ECE 673-Random signal analysis I
 Test 2 - Nov. 29, 2006

Please write legibly and provide detailed answers.
You are given an IID process $U[n]$ with probability mass function (PMF)

$$
p_{U}[u]=P[U[n]=u]=\left\{\begin{array}{cc}
1 / 2 & u=1 / 2 \\
1 / 2 & u=2
\end{array} .\right.
$$

(i) Consider the process $X[n]=\log _{2} U[n]$. Is this process IID (and therefore stationary)? Find the PMF of $X[n]\left(p_{X}[x]=P[X[n]=x]\right)$, the average $E[X[n]]$ and variance $\operatorname{var}(X[n])$.

Sol: Yes, the process is IID since applying a transformation (here the logarithm) to each $U[n]$ does not modify the statistical dependence among the variables of the process. Moreover, the range of $X[n]$ is $\mathcal{S}_{X}=\{-1,1\}$ and the PMF reads

$$
p_{X}[x]=\left\{\begin{array}{cc}
1 / 2 & x=-1 \\
1 / 2 & x=1
\end{array} .\right.
$$

Average and variance are as follows:

$$
\begin{aligned}
E[X[n]] & =\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(-1)=0 \\
\operatorname{var}(X[n]) & =E\left[X[n]^{2}\right]-E[X[n]]=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(-1)^{2}=1 .
\end{aligned}
$$

(ii) Consider now the process

$$
Y[n]=X[n]-X[n-2]
$$

Is $Y[n]$ WSS? In order to address this question, evaluate mean sequence $\mu_{Y}[n]$ and correlation sequence $c_{Y}[n, n+k]$. [notice that from the previous point $E[X[n]]=0$ and $\left.\operatorname{var}(X[n])=1\right]$.

Sol.: Mean sequence:

$$
\mu_{Y}[n]=E[Y[n]]=E[X[n]]-E[X[n-2]]=0 .
$$

Covariance sequence:

$$
\begin{aligned}
c_{Y}[n, n+k]= & E[Y[n] Y[n+k]]-E[Y[n]] E[Y[n+k]]= \\
= & E[Y[n] Y[n+k]]=E[(X[n]-X[n-2])(X[n+k]-X[n-2+k])]= \\
= & E[X[n] X[n+k]]+E[X[n-2] X[n-2+k]]+ \\
& -E[X[n] X[n-2+k]]-E[X[n-2] X[n+k]]
\end{aligned}
$$

Evaluating the previous expression for different values of k, we easily get

$$
\begin{equation*}
c_{Y}(n, n+k)=2 \delta[k]-\delta[k-2]-\delta[k+2]=c_{Y}[k]=r_{Y}[k] . \tag{1}
\end{equation*}
$$

Figure 1:

From the above calculations, it follows that $Y[n]$ is WSS.
(iii) Evaluate and plot the power spectral density of $Y[n], P_{Y}(f)$.

Sol.: In order to calculate the power spectral density $P_{Y}(f)$, we need to evaluate the discrete Fourier transform of the correlation function $r_{Y}[k]$ as

$$
P_{Y}(f)=\sum_{k} r_{Y}[k] \cdot e^{-j 2 \pi f k}=2(1-\cos (4 \pi f)) .
$$

See figure for plot.
(iv) Evaluate the best linear predictor of $Y[n+1]$ given $Y[n]$ and the corresponding error.

Sol.: The correlation between $Y[n]$ and $Y[n+1]$ is zero from the answer to point (ii). Therefore, the best linear predictor of $Y[n+1]$ given $Y[n]$ is

$$
\hat{Y}[n+1]=E[Y[n+1]]=0
$$

and the corresponding mean square error is

$$
m s e=E\left[(\hat{Y}[n+1]-Y[n+1])^{2}\right]=\operatorname{var}(Y[n+1])=2 .
$$

(v) Repeat the exercise above for the prediction of $Y[n+2]$ given $Y[n]$.
Sol.: The correlation between $Y[n]$ and $Y[n+2]$ is

$$
\operatorname{cov}(Y[n], X[Y+2])=c_{Y}[2]=r_{Y}[2]=-1
$$

and the correlation coefficient reads

$$
\rho[2]=\frac{\operatorname{cov}(Y[n], Y[n+2])}{\sqrt{\operatorname{var}(Y[n]) \operatorname{var}(Y[n+2)}}=\frac{r_{Y}[2]}{r_{Y}[0]}=-\frac{1}{2} .
$$

Therefore, linear prediction is expected to be fairly effective. The predictor is

$$
\begin{aligned}
\hat{Y}[n+2] & =E[Y[n+2]]+\frac{\operatorname{cov}(Y[n], Y[n+2])}{\operatorname{var}(Y[n])}(Y[n]-E[Y[n]])= \\
& =\frac{r_{Y}[2]}{r_{Y}[0]} Y[n]=-\frac{1}{2} Y[n]
\end{aligned}
$$

and the corresponding mean square error is

$$
\begin{aligned}
m s e & =E\left[(\hat{Y}[n+2]-Y[n+2])^{2}\right]=\operatorname{var}(Y[n+2])\left(1-\rho[2]^{2}\right)= \\
& =2 \cdot(1-1 / 4)=1.5
\end{aligned}
$$

Linear prediction based on the knowledge of $Y[n]$ has reduced the mse from $\operatorname{var}(Y[n+2))=2$ to 1.5 .

