Random signl analysis I (ECE673)
 Solution assignment 6

1. Two independent discrete random variables X_{1} and X_{2} are known to have the following marginal PMF:

$$
p_{X_{i}}(k)=\left\{\begin{array}{ll}
1 / 2 & k=1 \\
1 / 2 & k=2
\end{array} \quad i=1,2 .\right.
$$

(i) Evaluate the joint PMF of X_{1} and $X_{2}: p_{X_{1}, X_{2}}\left[k_{1}, k_{2}\right]$.
(ii) Then, define the transformed random variables

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2} \\
& Y_{2}=X_{1}-X_{2}
\end{aligned}
$$

and calculate the range of the random vector $\mathbf{Y}=\left[Y_{1} Y_{2}\right]^{T}\left(S_{\mathbf{Y}}\right)$ and the joint PMF $p_{\mathbf{Y}}\left[k_{1}, k_{2}\right]$. (iii) Moreover, evaluate the marginal PMFs $p_{Y_{1}}[k]$ and $p_{Y_{2}}[k]$. Are Y_{1} and Y_{2} independent? Solution: (i) Since X_{1} and X_{2} are independent, we have $p_{X_{1}, X_{2}}\left[k_{1}, k_{2}\right]=p_{X_{1}}\left[k_{1}\right] p_{X_{2}}\left[k_{2}\right]$:

$$
\begin{array}{ccc}
X_{2} \backslash X_{1} & 1 & 2 \\
1 & 1 / 4 & 1 / 4 \\
2 & 1 / 4 & 1 / 4
\end{array}
$$

(double check: the sum of all probabilities is $1 / 4 \cdot 4=1$).
(ii) Now, we define the vector

$$
\mathbf{Y}=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

The range of \mathbf{Y} is $[2,3,4] \times[-1,0,1]$ and the joint PMF reads

$$
\begin{array}{cccc}
Y_{2} \backslash Y_{1} & 2 & 3 & 4 \\
-1 & 0 & 1 / 4 & 0 \\
0 & 1 / 4 & 0 & 1 / 4 \\
1 & 0 & 1 / 4 & 0
\end{array} .
$$

(iii) From the joint PMF above, the marginals are easily calculated:

$$
\begin{aligned}
& p_{Y_{1}}[k]= \begin{cases}1 / 4 & k=2 \\
1 / 2 & k=3 \\
1 / 4 & k=4\end{cases} \\
& p_{Y_{2}}[k]= \begin{cases}1 / 4 & k=-1 \\
1 / 2 & k=0 \\
1 / 4 & k=1\end{cases}
\end{aligned}
$$

Since, e.g.,

$$
p_{Y_{1}, Y_{2}}[3,-1]=1 / 4 \neq p_{Y_{1}}[3] p_{Y_{2}}[-1]=1 / 2 \cdot 1 / 4=1 / 8
$$

the random variables Y_{1} and Y_{2} are not independent.
2. Two discrete random variables X_{1} and X_{2} have the following joint PMF $p_{\mathbf{X}}\left[x_{1}, x_{2}\right]$ (where $\left.\mathbf{X}=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]^{T}\right)$

$X_{2} \backslash X_{1}$	0	1	2
0	$1 / 8$	0	0
1	0	$1 / 8$	$1 / 4$
2	0	$1 / 4$	$1 / 4$

(i) Evaluate the marginal PMFs $p_{X_{1}}\left[x_{1}\right]$ and $p_{X_{2}}\left[x_{2}\right]$.
(ii) Evaluate the covariance matrix $\mathbf{C}_{\mathbf{X}}$ (i.e., the variances $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right)$ and the covariance $\left.\operatorname{cov}\left(X_{1}, X_{2}\right)\right)$. Moreover, evaluate the correlation coefficient

$$
\rho_{X_{1} X_{2}}=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}} .
$$

Do you expect linear prediction (e.g., of X_{1} given the measurement of X_{2}) to be effective?
(iii) Are X_{1} and X_{2} uncorrelated? Are X_{1} and X_{2} independent?
(iv) According to the results at the previous points, do you expect $\operatorname{var}\left(X_{1}+X_{2}\right)$ to be larger than, smaller than or equal to $\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)$? Verify by computing $\operatorname{var}\left(X_{1}+X_{2}\right)$.

Solution:

(i) The marginal PMFs are esily evaluated as follows

$$
\begin{aligned}
& p_{X_{1}}[k]= \begin{cases}1 / 8 & k=0 \\
3 / 8 & k=1 \\
1 / 2 & k=2\end{cases} \\
& p_{X_{2}}[k]= \begin{cases}1 / 8 & k=0 \\
3 / 8 & k=1 \\
1 / 2 & k=2\end{cases}
\end{aligned}
$$

(ii) We have

$$
\begin{aligned}
E\left[X_{1}\right] & =E\left[X_{2}\right]=3 / 8+2 \cdot 1 / 2=11 / 8=1.375 \\
\operatorname{var}\left(X_{1}\right) & =\operatorname{var}\left(X_{2}\right)=E\left[X_{1}^{2}\right]-E\left[X_{1}\right]^{2}=\left(1 \cdot 3 / 8+2^{2} \cdot 1 / 2\right)-(11 / 8)^{2}=31 / 64=0.48 \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & =E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]= \\
& =(1 \cdot 1 \cdot 1 / 8+1 \cdot 2 \cdot 1 / 4+2 \cdot 1 \cdot 1 / 4+2 \cdot 2 \cdot 1 / 4)-(11 / 8)^{2}=15 / 64=0.23
\end{aligned}
$$

Therefore the covariance matrix is

$$
\mathbf{C}_{\mathbf{X}}=\left[\begin{array}{cc}
\operatorname{var}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \operatorname{var}\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
0.48 & 0.23 \\
0.23 & 0.48
\end{array}\right],
$$

and the correlation coefficient reads

$$
\rho_{X_{1} X_{2}}=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}}=\frac{15 / 64}{\sqrt{31 / 64 \cdot 31 / 64}}=\frac{15}{31}=0.48 .
$$

Therefore linear prediction should help, to a certain extent, predicting one variable from the other.
(iii) X_{1} and X_{2} are not uncorrelated since $\rho_{X_{1} X_{2}} \neq 0$. Moreover, since they are not uncorrelated, they cannot be independent (if fact, independence implies uncorrelation).

Figure 1:
(iv) Since $\operatorname{cov}\left(X_{1}, X_{2}\right)>0, X_{1}$ and X_{2} vary in different directions (signs) around their means, $\operatorname{var}\left(X_{1}+X_{2}\right)>\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)$. In particular, we have

$$
\begin{aligned}
\operatorname{var}\left(X_{1}+X_{2}\right) & =\mathbf{1}^{T} \mathbf{C}_{\mathbf{X}} \mathbf{1}= \\
& =\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)= \\
& =31 / 64+31 / 64+2 \cdot 15 / 64=23 / 16=1.43
\end{aligned}
$$

3. Consider the random variables described in the previous Problem. Say that we need to estimate X_{1} from X_{2} through a linear operation:

$$
\hat{X}_{1}=a X_{2}+b
$$

where \hat{X}_{1} denotes an estimate of X_{1}. Evaluate the estimator that minimizes the mean square error (i.e., calculate the optimal a and b) and provide a graphical interpretation in terms of a regression line. Moreover, calculate the estimation error and compare it with the variance of X_{1}. Explain your results.

Solution:

The optimal estimator is known to be

$$
\begin{aligned}
\hat{X}_{1} & =\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{2}\right)}\left(X_{2}-E\left[X_{2}\right]\right)+E\left[X_{1}\right]= \\
& =\frac{15 / 64}{31 / 64}\left(X_{2}-11 / 8\right)+11 / 8=15 / 31 X_{2}+22 / 31= \\
& =0.48 X_{2}+0.71
\end{aligned}
$$

The regression line is shown in the figure.

The corresponding estimation error (mean square error) reads

$$
\begin{aligned}
m s e & =E\left[\left(\hat{X}_{1}-X_{1}\right)^{2}\right]= \\
& =\operatorname{var}\left(X_{1}\right)-\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)^{2}}{\operatorname{var}\left(X_{2}\right)}=31 / 64-\frac{(15 / 64)^{2}}{31 / 64}=23 / 62= \\
& =0.37<\operatorname{var}\left(X_{1}\right)=0.48
\end{aligned}
$$

where the last inequality is expected since the correlation coefficient $\rho_{X_{1} X_{2}}$ is not zero.

