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Abstract— Combined input-crosspoint buffered (CICB) packet
switches perform input and output arbitrations separately. This
arbitration separation permits distributed selection for both
inputs and outputs. While input arbitrations are implemented
in a distributed manner because inputs are located in different
physical locations, output arbitrations can be implemented in
either distributed or centralized manner since output arbiters
are placed in the buffered crossbar. An advantage of using a
centralized output arbitration approach is that more complex
schemes can be executed without completely sacrificing the timing
efficiency that CICB switches are known to have. In this paper,
we introduce a hybrid arbitration approach that combines a
distributed selection scheme at the inputs and a centralized
selection scheme at the outputs. By using this hybrid approach,
we show that a CICB switch with the minimum crosspoint-buffer
size provides 100% throughput under admissible traffic that
follows the strong law of large numbers, without using speedup.

Index Terms— Buffered crossbar, crosspoint queued, stability,
fluid model, throughput.

I. INTRODUCTION

Combined input-crosspoint buffered (CICB) switches are
known to be a practical alternative to provide high-
performance switching and to relax arbitration timing for
packet switches with high-speed ports [1]-[3]. CICB switches
use time efficiently because input and output port selections
are performed separately, and the working speed of the cross-
point buffers in a CICB switch is as relaxed as that of the
buffers in input buffered (IB) switches.

Because of the arbitration separation, buffered crossbar
switches have simpler scheduling algorithms than bufferless
crossbar switches (e.g., IB switches must find a maximum
weight match between inputs and outputs) to provide high
performance.

CICB switches with input buffers, which follow the first-
in first-out (FIFO) service policy, or FIFO-CICB switches,
have been used to reduce the crosspoint-buffer size and to
reduce packet loss ratio. However, a CICB switch with input
FIFOs may have the throughput limited by the head-of-line
blocking phenomenon. CICB switches with virtual output
queues (VOQs), where a queue at the input stores packets for
a specific output, or VOQ-CICB switches, can provide 100%
throughput under admissible traffic with uniform distribution
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[4]-[7]. In [8], it has been shown that with a weighted
round-robin scheduler, a buffered crossbar can achieve 100%
throughput with a speedup of two for admissible traffic for
any distribution. However, considering speedup in crosspoint
buffers is not practical as memory speed hardly keeps up with
the ever increasing line rate. We refer to a VOQ-CICB switch
as a CICB switch for the sake of brevity in the remainder of
this paper.

In this paper, we propose the longest column occupancy
(LCO) first selection as output arbitration that uses a cen-
tralized selection approach. We use the longest queue first
(LQF) selection scheme as input arbitration. Contrary to LCO,
LQF uses a distributed selection approach. We show that the
combination of LQF and LCO provides 100% throughput
under admissible traffic that follows the strong law of large
numbers (SLLN), for any distribution. To support our claim,
we prove that CICB switches with one-cell crosspoint buffers
and no speedup can provide 100% throughput under admis-
sible traffic that follows SLLN. In this paper, we refer cells
to as fixed-size packets, which are the product of segmenting
variable-size packet at the inputs. Cells in this paper are not
necessarily those of Asynchronous Transfer Mode (ATM).
Variable-size packets are reassembled at the outputs before
leaving the switch. The intuition of this analytical result lies on
the knowledge that CICB switches provide higher performance
than IB switches, and that IB switches can provide 100%
throughput under admissible traffic with no speedup [9], with
a high-complexity matching scheme.

In our analysis, we use the CICB switch’s property of
performing input and output arbitrations separately. We show
that input and output arbitrations can provide sufficient con-
ditions for 100% throughput if: 1) the buffered crossbar has
a crosspoint available for any input at any time slot, and 2)
every input is able to send a cell of backlogged traffic to an
available crosspoint at any time slot.

This paper is organized as follows. Section II describes the
switch model. Section III describes the fluid model and some
preliminary definitions. Section IV presents the throughput
analysis of a CICB switch. Section V introduces the input and
output arbitration schemes used to achieve high throughput.
Section VI presents our conclusions.

II. CICB SWITCH MODEL

Figure 1 shows a CICB switch with N inputs and outputs.
There are N VOQs at each input. A VOQ at input i that
stores cells for output j is denoted as V OQi,j . A crosspoint



element in the buffered crossbar that connects input port i,
where 0 ≤ i ≤ N − 1, to output port j, where 0 ≤ j ≤
N − 1, is denoted as CPi,j . The buffer at CPi,j is denoted as
CPBi,j , and it is considered of one-cell size. Therefore, the
transmission and arbitration delays are considered negligible,
without loss of generality. A large CPB size would allow non-
negligible transmission delays. CPBBusy

i,j denotes a CPB that
is currently storing a cell (e.g., an occupied CPB).
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Fig. 1. Combined input-crosspoint buffered crossbar switch.

The occupancy of V OQi,j at up to time slot n is denoted as
Zi,j(n). The cumulative number of packets that have arrived
at V OQi,j by time slot n is denoted as Ai,j(n), and the
cumulative number of packets that have departed from V OQ i,j

by time slot n is denoted as Di,j(n).
In a CICB switch, the input arbitration at input i selects

a cell from a non-empty VOQ, whose corresponding CPB is
available, to be forwarded to the buffered crossbar (this VOQ is
said to be uninhibited). At the same time, the output arbitration
selects a cell from an CPB among all those for output j to leave
the buffered crossbar. We consider that the output arbitration
can adopt either a distributed or a centralized approach as all
output arbiters can be placed in the same chip.

III. FLUID MODEL

We use a fluid model [9] to analyze the properties of the
VOQs in a CICB switch with no speedup and look at the
stability property of this switch under a traffic model with
the restrictions of being admissible and where the cell arrivals
follow SLLN:

lim
n→∞

Ai,j(n)
n

= λi,j , (1)

where λi,j is the average arrival rate at V OQi,j .
An input arbitration uses scheme m, such that the selected

VOQs can be expressed by matrix πm
i,j(n) ∈ Π at time slot

n. For π, let T m
π be the cumulative amount of time that

a combination π has been used by time slot n. Therefore,

Di,j(n) is the number of departures from V OQ i,j(n) up to
time slot n, where Di,j(0) = 0 is defined.

Definition 1: If limn→∞
Di,j(n)

n = λi,j , the switch is said
to be rate stable. It has been proved that a switch is rate stable
if the corresponding fluid model is weakly stable [9].

For n ≥ 0, the switch dynamics are represented as:

Zi,j(n) = Zi,j(0) + Ai,j(n) − Di,j(n), (2)

and ∑

π∈Π

T m
π (n) = n, (3)

where T m
π (.) is non-decreasing.

A switch under traffic that complies with SLLN can be
represented through a fluid model [9].

Definition 2: The fluid model of a switch is said to be
weakly stable if for every fluid model solution (D, T, Z) with
Z(0) = 0, Z(t) = 0 for almost every t ≥ 0 [9].

The dynamics of the fluid model of the switch can be
expressed as

Zi,j(t) = Zi,j(0) + λi,jt − Di,j(t), (4)

and
Ḋi,j(t) =

∑

π∈Π

πi,j Ṫ
m
π (t), ifZi,j(t) > 0, (5)

where T m
π (.) is non-decreasing and

∑
π∈Π T m

π (t) = t. Here,
ġ(t) is the derivative of a function g(t) at t.

To express the switch dynamics of (2) into those of a fluid
model as in (4), a limiting procedure is used to obtain the fluid
limits, which are the solutions to express a time-slotted model
into a continuous-time model. The fluid limit of a switch is
Lipschitz continuous and therefore is absolutely continuous.
For completeness, we recall the following lemma.

Fact 1: (Lemma 1 in [9]) Let f : [0,∞) → [0,∞) be an
absolutely continuous function with f(0) = 0. Assume that
ḟ(t) ≤ 0 for almost every t such that f(t) > 0 and f is
differentiable at t. Then f(t) = 0 for almost every t ≥ 0.

By the fluid behavior of the V OQs’, for a weakly stable
switch there must exist an f(t), where f(t) = 0 implies
Z(t) = 0 for every t > 0, and where f(0) = 0 implies
Z(0) = 0.

IV. THROUGHPUT ANALYSIS OF A CICB SWITCH

In this section, we analyze the stability of a CICB switch
using the fluid model. We present the following, by means of
Theorem 1.

Theorem 1: A CICB, with a VOQ structure at the inputs and
using no speedup, provides 100% throughput under admissible
traffic.

Proof: 100% throughput means the switch is rate stable
by Definition 1. The CICB switch is analyzed in two separated
parts. The first part is concerned with the inputs, and the
second part with the buffered crossbar. We start with the first
part.

As in [9], let’s define

Ci,j(t) = Li(t) + Mj(t), (6)



where
Li(t) =

∑

k

Zi,k(t)

denotes the total amount of fluid buffered at the input i at time
t, and

Mj(t) =
∑

k

Zk,j(t)

denotes the total amount of fluid destined for output j at time
t. In other words, Ci,j denotes the total amount of fluid at
input i and the fluid destined to output j.

Since input and output arbitrations work separately in a
CICB switch (see Figure 2, where the complete time slot
is used by both input and output arbitrations), if cell c is
dispatched from V OQi,j and is stored at CPBi,j , then Li(t)
and Mj(t) decrease by one each. Therefore Ci,j(t) is reduced
by two in a single time slot.

Input arbitration

Output arbitration

Time slot # n

Fig. 2. Allowable arbitration time in a one-cell buffered crossbar switch.

In a similar way as in [9], let Q be a N × N matrix with
each entry being 1. Then

C(t) = QZ(t) + Z(t)Q, t ≥ 0 (7)

where Ci,j is an element of C(t).
We define f(t) as:

f(t) = 〈Z(t), C(t)〉 =
∑

i,j

Zi,j(t)Ci,j(t). (8)

It follows that f(t) ≥ 0 for t ≥ 0 and f(0) = 0. It is easy
to see that f(t) = 0 implies Z(t) = 0. Next, we show that
f(t) > 0 implies ḟ(t) ≤ 0 for almost every t.

In this case, from [9], it follows that

ḟ(t) = 2
∑

i,j

Zi,j(t)Ċi,j(t). (9)

Therefore, ḟ(t) ≤ 0 if and only if Ċi,j(t) < 0. As mentioned
above,

Ċi,j(t) =
∑

k

λi,k +
∑

k

λk,j − 2 (10)

where ∑

j

λi,j ≤ 1,

and ∑

i

λi,j ≤ 1,

thus making Ċi,j(t) ≤ 0. Therefore, from (9) and (10), ḟ(t) ≤
0 whenever f(t) > 0.

Here, f(t) and Fact 1 establish that the fluid model of a
CICB switch with one-cell crosspoint buffers is weakly stable

as long as no input is inhibited from sending a cell to the
buffered crossbar in a time slot. Then, it remains to complete
the proof of Theorem 1 with the following lemma.

In (5), the arbitration scheme m selects a VOQ such that an
CPB at j receives one cell, as expressed by (6). We state the
following lemma about the non-inhibition of an input arbiter:

Lemma 1: At any time slot, input i has at least an avail-
able CPBi,j under admissible traffic such that inhibition is
avoided.

Proof:
Lemma 1 can be rephrased in terms of the output arbitration

scheme, as follows: There exists an output arbitration scheme
such that the selection result causes

∑
j CPBBusy

i,j < N for
admissible traffic, at any time slot.

Consider the following propositions, presented in [10]. Von
Neumann proposition: if a matrix B = (Bi,j) is doubly
substochastic, then there exists a doubly stochastic matrix B̄
such that Bi,j < B̄i,j ∀ i, j.

Birkhoff’s proposition: for a doubly stochastic matrix B̄,
there exists a set of positive numbers φk and permutation
matrices Pk, where 1 ≤ k ≤ K , such that B̄ =

∑
k φkPk. Let

e be the column vector with all its elements being 1. As B̄
is doubly stochastic, e = B̄e=

∑
k φk(Pke)=(

∑
k φk)e, thus

making
∑

k φk = 1.
Note that the occupancy of the 1-cell crosspoint buffers in

the buffered crossbar can be represented by a matrix

CPBBusy = (CPBBusy
i,j ) (11)

such that ∑

j

CPBBusy
i,j ≤ N (12)

and ∑

i

CPBBusy
i,j ≤ N. (13)

Normalizing CPBBusy with respect to N , the matrix is
doubly substochastic.

Therefore, CPBBusy can be represented as doubly stochas-
tic CPB

Busy
, such that there exist permutation matrices that

indicate which CPBBusy
i,j is served at j in a time slot.

Therefore, the output arbitration scheme must select a set
of CPBs such that, for a given Pk

∑

j

Pi,j > 0, (14)

and therefore ∑

j

CPBBusy
i,j < N (15)

after the output arbitration. By using the permutation matrices
as the set of CPBs that are selected by the output arbitration,
input i has at least one CPB available at any time slot.

Furthermore, because K ≤ N 2 − 2N + 2 [10], the smallest
switch size of N = 2 has K ≥ 1. Therefore, this result holds
for all N values.

Since there exists an output arbitration scheme that allows
inputs to be uninhibited, Lemma 1 is proved.
As Lemma 1 is true, then Theorem 1 is proved.

Figure 3 shows an example of a decomposed matrix for a
4× 4 switch. Figure 3.a shows a matrix CPBBusy is doubly
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Fig. 3. Example of a decomposed matrix for a 4 × 4 switch.

substochastic according to (12) and (13). Based on the Von
Neumann proposition, the normalized matrix CPB Busy is
converted to a doubly stochastic matrix. Figure 3.b shows
the doubly stochastic matrix. With Birkhoff’s proposition, the
decomposed matrix is obtained, as shown in Figure 3.c. After
the decomposition, four permutation matrices are obtained,
where matrix elements with 1’s are CPBs selected by the
output arbitration. Each permutation matrix has associated the
rate (e.g., 0.25) of the crosspoint selection. As shown in this
figure CPBs from different inputs are served at every time slot,
and therefore input inhibition is avoided.

In the following section, we present input and output
arbitration schemes that comply with the conditions analyzed:
under admissible traffic, we consider that no two VOQs
can have the same occupancy under the same service rate
under SLLN admissible traffic. Therefore, the input arbitration
scheme guarantees that the Ċi,j(t) decreases by two, and the
output arbitration scheme guarantees that an effective matrix
decomposition is performed to make one or more crosspoint
buffers available per input.

V. DISTRIBUTED LONGEST QUEUE FIRST (LQF) AND

CENTRALIZED LONGEST COLUMN OCCUPANCY (LCO)
FIRST

Input arbitration: we use a distributed input arbitration
scheme, longest queue first (LQF), which can differentiate
among flows that require extensive service, and that can be
applied independently at any input port.

The LQF scheme can be described as: an input arbiter
selects the non-empty uninhibited VOQ that has the larger

cell occupancy. Ties are broken arbitrarily. The selected VOQ
sends a cell to the buffered crossbar in the next time slot.

Output arbitration: since the output arbiters can be placed
in-chip at the buffered crossbar, we consider the LCO arbitra-
tion scheme as a centralized algorithm. The development of
LCO is based on the most critical internal buffer first (MCBF)
scheme [11]. However, MCBF cannot guarantee that an input
can have an available crosspoint buffer for any time slot (we
show an example of this claim in the Appendix). By using
LCO, an output arbiter selects CPBs from different inputs and
CPBs for all outputs. LCO uses two steps:

Step 1: Select an output {j | max
∑

i CPBBusy
i,j } and an

input {i | max
∑

j CPBBusy
i,j }. Ties are broken arbitrarily.

Set output j and input i as reserved and perform Step 1 with
unreserved i, j pairs until no more can be found (i.e., the
number of unreserved inputs or outputs becomes zero, or else,
when the remaining occupied CPBs belong to reserved inputs
or outputs). Then go to step 2.

Step 2: If there are unreserved outputs where at least one
CPB is occupied, select an CPBBusy arbitrarily from each
unreserved output. Note that a reserved input can be selected
in this step.

Figure 4 shows an example of the selection process per-
formed by LCO in a 4 × 4 buffered crossbar. The rows
represent inputs and the columns represent outputs. In Figure
4.a, CPB3,3 is selected. Therefore, input 3 and output 3 are
reserved. In Figure 4.b, the row selection considers only those
busy crosspoint buffers from unreserved rows and columns,
and therefore, CPB1,0 is selected. Figures 4.c shows the selec-
tion of the CPB2,2 as only row 2 and column 2 are unreserved
and with busy CPBs. Figure 4.d shows that CPB3,1 is selected
by using LCO’s Step 2. This example shows that LCO selects
CPBs from different inputs while keeping the buffered crossbar
forwarding cells to the outputs. Therefore, LCO avoids input
inhibition.

LCO maximizes the number of active outputs and therefore,
relaxes the requirements for an input arbitration scheme. The
computation complexities (without optimization) of LQF and
LCO are O(N) and O(N 2), respectively.

VI. CONCLUSIONS

In this paper, we introduced a hybrid approach to arbitration
schemes for CICB switches: LQF with a distributed implemen-
tation at the inputs and LCO with a centralized implementation
at the buffered crossbar. By using these arbitration schemes,
we showed that a CICB packet switch can provide 100%
throughput, with no speedup, under admissible traffic that
follows the strong law of large numbers. The fact that input
and output arbitrations are performed separately in a CICB
switch allows us to analyze the buffers at the inputs of the
CICB switch while the output arbitration at the buffered
crossbar keeps inputs uninhibited, and to analyze the buffered
crossbar while an input arbitration selects a VOQ that has
a crosspoint buffer available. We show that LCO can select
cells at crosspoint buffers from different inputs such that input
inhibition is avoided.

Because all output arbiters are located in the buffered
crossbar, it is possible to use a centralized scheme, as LCO,
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Fig. 4. Example of crosspoint-buffer selection by a centralized LCO in a
4 × 4 switch.

at the cost of increasing the computation complexity of the
arbitration scheme. This complexity increase is considered as
a sufficient condition to provide higher switching performance.
Although LCO might consume time to perform a suitable
selection of crosspoints, the strategic location of the output
arbiters permits a short resolution time that keeps CICB
switches with, nevertheless, effective timing.
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APPENDIX

Here, we show that the MCBF scheme cannot guarantee
an available crosspoint buffer for any input at every time
slot. In MCBF, each distributed output arbiter independently
selects the crosspoint from the longest input occupancy as
specified by the longest buffer first (LBF) output arbitration
[11]. Therefore, if an input has high load, the associated
crosspoints could be selected during the same time slot, while
leaving other inputs unserved. Figure 5 shows an example of
the selection process that the decentralized MCBF performs
in a 4× 4 buffered crossbar, which is represented as a matrix.
In this matrix, rows represent the inputs and the columns
represent the outputs. A CPB with a cell is represented by
1 (busy), and 0 (idle), otherwise. Figure 5.a shows the state of
CPBs as busy and idle crosspoints. Figure 5.b shows the input
occupancy seen by the output arbiters per CPB. For example,
CPB0,0 is 2 as there are only two cells from input 0 for all
outputs. An idle CPB is indicated by a zero as it is ignored by
the output arbiter. This figure also shows that this example
has all CPBs from inputs 1 and 3 with the longest input
occupancy, and the output arbiters, using the same selection
policy, select all CPBs from input 3. Therefore, Figure 5.c
shows that CPB3,0 to CPB3,3 are selected, marked with an
X. These independent arbiters select CPBs from input 3 and
leave input 1 without an available CPB in the next time slot.
Therefore, the distributed MCBF scheme cannot guarantee
having an available CPB at any time slot.
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Fig. 5. A counter example of crosspoint-buffer selection by MBCF in a 4×4
switch.


