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Abstract—Memory-access speed continues falling behind the
growing speeds of network transmission links. High-speed net-
work links provide a means to connect memory placed in hosts,
located in different corners of the network. These hosts are
called storage system units (SSUs), where data can be stored.
Cloud storage provided with a single server can facilitate large
amounts of storage to a user, however, at low access speeds. A
distributed approach to cloud storage is an attractive solution.
In a distributed cloud, small high-speed memories at SSUs can
potentially increase the memory access speed for data processing
and transmission. However, the latencies of each SSUs may be
different. Therefore, the selection of SSUs impacts the overall
memory access speed. This paper proposes a latency-aware
scheduling scheme to access data from SSUs. This scheme deter-
mines the minimum latency requirement for a given dataset and
selects available SSUs with the required latencies. Furthermore,
because the latencies of some selected SSUs may be large, the
proposed scheme notifies SSUs in advance of the expected time
to perform data access. The simulation results show that the
proposed scheme achieves faster access speeds than a scheme
that randomly selects SSUs and another hat greedily selects SSUs
with small latencies.

I. INTRODUCTION

ATA link rates increase at rates with a steeper slope

than that described by Moore’s law. In contrast, memory
access speed has been improving at a dismally small rate and
has shown no signs of catching up any time soon. This paper
refers to as memory to the general means of storing data,
including hard drives (HD), flash memory, and random access
memory (RAM) devices.

In contrast, the increase of bandwidth of optical network
links has been staggering. Examples of these optical technolo-
gies are wavelength division multiplexing (WDM) and dense
WDM (DWDM). The advances of interconnection technolo-
gies encourage the use of packet networks as the transport
mechanism for data storage.

Storage access speed is mostly governed by the access time
of the storage device. Therefore, network access speed may not
be fully utilized when used to access storage. Furthermore, the
speed gap may prevent the development of applications based
on data handling and processing [1]. This bottleneck leads to
the placement of high-density memory on devices that are as
far as possible from the core of the network and as close as
possible to links with the smallest speeds. Nevertheless, no
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matter how far storage is placed from high-speed links of a
network, data must reach memory, sooner or later.

Datasets to be stored can be coarsely categorized as large
or small. The content of a HD (e.g., all files or a large
database in it), that is to be backed up, can be considered
as an example of a large dataset that is desired to be stored
quickly and reliably. Examples of small datasets, or metadata,
are data of large search engines, such as Google’s engines.
Search engines use high-performance databases located in
datacenters to search requests issued by Internet users and
these search engines are required to respond to a very large
number of queries each second. To keep up with such demand,
Google’s search engines are use more than twelve stealthy
datacenters, strategically distributed [4], [5]. Databases in
these datacenters store a large aggregated volume of data for
long periods of time. Although these search engines use large
and complex cache systems (e.g., including page ranking and
other algorithms to sort information) to speedup responses,
access time continues to be a bottleneck. Google has reported
that memory access time is one of the most challenging issues
[6].

Storage area networks (SANs) and network access storage
(NAS) are two approaches to support large databases and fast
data access. SAN [1] uses servers with large storage units, and
clients access the servers to access storage. As a datacenter,
SANs’ addresses are known (through the domain name system,
DNS, and IP address resolution) by users. NAS, on the other
hand, uses (standalone) storage devices provisioned with their
own network interfaces, and servers in the network are used
to control and keep track of the clients and the stored files
[7]. Combinations of SANs and NASs are commonly found.
In both approaches, the storage systems may use HD arrays to
achieve large storage capacities and high-speed access. Several
examples of systems with high-performance goals have been
proposed [9]-[11]. In these approaches, datasets from source
hosts are stored in the disk arrays, one file per disk. Therefore,
the storage and retrieval speeds are governed by the access
speed of a single HD in the array.

In the lower layers, the well known redundant array of
inexpensive disk (RAID) system is an approach to provide
high-speed access to slow storage (i.e., HDs). RAID is basi-
cally built as a farm of disks interconnected in parallel and
in arrays to increase access speeds (the reliability of RAID
is rather a consequence of having several parallel HDs; this
parallelism has also become a marketing feature). However,
the parallelism of mechanical systems requires fault tolerance
measures to provide reliability for devices with high possibility
of failure (the larger the number of HDs, the higher the



possibility of a failure as a successful access to memory
depends on a larger number of HDs). Still, a RAID system
adopts a centralized implementation, where all HDs must be
close to each other and internally interconnected to allow
parallel access in a single place in the network. There are
therefore disadvantages in this approach; one is that RAID
may be prohibitively expensive for the common Internet user,
and that the system would require a larger number of parallel
(low speed) links to support all the aggregated users. In fact,
by having a centralized approach, the number of users that
can access the RAID system is limited. New approaches to
substitute HDs by using flash memory have been attempted
(FusionlO, Intel X25-E, Samsun PB22-J), but the fastest of
them hardly sustains 0.4 Gbps, if at all available [15].

A datacenter used to provide cloud services, specifically
cloud storage, may provide a very large storage. However, this
storage may use the technologies discussed above. A scalable
alternative is to use a distributed cloud, where the storage units
can be placed in different places of the network. To make use
of the network speed in a distributed cloud, the datasets are
partitioned into blocks and blocks stored in different cloud
nodes. In this way, several blocks can be accessed at the same
time and from different hosts. This parallel access multiplies
the memory access speed. However, the access to a storage
unit depends on the part of the dataset required, as host may
be reachable with different latencies (this includes the access
time of storage device and the elapsed time to reach a storage
unit).

Because of the location of different storage units, different
latencies are also expected, and the set of storage units selected
determines the data access speed. Therefore, the scheme used
to select storage units becomes important, and scheduling of
user access to the memory resources is then required to avoid
increase of the memory access time added by the network
properties.

This paper proposes a selection scheme based on estimation
of latencies to access distributed storage units. The proposed
scheme estimates the different set of latencies for a small set
of storage units, with small latencies, to achieve high access
speed. To make it effective, the scheme notifies the storage
units about the access times in advance to avoid unnecessary
delays. The performance of a proposed scheme is evaluated
through computer simulation. The results of the proposed
scheme is shown to provide faster access to data as compared
to a scheme based on random selection of units and a scheme
that greedily selects units with the smallest latencies. The
results show that only a portion of small-latency storage units
are needed to provide high storage and data access speeds.

The remaining of this paper is organized as follows. Section
IT describes the partitioning of datasets needed to make use of
the high-speed network and memory at storage units. Section
IIT describes different properties of a distributed cloud and
introduces the proposed latency-aware access scheme. Section
IV introduces the random-based access scheme and a greedy
selection scheme, both used for comparison purposes. The
section also presents a performance evaluation of these three
schemes obtained through computer simulation. Section V
presents the conclusions.

II. PARTITIONING OF DATA SETS AND STORAGE SERVICE
UNITS

Datasets, in the form of files, are divided into small blocks
and are distributed among several cooperative hosts, called
here as storage system units (SSUs). Figure 1 shows an
example of the partitioning of a dataset into small blocks of
data. In the following description, SSUs perform either write
or read functions, and each function is called a memory access.
An SSU that issues a write process on another SSU(s) is called
originating SSU. An SSU that provides data from its local
memory system or hard drive (data retrieval) as a response
to a request from an originating SSU is called a receiving
SSU. Here, SSU can have several levels of memory, from

(a) Original Dataset

(b) Distributed Dataset (in SSUs)

Fig. 1. A dataset partitioned in several blocks, where each block is stored
in a different receiving SSU.

the fastest (but smallest, e.g., SRAM) to the largest memory
(but slower, e.g., DRAM or HD) where data can reside for an
arbitrary amount of time. The number of blocks that can be
stored in a SSU depends on the size of the largest memory
(memories of different speeds or capacity are considered). A
block sent to a SSU is first received by the fast memory, and
it is slowed down for long term storage. The latency of the
transmissions of blocks from the originating SSU and each
receiving SSU is considered to categorize SSUs in difference
latency groups. The latencies from the originating to receiving
SSU and those of the reverse path define the transmission
rates of single SSU. For simplicity, it is considered that an
originating SSU may store a data block per receiving SSU.
Once blocks are assigned to different SSUs, which are selected
by a management scheme according to their availability and
other properties, they are transmitted by the originating SSU.
Figure 2 shows an example of a local and extended network
with SSUs. The receiving SSUs have similar delays to the
originating SSUs, such that the access time is the same for
each block and SSU.

A dataset of size L bits is divided into L; (1 < i < n)
blocks of size of k bits, which is defined by size of the fastest
memory size in the SSU. In cases where a larger data blocks
are handled, several blocks can be concatenated to form a
large segment. For simplicity, only blocks are considered in
the remainder of this paper.

Figure 1 also shows the partitioned dataset distributed on
SSUs in a network. With this distribution of blocks, new
requirements are set:

1) blocks must be stored in known locations for scheduled
and timely retrieval,

2) each SSU must be categorized by levels of reliability,
accessibility (speed), and availability,



3) data must be replicated according to the required relia-
bility level or use coding for data recovery [16], and
4) data must be secured.
Only item 1) is considered in this paper. SSUs are considered
sufficiently reliable and available (Item 2) in the remaining of
this paper. The discussion is then centered in the latency or
response time of a SSU.
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Fig. 2. Example of a network of SSUs with heterogeneous access links.

III. SEGMENTATION AND LOCALIZATION OF DATASETS

Large datasets are partitioned into k-bit blocks, as described
above. Each of the L; blocks is sent to a receiving SSU. This
network adopts a global management table that indicates the
location of SSUs and their ranking features (e.g., access rate,
level availability). The global management table is replicated
and held by a set of selected SSUs distributed in the network
to relax high traffic demand. In addition, each SSU has a
local localization and evaluation table to keep information on
where the blocks that belong to this SSU are kept. The table
also includes information about the receiving SSUs who have
interacted with the (originating) SSU. The local tables give
SSUs and clients autonomy [20]. The localization table also
keeps latency values to indicate the transmission delay that
each block undergoes (and used for scheduling the retrieval
of these blocks). The selection of SSUs may resemble the
process to select hosts in a peer-to-peer (P2P) network, where
each peer uses a location table to indicate the localization of
files (blocks) and the SSU rating [17], [18].

To access receiving SSUs, the originating SSU sends a
broadcast request to those SSUs with similar features ob-
tained from the evaluation table. Available SSUs send an
acknowledgement to the requesting SSU (otherwise, a negative
acknowledgement is used), including an access number to
either indicate the earliest time that the peer becomes available
or the level of peer’s load, and the originating SSU evaluates
the receiving SSUs availability. Data blocks are dispatched
afterwards, and the information of the localization and evalu-
ation tables is updated. Although the broadcast request/reply
process is simple, the database holding the information about
the written blocks might have significant complexity. To avoid
consuming extra resources for large datasets, information (i.e.,
addresses and other values) of the storing SSUs is compressed
into a tree, where the root is the originating SSU. The access
to the data blocks can use bandwidth reservation to reduce

unexpected changes of access latencies. Figure 3 shows an
example of originating SSUs interacting with receiving SSUs.
The SSUs holding a Rz label are the receiving SSUs, and the
SSUs holding a T'x label are the originating SSUs. The red
line indicates the possible requests sent by originating SSUs
and the blue line indicate the possible data transmission after
receiving SSUs have been reserved.

The originating SSUs evaluate the properties of possible
receiving SSUs. The parameters for evaluation are reliability
(loss of data or access), availability (on-line time and stor-
age availability), and data security (e.g., levels of security
offered by the receiving SSU) are considered to rank SSUs.
Information about participating SSUs is updated in the global
management table and in localization and evaluation table
of the originating SSU. Different from large datasets, small
datasets can be stored in a one or several SSUs. However, the
cost may be high as the utilization ratio is:

UR; = = (1)

where D; is the size of the small dataset, with D; < k, and S is
the size of memory where the dataset is stored. This utilization
ratio can be represented in terms of the link transmission
capacity. However, the list of individual blocks may be large
for some applications (e.g., a search engine application). In
this case, the originating SSU keeps a large table of addresses
of host storing several (small) data blocks.

Two different models for cooperative SSUs are considered,
the server mode, where some SSUs only provide storage
service but they do not demand storage from other SSUs, and
the peer-to-peer mode, where SSUs can interact as storing
and receiving SSUs. In both models, SSUs can be recruited
from user’s hosts that are considered cooperative hosts with
a broadband interface. This paper considers the peer-to-peer
model, where a SSU can either receive or store a data block
at a time.

Reservation
Data

Fig. 3.  Example of data access, where an originating SSUs request data
blocks from different receiving SSUs.

A. Latency-Aware Scheme for Selection of Receiving SSUs

The localization and management table in an originating
SSU has a list of possible receiving SSUs with the associated
(average) latencies. This is, the originating SSU, denoted
now as SSU;, creates a dataset management table (DMT) to



indicate the blocks and assigned receiving SSU, or SSU;. The
DMT also indicates the average latency [(j) for SSU;. The
number of SSU to be selected is determined by the number
of blocks in a dataset. The average latencies of the receiving
SSUs are sorted in ascending order, where the SSU with the
smallest latency I(j) is defined as Vj, I5(j)= Min{l(j)},
and the latency with the largest latency [;(j) is defined as V7,
L(j)= Maz{l(j)}. The latencies of SSU; are then sorted as
{Zs(])v ceey ll(.])}’ V]

If a dataset of length L bits is to be accessed, and the access
link is one of bandwidth B b/s, the time to download it is
L

5 seconds. Then the blocks are scheduled to be transmitted

(received) from time t, to time ¢4+ %. The first SSU that can
be used is that with ;(j) < %, and the second SSU is selected
with {;(j) < % — %, until the selection of the SSU to perform
the access to the first block is assigned. In this way, the SSUs
with different latencies are selected without recurring to only
the SSUs with the smallest latencies.

After the set of SSUs are scheduled, they are assigned
to blocks that are needed in that order by the originating
SSU. Once the SSUs and blocks are cross assigned, the
originating SSU can issue an access request (for either retrieval
or storage) at least [; seconds in advance to all receiving
SSUs. The request indicates the required access time and the
receiving SSUs calculate the start-of-transmission time. These
time values are used to make SSUs with low latency hold their
transmission until a time that after their latency would make
a block arrive in the desired order.

Average latencies of the SSUs are monitored, and changes
are registered in the latency table and in the DMT. Migration
of memory blocks from SSUs that become ineligibly slow is
performed only after a memory access is requested by the
application using the dataset (the migration is not performed
if access to the dataset is not required).

IV. PERFORMANCE EVALUATION

Performance evaluations of the latency-aware access scheme
were performed to estimate the average access time of datasets
with SSUs interconnected in a mesh network (i.e., grid topol-
ogy). Figure 4 shows an example of the mesh network adopted.
The SSUs in the mesh have been randomly selected as active
or idle. Active nodes are active SSUs, indicated by a circle at
an intersection. A single intersection (without a node) indicates
an idle node and they are ignored. Path latencies are considered
symmetrical for both directions.

The proposed scheme is compared to the following two
schemes:

Random Selection of SSUs (Random). This selection
scheme selects SSUs randomly, without considering SSU’s
latency and availability. Each SSU has the same probability
of being selected. Here, L; depends on the size of the dataset.
If SSUs reject the request (a SSU can decline to receive a
block if the maximum number of sharing users per SSU is
reached), the originating SSU can recur to several selective
iterations. Until all blocks are assigned.

Smallest Latency First (SLF). This selection scheme aims
to select the SSUs with the smallest latency needed for L;

Fig. 4. Example of a mesh network. Inter-connectivity is shown with
horizontal and vertical lines and active SSUs as circles.

blocks. If the SSUs with the latency are exhausted, the SSUs
with the second smallest latency are then selected, and so
on. In this way, it is expected that the SSUs with higher
bandwidth or located close to originating SSU are selected.

Considering homogeneous SSUs, all blocks have fixed size
and the time to process a retrieval/store takes one time slot. In
this simulation, there are 50 SSUs and 10 files in the network,
each file contains L; blocks. An SSU requests access to a file
with a frequency defined by a request probability (P,). A file
access for the functions of storing or retrieval are considered
indistinct. When P,=0, SSUs, and therefore blocks, remain
without being accessed. When the P,=1.0, files are selected
in each time slot for access and SSUs with blocks are accessed.
SSUs may receive multiple requests in a time slot and their
response is bound by their processing and access capabilities.
The latency between one SSU and another is set to 3, 6,...,
30 time slots, randomly assigned with a uniform distribution.
Routing for the SSUs is indicated in the localization tables at
SSUs and it is considered known during the simulation.

First, we investigate the average access time (for access
to the complete dataset, L). Figure 5 shows the average
access time (time slot) for datasets with sizes from 1 to
50 blocks. As the dataset size increases, the average access
time increases quickly for the random selection scheme. From
this figure, we can see that the average access time can
be dramatically reduced by using the SLF scheme, as this
scheme achieves lower access time (of several thousand time
slots) than that of the random selection scheme. However, the
proposed scheme achieves even lower average access times
than the SLF scheme. This result indicates that there is a
significant time saving during data access by using latency-
aware selection schemes.

Second, we investigate how the average access time is
affected by the network load. This network load is modelled
by using the dataset request probability P, from O to 1. Figure
6 shows the resulting average access time by the random
selection scheme, the SLF scheme, and the proposed scheme.
In this experiment, the bandwidth of the SSUs has been set
to a limit: a receiving SSU can allow the access to one block
each time slot. The average size of the dataset, in the average
number of blocks, is set to 10 and 40, for separate tests. When
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Fig. 5. Average access time of each file for different number of blocks (L;).

the dataset size is small, 10 blocks, the SLF and the proposed
schemes have similar average access times, while the average
access time of the random selection scheme is larger. When
the dataset size is larger, 40 blocks, the proposed scheme
shows lower average access time than those of the random
selection scheme and the SLF scheme. Still, the SLF scheme
outperforms the random selection scheme, whose average
access time increases greatly. Note that the average access time
of the proposed scheme remains almost constant for different
request probabilities while the SLF scheme, although with
small average access time, it shows a slight dependency on
the dataset size. The proposed scheme does not suffer from it
because it schedules the transmission of the blocks from SSUs
with different latencies, and in this way, the SSUs may be used
more efficiently than by the other two schemes. This property
of the proposed scheme is an indicator of its scalability as
in some cases, we would expect to access very large datasets
under large network loads.
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Fig. 6. Average access time of random and latency-aware schemes under
different request probabilities.

We also investigated the average access time for SSUs for
different levels of sharing in SSUs. In the previous experi-
ments, SSUs were not limited to a number of originating SSUs.
For example, a receiving SSU could share its resources with
the other 99 SSUs. In this experiment, an SSU is limited to
share its resources from 1 to 99 SSUs. As discussed before,
the largest the sharing in a receiving SSU, the larger the

probability of having contention for resources by originating
SSUs, and therefore, larger average access time. Figure 7
shows the average access time in function of the level of
sharing, which is expressed in the number of originating
SSUs sharing the resources of a receiving SSU. We observe
average access time increases as more originating SSUs share
a receiving SSU. Again, the random selection scheme shows
the largest average access time, and the SLF and proposed
schemes show significantly lower average access times. From
these two schemes, the proposed scheme shows the lowest
average access time for different numbers of SSUs sharing a
receiving SSU.
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Fig. 7. Average access time for different number of SSUs sharing a receiving
SSu.

V. CONCLUSIONS

This paper proposed a scheme to select distributed storage
units to obtain small access times to data. These distributed
storage units, also called SSUs, avail large storage for a
large number of users. The different geographical location
and network conditions of the SSUs may be represented with
different latencies, and the selection of these SSUs determines
the access times.

The proposed scheme selects SSUs with a wide range of
latencies in order to use participating storage units and to not
overuse SSUs with lower latencies. This makes the proposed
scheme latency aware. It access SSUs with small latencies
in the beginning of the access to a dataset, and those hosts
with larger latencies for the remaining parts of the dataset.
The performance of the proposed scheme is compared to that
of a random selection scheme, which is a latency unaware
scheme, and to the smallest latency first (SLF) scheme, which
is also a latency aware scheme. The simulation results show
that the proposed scheme achieves lower average access times
than those of the random selection scheme and SLF scheme.
Furthermore, the proposed scheme shows more resilience
under a network with high load and under a network with
than high level of sharing, than the other two schemes.
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