL

Figure 1 shows a three-stage Clos-network switch. The ter-
minology used in this paper is as follows.

IM Input module at the first stage.
CM Central module at the second stage.
OM Output module at the third stage.
n Number of input ports/output ports in each

IM/OM, respectively.
k Number of IMs/OMs.
m Number of CMs.
i IM number, where 0 � i � k � 1.
j OM number, where 0 � j � k � 1.
h Input-port (IP)/output-port (OP) number in

each IM/OM, respectively, where 0 � h �
n� 1.

r Central-module (CM) number, where 0 � r �
m� 1.

IM(i) i+ 1th IM.
CM(r) r + 1th CM.
OM(j) j + 1th OM.
IP (i; h) h+ 1th input port at IM(i).
OP (j; h) h+ 1th output port at OM(j).
V OQ(i; v) Virtual output queue (VOQ) at IM(i) that

stores cells destined for OP (j; h), where v =
hk + j and 0 � v � nk � 1.

AV (i; v) VOQ arbiter for V OQ(i; v)
LI(i; r) Output link at IM(i) that is connected to

CM(r).
AL(i; r) IM output-link arbiter for LI(i; r)
LC(r; j) Output link at CM(r) that is connected to

OM(j).
AC(r; j) CM output-link arbiter for LC(r; j)

The first stage consists of k IMs, each of which has an n�m
dimension. The second stage consists of m buffer-less CMs,
each of which has a k � k dimension. The third stage consists
of k OMs, each of which has an m� n dimension.

An IM(i) has nk Virtual Output Queues (VOQs) to elimi-
nate Head-Of-Line (HOL) blocking [10]. A VOQ is denoted as
V OQ(i; v). Each V OQ(i; v) stores cells that go from IM(i)
to the Output Port OP (j; h) at OM(j). A VOQ can receive,
at most, n cells from n input ports in each cell time slot. The
HOL cell in each VOQ can be selected for transmission across
the switch through CM(r) in each time slot. This ensures that
cells are transmitted from the same VOQ in sequence.

Each IM(i) has m output links. An output link LI(i; r), is
connected to each CM(r).

A CM(r) has k output links, each of which is denoted
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Fig. 1. Clos-network switch with virtual output queues (VOQs) in the input
modules
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Fig. 2. Concurrent round-robin dispatching (CRRD) scheme

as LC(r; j), and it is connected to k OMs, each of which is
OM(j).

An OM(j) has n output ports, each of which is OP (j; h)
and has an output buffer.1 Each output buffer receives at most
m cells at one time slot, and each output port at OM forwards
one cell in a first-in-first-out (FIFO) manner to the output line.

III. CONCURRENT ROUND-ROBIN DISPATCHING (CRRD)
SCHEME

To overcome the switch throughput limitation of RD, we de-
veloped CRRD, described in [11].

A. CRRD Algorithm

Figure 2 illustrates the detailed CRRD algorithm, which can
be considered as the special case when the number of subsched-
ulers is one in PCRRD. To determine the matching between a
request from V OQ(i; v) and the output link LI(i; r), CRRD
adopts an iterative matching within IM(i). An IM has m
output link arbiters AL(i; r), each of which is associated with
each output link, and each VOQ has a VOQ arbiter AV (i; v)
as shown in Figure 2. In CM(r), there are k round-robin ar-
bitersAC(r; j), each of which corresponds toOM(j). AL(i; r),
AV (i; v), and AC(r; j) have their own round-robin pointers,
PL(i; r), PV (i; v), and PC(r; j), respectively.

1We assume that the output buffer size at OP (j; h) is large enough to avoid
cell loss so that we can focus the discussion on the properties of dispatching
schemes.



We consider two phases for dispatching from the first stage
to the second stage. In phase 1, CRRD employs an iterative
matching by using round-robin arbiters to assign a VOQ to an
IM output link. The matching between VOQs and output links is
performed within the IM. It is based on round-robin arbitration
and is similar to the iSLIP request/grant/accept approach. A
major difference is that in CRRD, a VOQ sends a request to
every output-link arbiter; in iSLIP, a VOQ sends a request to
only the destined output-link arbiter. In phase 2, each selected
VOQ that is matched with an output link sends a request from
the IM to the CM. CMs send the arbitration results to IMs to
complete the matching between the IM and the CM.

� Phase 1: Matching within IM
– First iteration
� Step 1: Each non-empty V OQ(i; v) sends a request to

AL(i; r) at LI(i; r).
� Step 2 : Each AL(i; r) chooses one non-empty VOQ

request in a round-robin fashion by searching from
the position of PL(i; r). It then sends the grant to the
selected VOQ.

� Step 3 : The AV (i; v) sends the accept to the granting
AL(i; r) among all those received in a round-robin
fashion by searching from the position of PV (i; v).

– ith iteration (i > 1)
� Step 1 : Each unmatched V OQ(i; v) at the previous

iterations sends another request to all unmatched
AL(i; r) again.

� Steps 2 and 3 : The same procedure is performed as in
the first iteration for matching between unmatched
non-empty VOQs and unmatched output links.

� Phase 2: Matching between IM and CM
– Step 1: After phase 1 is completed, AV (i; v) sends the

request to CM(r). Then, AC(r; j) chooses one request
by searching from the position of PC(r; j), and sends the
grant to AV (i; v) of IM(i).

– Step 2: If the IM receives the grant from the CM, it sends
a corresponding cell from that VOQ at the next time slot.

As with iSLIP, the round-robin pointers PL(i; r) and PV (i; v)
in IM(i) and PC(r; j) in CM(r) are updated to one position
after the granted position, only if the matching within the IM is
achieved at the first iteration in phase 1 and the request is also
granted by the CM in phase 2.

The CRRD algorithm has to be completed within one time
slot to provide a matching result every time slot.

Figure 2 shows an example of n = m = k = 3, where
CRRD is operated at the first iteration in phase 1. At step 1,
V OQ(i; 0), V OQ(i; 3), V OQ(i; 4), and V OQ(i; 6), which are
non-empty VOQs, send requests to all the output-link arbiters
AL(i; r). At step 2, AL(i; 0), AL(i; 1), and AL(i; 2), select
V OQ(i; 0), V OQ(i; 0), and V OQ(i; 3), respectively, accord-
ing to their pointers’ positions. At step 3, afterAV (i; 0) receives
two grants from both AL(i; 0) and AL(i; 1), it selects LI(i; 0).
Then it sends a grant to AL(i; 0). Since V OQ(i; 3) receives one
grant from the AL(i; 2), it sends a grant to it. With one itera-
tion, LI(i; 1) cannot be matched with any non-empty VOQs. At
the next iteration, the matching between unmatched non-empty
VOQs and LI(i; 1) is performed.

B. Desynchronization Effect of CRRD

While RD suffers contention at CM [10], CRRD decreases
the contention at the CM because pointers PV (i; v), PL(i; r),
and PC(r; j), are desynchronized.

We demonstrate how the pointers are desynchronized by us-
ing simple examples. Let us consider the example of n = m =
k = 2 as shown in Figure 3. We assume that every VOQ is
always occupied with cells. Each VOQ sends a request to be

T 0 1 2 3 4 5 6 7
IM(0) Pv(0, 0) 0 1 0 0 0 1 0 0

Pv(0, 1) 0 0 1 0 0 0 1 0
Pv(0, 2) 0 0 0 1 0 0 0 1
Pv(0, 3) 0 0 0 0 1 0 0 0

IM(1) Pv(1, 0) 0 0 1 0 0 0 1 0
Pv(1, 1) 0 0 0 1 0 0 0 1
Pv(1, 2) 0 0 0 0 1 0 0 0
Pv(1, 3) 0 0 0 0 0 1 0 0

IM(0) PL (0, 0) 0 1 2 3 0 1 2 3
PL (0, 1) 0 0 1 2 3 0 1 2

IM(1) PL (1, 0) 0 0 1 2 3 0 1 2
PL (1, 1) 0 0 0 1 2 3 0 1

CM(0) Pc(0, 0) 0 1 0 1 0 1 0 1
Pc(0, 1) 0 0 1 0 1 0 1 0

CM(1) Pc(1, 0) 0 0 1 0 1 0 1 0
Pc(1, 1) 0 0 0 1 0 1 0 1

The request is granted by CM.

Fig. 3. Example of desynchronization effect (n = m = k = 2)
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Fig. 4. PCRRD structure (centralized implementation)

selected as a candidate at every time slot. All the pointers are
set to be PV (i; v) = 0, PL(i; r) = 0, and PC(r; j) = 0 at the
initial state. Only one iteration in phase 1 is considered here.

At time slot T = 0, since all the pointers are set to 0, only one
VOQ in IM(0), which is V OQ(0; 0; 0), can send a cell with
LI(0; 0) through CM(0). The related pointers with the grant,
PV (0; 0), PL(0; 0), and PC(0; 0), are updated from 0 to 1. At
T = 1, three VOQs, which are V OQ(0; 0; 0), V OQ(0; 1; 0),
and V OQ(1; 0; 0), can send cells. The related pointers with the
grants are updated. Four VOQs can send cells at T = 2. In
this situation, 100% switch throughput is achieved. There is no
contention at the CMs from T = 2 because the pointers are
desynchronized.

In the same way as the above example, CRRD can achieve
the desynchronization effect and provide high-throughput even
though the switch size is increased.

IV. PIPELINE-BASED CONCURRENT ROUND-ROBIN
DISPATCHING (PCRRD) SCHEME

The PCRRD scheme is able to relax the computation time for
dispatching into more than one time slot. PCRRD is performed
by using nk2 request counters and P subschedulers for a Clos-
network switching system.

When the schedulers are implemented, there are two ap-
proaches: centralized and non-centralized. Figures 4 and 5 show
examples of centralized and non-centralized approaches, respec-
tively. In the centralized approach, each subscheduler is con-
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Fig. 5. PCRRD structure (non-centralized implementation)

nected to all IMs, as shown in Figure 4.2 In the non-centralized
approach, the subschedulers are implemented in different loca-
tions (i.e., in IMs and CMs as the algorithm description), as
shown in Figure 5. Each subscheduler has k+m different parts.

PCRRD is applied in whichever approach is employed. The
following explanation of PCRRD is valid for both approaches.
In Figures 4 and 5, each subscheduler has three kinds of round-
robin arbiters: VOQ arbiter AV (i; v; p), IM output-link arbiter
AL(i; r; p), and CM output-link arbiter AC(r; j; p), where 0 �
p � P � 1.3 Each subscheduler operates the original CRRD
algorithm in a pipelined manner, as shown in Figure 6. Each
scheduler takes P time slots to complete the dispatching.

0 1 2 3 4 5 6 7 8

Time slot t

Subscheduler 0

Subscheduler 1

Subscheduler 2

Fig. 6. Timing diagram of PCRRD with P = 3

We define several notations used here in the following. A re-
quest counter RC(i; v) is associated with V OQ(i; v), as shown
in Figures 4 and 5. The value of RC(i; v) is denoted as C(i; v),
where 0 � C(i; v) � Lmax. Lmax is the maximum VOQ oc-
cupancy. C(i; v) expresses the number of accumulated requests
associated with V OQ(i; v) that have not been sent to any of the
subschedulers. Each subscheduler has nk2 request flags. Each
request flag RF (i; v; p) is associated with V OQ(i; v) and sub-
scheduler p. The value of RF (i; v; p) is denoted as F (i; v; p),
where 0 � F (i; v; p) � 1. F (i; v; p) = 1means that V OQ(i; v)
has a request in subscheduler p. F (i; v; p) = 0 means that
V OQ(i; v) has no request in subscheduler p. At initial time,
C(i; v) and F (i; v; p) are set to zero.

PCRRD operates as follows.
� Stage 1: When a new cell enters V OQ(i; v), the value of

counter RC(i; v; p) is increased: C(i; v) C(i; v) + 1.

2In the example in Figure 4, each subscheduler is not connected to any CMs.
Once a dispatching route is determined, routing bits are attached in the header
of the head-of-line cell in a VOQ and the cell is transmitted from the IM.
3The arbiters are allocated as in CRRD; however, a new dimension is added,

p.

� Stage 2: At the beginning of every time slot t, if C(i; v) >
0 andF (i; v; p) = 0, where p = t mod P ,C(i; v) 
C(i; v) � 1 and F (i; v; p)  1. Otherwise, C(i; v) and
F (i; v; p) are not changed.

� Stage 3: At P l+p � t < P (l+1)+p, where l is an integer,
subscheduler p operates the original CRRD algorithm.

� Stage 4: By the end of every time slot t, subscheduler p,
where p = (t�(P�1)) mod P , completes a matching.
WhenRF (i; v; p) is granted,F (i; j; k) F (i; j; k)�1. In
this case, The HOL cell in V OQ(i; v) is sent to OP (j; h)
at OM(j) through a CM at the next time slot.4 When
RF (i; v; p) is not granted, F (i; v; p) is not changed.

Whenever a condition associated with any stage is satisfied, the
stage is executed.

To apply the original CRRD algorithm in subscheduler p,
we use F (i; v; p) instead of VOQ requests as described in Sec-
tion III. Each subscheduler has its own round-robin pointers.
The pointers in subscheduler p are independent of those in other
subschedulers. In Figure 4, subscheduler p does not directly
communicate with subscheduler p0, where p 6= p0. In the same
way, Figure 5 shows that subscheduler p in IM does not directly
communicate with subscheduler p0 in CM, where p 6= p0, al-
though subscheduler p in IM communicates with subscheduler
p in CM. Parts of subscheduler p in IMs and CMs communicates
with each other.

V. PERFORMANCE OF PCRRD

This section describes throughput and delay performance of
PCRRD under uniform traffic. In addition, the effect of the
PCRRD scheduling relaxation is described.

A. Throughput

PCRRD, which uses the CRRD algorithm in the subsched-
ulers, provides 100% throughput under uniform traffic.

The reason is as follows. Consider the input load as 1.0. If an
IM cannot send m cells, outstanding requests are maintained in
each subscheduler, in other words, F (i; v; p) = 1. As a result,
C(i; v) is not always decremented in stage 2 and increased in
stage 1. Since C(i; v) reaches a large value enough to be always
satisfied with C(i; v) > 0, F (i; v; p) = 1 is kept in stage 25. In
this situation with F (i; v; p) = 1 at any t in stage 3, subsched-
uler p provides a complete matching result every P time slot
due to the desynchronization effect of all round-robin arbiters in
each subscheduler, as described in Section III. We note that the
pointer desynchronization is achieved in the same subscheduler.
Pointers of each subscheduler behave independent of others.

Thus, PCRRD preserves the throughput advantage of CRRD.

B. Delay

Figure 7 shows that using P subschedulers, the delay per-
formance of the original algorithm is not affected significantly.
Bernoulli arrival process is used for the input traffic. We assume
that the switch size N is 64, where n = m = k = 8. In this
evaluation, we include absolute delay caused by the schedul-
ing time in the delay performance. When P increases, requests
from RC(i; v) are distributed among associated subschedulers.
Therefore, the desynchronization effect becomes less efficient
with P for a light traffic load. For a heavy traffic load, the delay

4This ensures that cells from the same VOQ are transmitted in sequence, even
if L(i; v) � C(i; v) > 1, where L(i; v) is the occupancy of V OQ(i; v). Note

that L(i; v)�C(i; v) =
PP�1

p=0
F (i; v; p) � P . L(i; v)�C(i; v) is the num-

ber of outstanding requests of V OQ(i; v) that are not granted by subschedulers.
5Although F (i; v; p) becomes 0 in stage 4 when a request is granted,

F (i; v; p) is always changed to 1 in stage 2.
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dependency on P becomes negligible. Therefore, P does not
affect delay performance in a practical use.

The delay performance is improved with more iterations.
Since PCRRD relaxes the dispatching timing constraint, a large
number of iterations within the IM are able to be adopted
even when the switch size increases or a port speed becomes
fast, compared with the non-pipelined algorithm. Note that
we showed the delay performance up to four iterations because
there is no measurable improvement with more iterations [11].

Figure 8 shows that even when input traffic is bursty, P does
not affect delay performance for a practical use. We assume that
the burst length exponentially is distributed as bursty traffic. The
burst length is set to 10.

C. Scheduling Timing Relaxation

Figure 9 shows the effect of the PCRRD scheduling timing
relaxation. We assume that a cell size, Lcell is 64� 8 bits. Let
the allowable scheduling time, a port speed, and the number of
iterations, be Tsch, C, and I . Tsch is given by,

Tsch =
PLcell

C
: (1)

Tsch decreases with C, but increases with P . In the non-
pipelined CRRD scheme, P is equal to 1 as a special case of
PCRRD in Eq. (1). In the non-pipelined CRRD, when C=40
Gbit/s, Tarb=12.8 ns. Under this timing constraint, it is difficult
to implement round-robin arbiters that support large N by us-
ing current available CMOS technologies. On the other hand,
PCRRD can expand Tsch by increasing P , when C=40 Gbit/s
and P = 4, Tarb=51.2 ns. Therefore, PCRRD expands the al-
lowable scheduling time for dispatching so that it can support
the desired port speed even when N increases.
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Fig. 9. Effect of PCRRD scheduling timing relaxation

VI. CONCLUSIONS

This paper proposed a pipeline-based concurrent round-robin
dispatching scheme, called PCRRD, for Clos-network switches.
To relax the dispatching timing constraint, we introduced more
than one subscheduler, each of which is allowed to take more
than one time slot for dispatching. One of them provides the
dispatching result every time slot. The subschedulers adopt
our original CRRD algorithm. They are implemented in a
distributed fashion. We showed that PCRRD preserves 100%
throughput under uniform traffic with our original CRRD algo-
rithm, while ensuring that cells from the same VOQ are trans-
mitted in sequence. In addition, we observed that the dis-
patching scheduling time does not affect delay performance
for a practical use. Since the constraint of the dispatching
scheduling timing is dramatically relaxed, it is suitable for high-
performance switching systems even when the switch size in-
creases and the port speed becomes high.
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