Random signl analysis I (ECE673) Solution assignment 6

1. Two independent discrete random variables X_1 and X_2 are known to have the following marginal PMF:

$$p_{X_i}(k) = \begin{cases} 1/2 & k=1\\ 1/2 & k=2 \end{cases}$$
 $i = 1, 2.$

(i) Evaluate the joint PMF of X_1 and X_2 : $p_{X_1,X_2}[k_1,k_2]$.

(ii) Then, define the transformed random variables

$$Y_1 = X_1 + X_2$$

 $Y_2 = X_1 - X_2$

and calculate the range of the random vector $\mathbf{Y} = [Y_1 Y_2]^T (S_{\mathbf{Y}})$ and the joint PMF $p_{\mathbf{Y}}[k_1, k_2]$. (*iii*) Moreover, evaluate the marginal PMFs $p_{Y_1}[k]$ and $p_{Y_2}[k]$. Are Y_1 and Y_2 independent? Solution: (i) Since X_1 and X_2 are independent, we have $p_{X_1,X_2}[k_1, k_2] = p_{X_1}[k_1]p_{X_2}[k_2]$:

(double check: the sum of all probabilities is $1/4 \cdot 4 = 1$). (*ii*) Now, we define the vector

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}.$$

The range of **Y** is $[2,3,4] \times [-1,0,1]$ and the joint PMF reads

$$\begin{array}{cccccccc} Y_2 \backslash Y_1 & 2 & 3 & 4 \\ -1 & 0 & 1/4 & 0 \\ 0 & 1/4 & 0 & 1/4 \\ 1 & 0 & 1/4 & 0 \end{array}$$

(*iii*) From the joint PMF above, the marginals are easily calculated:

$$p_{Y_1}[k] = \begin{cases} 1/4 & k = 2\\ 1/2 & k = 3\\ 1/4 & k = 4 \end{cases}$$
$$p_{Y_2}[k] = \begin{cases} 1/4 & k = -1\\ 1/2 & k = 0\\ 1/4 & k = 1 \end{cases}$$

Since, e.g.,

$$p_{Y_1,Y_2}[3,-1] = 1/4 \neq p_{Y_1}[3]p_{Y_2}[-1] = 1/2 \cdot 1/4 = 1/8,$$

the random variables Y_1 and Y_2 are not independent.

2. Two discrete random variables X_1 and X_2 have the following joint PMF $p_{\mathbf{X}}[x_1, x_2]$ (where $\mathbf{X} = [X_1 \ X_2]^T$)

$$\begin{array}{ccccccc} X_2 \backslash X_1 & 0 & 1 & 2 \\ 0 & 1/8 & 0 & 0 \\ 1 & 0 & 1/8 & 1/4 \\ 2 & 0 & 1/4 & 1/4 \end{array}$$

(i) Evaluate the marginal PMFs $p_{X_1}[x_1]$ and $p_{X_2}[x_2]$.

(*ii*) Evaluate the covariance matrix $\mathbf{C}_{\mathbf{X}}$ (i.e., the variances $var(X_1)$, $var(X_2)$ and the covariance $cov(X_1, X_2)$). Moreover, evaluate the correlation coefficient

$$\rho_{X_1X_2} = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}}$$

Do you expect linear prediction (e.g., of X_1 given the measurement of X_2) to be effective? (*iii*) Are X_1 and X_2 uncorrelated? Are X_1 and X_2 independent?

(*iv*) According to the results at the previous points, do you expect $var(X_1 + X_2)$ to be larger than, smaller than or equal to $var(X_1) + var(X_2)$? Verify by computing $var(X_1 + X_2)$. Solution:

(i) The marginal PMFs are easily evaluated as follows

$$p_{X_1}[k] = \begin{cases} 1/8 & k = 0\\ 3/8 & k = 1\\ 1/2 & k = 2 \end{cases}$$
$$p_{X_2}[k] = \begin{cases} 1/8 & k = 0\\ 3/8 & k = 1\\ 1/2 & k = 2 \end{cases}$$

(ii) We have

$$E[X_1] = E[X_2] = 3/8 + 2 \cdot 1/2 = 11/8 = 1.375$$

$$var(X_1) = var(X_2) = E[X_1^2] - E[X_1]^2 = (1 \cdot 3/8 + 2^2 \cdot 1/2) - (11/8)^2 = 31/64 = 0.48$$

$$cov(X_1, X_2) = E[X_1X_2] - E[X_1]E[X_2] =$$

$$= (1 \cdot 1 \cdot 1/8 + 1 \cdot 2 \cdot 1/4 + 2 \cdot 1 \cdot 1/4 + 2 \cdot 2 \cdot 1/4) - (11/8)^2 = 15/64 = 0.23$$

Therefore the covariance matrix is

$$\mathbf{C}_{\mathbf{X}} = \begin{bmatrix} var(X_1) & cov(X_1, X_2) \\ cov(X_1, X_2) & var(X_2) \end{bmatrix} = \begin{bmatrix} 0.48 & 0.23 \\ 0.23 & 0.48 \end{bmatrix},$$

and the correlation coefficient reads

$$\rho_{X_1X_2} = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}} = \frac{15/64}{\sqrt{31/64 \cdot 31/64}} = \frac{15}{31} = 0.48.$$

Therefore linear prediction should help, to a certain extent, predicting one variable from the other.

(*iii*) X_1 and X_2 are not uncorrelated since $\rho_{X_1X_2} \neq 0$. Moreover, since they are not uncorrelated, they cannot be independent (if fact, independence implies uncorrelation).

Figure 1:

(*iv*) Since $cov(X_1, X_2) > 0$, X_1 and X_2 vary in different directions (signs) around their means, $var(X_1 + X_2) > var(X_1) + var(X_2)$. In particular, we have

$$var(X_1 + X_2) = \mathbf{1}^T \mathbf{C}_{\mathbf{X}} \mathbf{1} =$$

= $var(X_1) + var(X_2) + 2cov(X_1, X_2) =$
= $31/64 + 31/64 + 2 \cdot 15/64 = 23/16 = 1.43$

3. Consider the random variables described in the previous Problem. Say that we need to estimate X_1 from X_2 through a linear operation:

$$\hat{X}_1 = aX_2 + b,$$

where \hat{X}_1 denotes an estimate of X_1 . Evaluate the estimator that minimizes the mean square error (i.e., calculate the optimal a and b) and provide a graphical interpretation in terms of a regression line. Moreover, calculate the estimation error and compare it with the variance of X_1 . Explain your results.

Solution:

The optimal estimator is known to be

$$\hat{X}_{1} = \frac{cov(X_{1}, X_{2})}{var(X_{2})}(X_{2} - E[X_{2}]) + E[X_{1}] =$$

$$= \frac{15/64}{31/64}(X_{2} - 11/8) + 11/8 = 15/31X_{2} + 22/31 =$$

$$= 0.48X_{2} + 0.71$$

The regression line is shown in the figure.

The corresponding estimation error (mean square error) reads

$$mse = E[(\hat{X}_1 - X_1)^2] =$$

$$= var(X_1) - \frac{cov(X_1, X_2)^2}{var(X_2)} = \frac{31}{64} - \frac{(15/64)^2}{31/64} = \frac{23}{62} =$$

$$= 0.37 < var(X_1) = 0.48,$$

where the last inequality is expected since the correlation coefficient $\rho_{X_1X_2}$ is not zero.