Random signl analysis I (ECE673) Assignment 6

The due date for this assignment is Wednesday Oct. 18th.

Please provide detailed answers.

1. Two independent discrete random variables X_1 and X_2 are known to have the following marginal PMF:

$$p_{X_i}(k) = \begin{cases} 1/2 & k=1\\ 1/2 & k=2 \end{cases}$$
 $i = 1, 2.$

(i) Evaluate the joint PMF of X_1 and X_2 : $p_{X_1,X_2}[k_1,k_2]$.

(ii) Then, define the transformed random variables

$$Y_1 = X_1 + X_2$$

 $Y_2 = X_1 - X_2$

and calculate the range of the random vector $\mathbf{Y} = [Y_1 Y_2]^T (S_{\mathbf{Y}})$ and the joint PMF $p_{\mathbf{Y}}[k_1, k_2]$. (*iii*) Moreover, evaluate the marginal PMFs $p_{Y_1}[k]$ and $p_{Y_2}[k]$. Are Y_1 and Y_2 independent?

2. Two discrete random variables X_1 and X_2 have the following joint PMF $p_{\mathbf{X}}[x_1, x_2]$ (where $\mathbf{X} = [X_1 \ X_2]^T$)

$$\begin{array}{ccccccc} X_2 \backslash X_1 & 0 & 1 & 2 \\ 0 & 1/8 & 0 & 0 \\ 1 & 0 & 1/8 & 1/4 \\ 2 & 0 & 1/4 & 1/4 \end{array}$$

(i) Evaluate the marginal PMFs $p_{X_1}[x_1]$ and $p_{X_2}[x_2]$.

(*ii*) Evaluate the covariance matrix

$$\mathbf{C}_{\mathbf{X}} = \begin{bmatrix} var(X_1) & cov(X_1, X_2) \\ cov(X_1, X_2) & var(X_2) \end{bmatrix}$$

Moreover, evaluate the correlation coefficient

$$\rho_{X_1X_2} = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}}$$

Do you expect linear prediction (e.g., of X_1 given the measurement of X_2) to be effective? (*iii*) Are X_1 and X_2 uncorrelated? Are X_1 and X_2 independent?

3. Consider the random variables described in the previous Problem. Say that we need to estimate X_1 from X_2 through a linear operation:

$$\hat{X}_1 = aX_2 + b_2$$

where \hat{X}_1 denotes an estimate of X_1 . Evaluate the estimator that minimizes the mean square error (i.e., calculate the optimal *a* and *b*) and provide a graphical interpretation in terms of a regression line. Moreover, calculate the estimation error and compare it with the variance of X_1 . Explain your results.