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Abstract— In block-fading transmission, the discrete-time taps
of time-varying channels can be generally modelled as a sta-
tionary random vector process with unknown and rank-deficient
correlation matrix. The model applies to single/ multi-antenna
systems for single/multi-carrier modulation. In this paper, we
propose a hybrid estimator that sequentially estimates the (de-
terministic) rank-deficient channel correlation matrix and the
(random) channel taps. In addition, we derive a bound on the
corresponding estimation error by adapting the Cramér Rao
bound (CRB) to the case of mixed deterministic and random
parameters (Hybrid CRB). Finally, we assess that the proposed
estimator is statistically efficient through comparison with the
Hybrid CRB.

I. INTRODUCTION

In communication systems the block-transmission is rou-
tinely employed in order to deal with time variations of
wireless channels (see, e.g., [1]). Known training sequences
are periodically transmitted with the payload bits so as to
aid the receivers to estimate the channel for data detection
within each block. The block length is generally optimized
to guarantee that the channel variations within the block are
negligible, while inter-block variations of fading depend on
the time between transmission of successive blocks.

The scope of this paper is estimation of block-fading
channels where the inter-block interval is arbitrary but suffi-
ciently large to render ineffective the use of simple averaging
technique across consecutive blocks. Moreover, we assume
Rayleigh fading and the channel taps be correlated within each
block with an unknown and generally rank-deficient corre-
lation matrix. This model complies with assumptions widely
made in the context of block transmission, in either a single or
multi-antenna scenario for single or multicarrier modulation.
Channel correlation is due to the fact that, in general, the
same multipath component affects multiple channel taps in
either time and/or spatial domain. On the other hand, rank
deficiency arises whenever the temporal and/or spatial spread
of the multipath channel is not large enough to require the
entire signal space for its description. This feature has been
often employed in order to obtain an efficient parametrization
of the channel for the purpose of channel estimation [2] [3] [4]
for single or multicarrier modulation [5]. A simple example of
the model is given by a frequency-flat Multiple Input Multiple
Output (MIMO) channel with correlated fading at the transmit/
receive antennas [6].

In the general framework described above, this paper pro-
poses a channel estimator that formalizes previously proposed

solutions (see, e.g., [2]) by using the frameworks of Method
of Moments (MoM) and MMSE estimation. Moreover, it is
shown that a performance bound on the channel estimation
error can be obtained by evaluating the Hybrid Cramér-Rao
Bound (HCRB), a generalization of the conventional CRB
to the case where the parameters to be estimated encompass
both deterministic and a random components [7]. Finally, the
proposed estimators is shown to be able to reach the Hybrid
CRB for a number of blocks large enough.

Basic notation: lowercase (uppercase) bold denotes column
vector (matrices), (·)T is the matrix transpose, (·)H is the
Hermitian transposition, (·)† is the pseudoinverse, ||X||2A =
tr{XHAX} is the norm weighted by a positive definite
matrix A, v =vec{V} is the stacking operator and ⊗ is the
Kronecker matrix product.

II. SIGNAL MODEL

In block-fading channels, channel estimation with training
sequences (known at the receiver) can be reduced to the
following linear regression model over K transmitted blocks:

yk = Xhk + nk, k = 1, 2, ...,K. (1)

The received signal yk ∈ CN represents the observations
at kth block (possibly on multiple receiving antennas), the
N ×M (N ≥ M) regression matrix X contains the known
training sequence(s) (transmitted by possibly more than one
antenna) arranged into a convolutional matrix independent on
k and full column rank (i.e., rank(X) = M ), the additive
noise is nk ∼ CN (0,Q) with known covariance Q and
uncorrelated samples across blocks: E[nknHk−m] = δmQ (δm
is the Kronecker delta function). The unknown and block-
varying channel is arranged into the vector hk ∈ CM , and it
can model either a single antenna link or multiple antennas
links. As an example, in a frequency flat MIMO system,
vector hk contains the channel gains between all the pairs
of transmit/receive antennas. Specialization of this model to
multi-antenna and multi-carrier systems can be found in, e.g.,
[8].

The channel vector hk is assumed to be a zero-mean sta-
tionary (within the observation interval k = 1, ...,K) Gaussian
process with correlation

E[hkhk−m] = Rhϕm. (2)

The correlation matrix Rh is unknown and generally rank-
deficient so that rank(Rh) = r ≤M,the correlation function



ϕm across blocks depends on the time-variations of the
channel due to Doppler and it is assumed to be known.
Notice that here the correlation ϕm is considered to be the
same for all entries of vector hk while extension to a more
general model requires a more complex notation with some
minor modifications to the analysis below. According to (2),
the channel hk can be restated as hk = R

1/2
h bk,where

bk ∼ CN (0, IM ) is a stationary Gaussian process with
E[bkbk−m] = IMϕm and R1/2

h as the M ×M square root
matrix of Rh (R1/2

h R
H/2
h = Rh).

In summary, the problem is that of estimating the set
of channel vectors {hk}Kk=1 from the observations {yk}Kk=1
assuming that the rank-deficient correlation matrix Rh (2) is
unknown, whereas the rank r, the temporal correlation ϕm
(2), the correlation of noise Q are assumed to be known.
If necessary, these latter quantities can be estimated using
standard techniques (see, e.g., [3]). According to the rank-
deficiency of Rh it is convenient to parameterize R1/2

h as the
product of two full rank matrices A (M × r) and C (M × r)

such that R1/2
h = ACH . It follows that the channel vector

can be conveniently expressed as

hk = AC
Hbk. (3)

Notice that the parametrization (3) is not unique as there are
many different ways to define the square root of Rh, and
the two factors A and C. However, in model (3) the full-
rank matrices A and C are now assumed to be deterministic
and block-invariant whereas vector bk is random and block-
varying. Based on the model (3), the block-varying vector
hk depends on both deterministic (A and C) and random
({bk}Kk=1) quantities so that the estimator has to be designed
accordingly.

III. ESTIMATION OF BLOCK-VARYING STATIONARY
CHANNEL

From (1) and (3), the log-likelihood function for the esti-
mation of parameters A, C and B = [b1, · · · ,bK ] can be
proved to be (neglecting uninteresting constants)

L =
KX
k=1

°°°yk −XACHbk

°°°2
Q−1

=
°°°H̆−ACHB

°°°2
R−1

.

(4)
The second equality is crucial for the following reasoning
and it can be easily proved by substitution recalling that
the pseudoinverse is X† = (XHX)−1XH , and by using
the definition of the M × K matrix H̆ = [h̆1 · · · h̆K ] =
X†[y1 · · ·yK ] and R = X†Q(X†)H . In other words, ac-
cording to (4) the K vectors {h̆k}Kk=1 are sufficient statistics
for the estimation of {hk}Kk=1 . It is interesting to notice
that vectors {h̆k}Kk=1 are the least squares estimates of the
unknown vectors {hk}Kk=1. Maximum Likelihood estimation
could be obtained by minimizing (4) by considering the entries
in B as deterministic variables. Since the set of parameters
{bk}Kk=1 are random with a known block-correlation function
ϕm, the hybrid estimation method needs to take into account

that part of the unknowns are deterministic (entries of A
and C, or equivalently Rh, see Sec. 2) and part are random.

A. Hybrid MoM/Bayesian Estimation
The decoupled structure of the unknowns in (3) suggests

that the estimation of the (deterministic and stationary) matri-
ces (A,C) and the (random) parameters bk can be performed
separately. Here we propose an hybrid estimator that will be
shown in Sec. 5 through numerical simulations to be able to
reach the Hybrid CRB for large K.

For estimation of the rank-deficient covariance Rh we
consider the method of moments (MOM) estimator. The
correlation matrix of the sufficient statistics {h̆k}Kk=1 reads
Rh̆ = E[h̆kh̆

H
k ] = Rh+R so that considering as observations

the following eh = R−H/2h̆k we get Reh = E[ehehH ] =
R−H/2RhR

−1/2 + IM . Let the eigenvalue decomposition of
Reh be Reh = UΛUH , where U is a M ×M orthonormal
matrix and Λ is diagonal with dimension M ×M (it contains
the eigenvalues in non-increasing order), we can obtain the
correlation matrix Rh as Rh = RH/2Ur(Λr − I)UH

r R
1/2

(where Ur is the M × r matrix collecting the first r columns
of U and Λr the r × r diagonal matrix gathering the first r
eigenvalues of Rh). Estimating the second order moment and
the corresponding eigenvalue decomposition as

R̂eh = 1

K

KX
k=1

ehkehHk = ÛΛ̂V̂H
, (5)

the MOM estimator for rank-r covariance (r is known) reads

R̂h = R
H/2Û(Λ̂r − I)+ÛHR1/2, (6)

where notation ()+ indicates that negative values on the
diagonal of Λ̂r−I are set to zero in order to preserve the
positive-definiteness of R̂h. The MoM estimator is consistent,
i.e., the estimate R̂h converges to the real value Rh for
K →∞.

The estimation of the ensemble {hk}Kk=1 can be obtained
by assuming now the knowledge of Rh (i.e., as if the esti-
mate R̂h in (6) was exact as for K → ∞). The sufficient
statistics {h̆k}Kk=1 are collected into the KM × 1 vector
h̆ = [h̆T1 , ..., h̆

T
K ]

T that can be written as

h̆ = h+w (7)

with w ∼ CN (0, IK⊗R). Based on (7), the MMSE estimator
of h is ĥMMSE = E[hh̆

H
](E[h̆h̆

H
])−1h̆. Since E[hh̆

H
] =

Rt⊗Rh and E[h̆h̆
H
] = Rt⊗Rh+IK⊗R, then substituting to

Rh the corresponding estimates (6), we finally get the channel
estimate

ĥ = (Rt ⊗ R̂h)(Rt ⊗ R̂h + IK ⊗R)−1h̆ (8)

that accounts for temporal correlation of fading across blocks
through the temporal-correlation matrix Rt as [Rt]i,j = ϕi−j .

The error correlation matrix of the MMSE estimate of h
is QĥMMSE

= E[(ĥMMSE − h)(ĥMMSE − h)H ]. Assuming
that Rh is known (which is increasingly true for larger K
given the consistency of the MOM estimator once the rank



r is known), the error can be proved by substitution of the
definitions to be asymptotically (for K →∞)

QĥMMSE
= Rt⊗Rh−(Rt⊗Rh)(Rt⊗Rh+I⊗R)−1(Rt⊗Rh).

(9)
In the next section, we will compare (9) with the Hybrid CRB.

IV. HYBRID CRAMÉR RAO BOUND

As discussed above, channel estimation for rank-deficient
block-fading channels can be reduced to the unconstrained
estimate of two sets of parameters, namely a deterministic
[aT , cT ]T and random part b with known probability density
function (pdf). In this framework, a lower bound on the MSE
of any unbiased estimator can be obtained by computation of
the hybrid Cramér Rao Bound (HCRB), a modification of the
classical CRB for the case where the unknown parameters
depend on both deterministic and random variables. The
HCRB is evaluated below by adapting the general derivation
from [7].

A. Bayesian Fisher Information Matrix
The MSE matrix Qĥ = E[(ĥ−h)(ĥ−h)H ] is bounded by

the HCRB for the estimation of h = [hT1 · · ·hTK ] as

Qĥ ≥ Eb

∙
∂h

∂[aT cTbT ]

¸
· J−1 ·Eb

∙
∂h

∂[aTcTbT ]

¸H
, (10)

where J is the (Bayesian) Fisher Information Matrix. Notice
that matrix J can be written as the sum of a term accounting
for the information due to data JD and a term accounting for
prior knowledge JP

J = JD + JP , (11)

that in our framework JP consists in the statistical properties
of the randomly varying parameters b v CN (0,Rt⊗IM ). The
blocks of the information matrix related to prior information
JP becomes [7]

[JP ]bb = R
−1
t ⊗ IM

[JP ]aa = [JP ]cc = [JD]ab = [JD]ac = 0
. (12)

Since the observation model is Gaussian, we have [7]

JD = Eb

⎡⎣Ã ∂E[h̆|b]
∂[aT cTbT ]

!H

(IK ⊗R−1)
Ã

∂E[h̆|b]
∂[aT cTbT ]

!⎤⎦ ,
(13)

where Eb[·] denotes the ensemble average with respect to the
distribution of b. The least squares estimate is unbiased so
that E[h̆|b] = h, this equality is useful to derive the blocks
of JD as

[JD]aa = KCTC∗ ⊗R−1
[JD]ac = KCT ⊗R−1A
[JD]cc = KIM ⊗AHR−1A

[JD]bb = IK ⊗CAHR−1ACH

[JD]ab = [JD]cb = 0

. (14)

Non-singularity of Rt is assumed. This condition implies that
the channel variations across blocks are sufficiently fast to

allow matrix Rt to be full rank. Finally, the (Bayesian) Fisher
Information Matrix

JB =

⎡⎣ [JD]aa [JD]ac 0
[JD]ca [JD]cc 0
0 0 [JD]bb + [JP ]bb

⎤⎦ (15)

proves that the deterministic covariance matrix and the sto-
castic amplitudes are decoupled terms. The non-uniqueness of
the factorization of R1/2

h into A and C is accounted for by
the rank-deficiency of the corresponding Fisher Information
Matrix [3]:

rank

½∙
[J]aa [J]ac
[J]ca [J]cc

¸¾
= r(N +M − r). (16)

B. HCRB for channel estimation
Substituting (15) in (10) and noticing that from (15)

Eb

∙
∂h

∂[aTcTbT ]

¸
=
£
0 0 IK ⊗ACH

¤
(17)

the HCRB (10) becomes

Qĥ ≥ (IK ⊗AC
H)[J]−1bb (IK ⊗CA

H) =

= Rt ⊗Rh − (Rt ⊗Rh)(Rt ⊗Rh + IK ⊗R)−1(Rt ⊗Rh),
(18)

where derivation the second equality can be proved by matrix
lemmas (see Appendix). The corresponding bound on the
mean square error MSEĥ = tr(Qĥ) is obtained from the
trace of each of the two forms (18).

Notice that, as expected from the discussion in Sec. 2, the
CRB (18) depends only on Rh (and not on the specific choice
of R1/2

h or on the factors A and C). In addition, the MSE (9)
coincides with the HCRB (18), thus showing that the hybrid
estimation algorithm discussed in Sec. 3 is asymptotically (for
K →∞) optimum (i.e., efficient).

Notice that, even if only the HCRB at the kth time instant
QĥK

= E[(ĥk−hk)(ĥk−hk)H ] is of interest, in the general
case the entire KM ×KM matrix Jb has to be inverted in
(18). In fact, from (18) it is

Qĥk
≥ (eTk ⊗R

1/2
h )J−1b (ek ⊗RH/2

h ), (19)

where the K × 1 vector ek is the kth column of the identity
matrix IK . However, if the parameters bk are uncorrelated
block-to-block (i.e., Rt = IK) the Fisher Information Matrix
Jb becomes block diagonal proving that the estimation of
vector bk for each block can be decoupled from the others (but
not the estimate R̂h) without any performance degradation:

Qĥk
≥ Rh −Rh(Rh +R)

−1Rh. (20)

V. NUMERICAL EXAMPLE

In this Section we validate the conclusions above by a
simple numerical example. We consider M = 8 taps channel
randomly generated and characterized by rank-3 covariance
matrix Rh. Furthermore, noise is assumed to be white, Q =
σ2nIN , and the convolution matrix X for training sequences
is orthonormal so that Rx = σ2xIM (notice that this nor-
malization renders the outcome of this example independent
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Fig. 1. Hybrid CRB (normalized with respect to the channel norm) versus
temporal correlation coefficient ρ for different values of the SNR and K
(M = 8, r = 3).

on N ). It follows that R = σ2n/σ
2
xIM . For simplicity,

temporal correlation of the parameters is generated according
to an autoregressive model of first order with ϕm = ρm,
or equivalently matrix Rt has a Toeplitz structure with first
column [1 ρ ρ2 · · · ρK−1]T , |ρ| ≤ 1.

The behavior of the lower bound (trace of HCRB in (18))
is shown in fig. 1 (normalized with respect to the norm
E[||hk||2]) versus the temporal correlation coefficient ρ for
different values of the signal to noise ratio SNR = σ2x/σ

2
n

and K. Larger values of ρ make temporal filtering of the pa-
rameters more effective and accordingly the HCRB decreases.
As expected, this is increasingly true for a larger observation
interval K, most noticeably for low SNR’s.

The MSE of the proposed estimator MSEĥ =

E[||ĥ− h||2]/K versus SNR (ρ = 0.8) for varying number of
blocks (K) is in fig. 2. Notice from fig. 1 that the HCRB for
ρ = 0.8 is essentially independent on K so that fig. 2 shows
only the HCRB (dashed lines) for K = 100 (as for others K
values it would be similar). According to the consistency of
the MoM for the estimate R̂h, the hybrid estimator reaches
the HCRB for large K and SNR.

VI. CONCLUSION

The considered time-varying channel model for estimation
of block-fading channels is quite general as the channel
vector is modelled as a stationary Gaussian process with
unknown and generally rank-deficient correlation matrix. The
model applies to single and multi-antennas with appropriate
definitions of the parameters into play. The proposed method
approaches the estimate of the mixing deterministic/stochastic
terms by decoupling the estimation of stationary rank-deficient
correlation with the Method of Moments and the time-varying
fading with the MMSE principle. Moreover, a bound on the
estimation error has been derived though calculation of the
Hybrid CRB. The numerical analysis has proved that the
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Fig. 2. MSE of the proposed estimator versus SNR for different values of
K (M = 8, r = 3, ρ = 0.8).

hybrid estimator is asymptotically efficient with the number
of blocks.

VII. APPENDIX: PROOF OF EQUALITY (18)
From the matrix inversion lemma:

(D−1+FE−1FH)
−1
= D−DF(E+FHDF)−1FHDH

(21)
given invertible matrices D and E and matrix F with appro-
priate dimensions. The term [J]

−1
bb = (IK⊗CA

HR−1ACH+
R−1t ⊗ IM )

−1 in the right hand side of first form of eq.(18)
can be cast into a form suitable for the application of (21) by
defining D = Rt ⊗ IM , E = IK ⊗R and F = IK ⊗CAH .
Now, using (21) and usual properties of the Kronecker product,
second form of eq.(18) is easily obtained.
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