Random signl analysis I (ECE673)
 Assignment 6

The due date for this assignment is Wednesday Oct. 18th.
Please provide detailed answers.

1. Two independent discrete random variables X_{1} and X_{2} are known to have the following marginal PMF:

$$
p_{X_{i}}(k)=\left\{\begin{array}{ll}
1 / 2 & k=1 \\
1 / 2 & k=2
\end{array} \quad i=1,2\right.
$$

(i) Evaluate the joint PMF of X_{1} and $X_{2}: p_{X_{1}, X_{2}}\left[k_{1}, k_{2}\right]$.
(ii) Then, define the transformed random variables

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2} \\
& Y_{2}=X_{1}-X_{2}
\end{aligned}
$$

and calculate the range of the random vector $\mathbf{Y}=\left[Y_{1} Y_{2}\right]^{T}\left(S_{\mathbf{Y}}\right)$ and the joint PMF $p_{\mathbf{Y}}\left[k_{1}, k_{2}\right]$. (iii) Moreover, evaluate the marginal PMFs $p_{Y_{1}}[k]$ and $p_{Y_{2}}[k]$. Are Y_{1} and Y_{2} independent?
2. Two discrete random variables X_{1} and X_{2} have the following joint PMF $p_{\mathbf{X}}\left[x_{1}, x_{2}\right]$ (where $\left.\mathbf{X}=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]^{T}\right)$

$X_{2} \backslash X_{1}$	0	1	2
0	$1 / 8$	0	0
1	0	$1 / 8$	$1 / 4$
2	0	$1 / 4$	$1 / 4$

(i) Evaluate the marginal PMFs $p_{X_{1}}\left[x_{1}\right]$ and $p_{X_{2}}\left[x_{2}\right]$.
(ii) Evaluate the covariance matrix

$$
\mathbf{C}_{\mathbf{X}}=\left[\begin{array}{cc}
\operatorname{var}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \operatorname{var}\left(X_{2}\right)
\end{array}\right]
$$

Moreover, evaluate the correlation coefficient

$$
\rho_{X_{1} X_{2}}=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}} .
$$

Do you expect linear prediction (e.g., of X_{1} given the measurement of X_{2}) to be effective? (iii) Are X_{1} and X_{2} uncorrelated? Are X_{1} and X_{2} independent?
3. Consider the random variables described in the previous Problem. Say that we need to estimate X_{1} from X_{2} through a linear operation:

$$
\hat{X}_{1}=a X_{2}+b,
$$

where \hat{X}_{1} denotes an estimate of X_{1}. Evaluate the estimator that minimizes the mean square error (i.e., calculate the optimal a and b) and provide a graphical interpretation in terms of a regression line. Moreover, calculate the estimation error and compare it with the variance of X_{1}. Explain your results.

