
CHAPTER 1  

MULTIFERROICS AND METAMATERIALS 

This chapter is a literature review for the optical properties of multiferroics and other 

groups of bi-anisotropic optical materials, such as metamaterials. The main source of 

information is from recent review articles References [1,2,3,4,5]. 

.

 

It is always useful to have materials which allow controlling light propagation 

based on their unique intrinsic properties. An additional possibility to control the 

reflected or transmitted light by means of application of external electric and magnetic 

fields to such materials becomes even more important. The general class of such 

materials is called bi-anisotropic. There are many commonly known optical effects in bi-

anisotropic medium such as polarization plane rotation, Kerr effect, Faraday effect, 

negative index of refraction [4,5]. This bi-anisotropic behavior can be found in materials 

 

Figure 1.1 Interaction in multiferroics. The well established primary ferroic orderings: 

ferroelectricity, ferromegnetizm, ferroelasticity can be switched by their conjugate electric, 

magnetic and stress fields, respectively. Image is from Nicola A.Spaldin, S.Cheong, R. 

Ramesh “Multiferroics: Past, Present and Future,”  Physics today, October  (2010),  pp 39-

43 [2]. 
 

 



called multiferroics, which combine several ferroic orders, such as ferroelectric, 

(anti)ferromagnetic, and ferroelastic. Typical interactions in multiferroics are shown in 

Figure. 1.1. Either electric field E , magnetic field H , or stress   can control the 

electric polarization P , magnetization ,M  and strain  . Another class of bi-anisotropic 

materials includes man-made artificial structures, or metamaterials, which allow for 

independent control of electric and magnetic field components of reflected/transmitted 

light.   

In the center of magnetoelectric effects is a magnetoelectric coupling. By 

representing free energy in terms of applied fields ( E  and H ) the following expression 

can be obtained [Error! Bookmark not defined.]: 
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Here   - permittivity tensor,   - permeability tensor,   - magnetoelectric coupling 

tensor,   and further – high order of magnetoelectric coupling tensors. Terms on the 

RHS (from left to right) represent electrical effect from application electric field, 

magnetic effect from application magnetic field, electric effect from application magnetic 

field, magnetic effect from application electric field correspondingly and so on.  To 

establish polarization ( )i jP H  and magnetization ( )i jM E , differentiation  of  F  with 

respect to 
iE  and  

iH  is required: 
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It can be pointed out that for thermodynamic reasons,  
ij  is bounded by the 

geometric mean of the diagonalized permittivity and permeability tensors [Error! 

Bookmark not defined.]: 

2
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Tensor 
ij  is a second rank tensor that is a function of temperature T. It changes sign 

under space inversion or time reversal, and therefore is invariant under simultaneous 

space and time inversion.  Using the definition of 
ij  and 'ij  based on the free energy 

Equation (1.1), it is easy to assume that 'T

ij ij  . As shown by Dzyaloshinsky, this 

relationship holds for the static case but may not necessary hold at every particular 

frequency for the dynamic case, where more complicated interactions of magnons and 

phonons are involved. This question is still under discussion in literature [6]. To comply 

with a general possible case, we will keep a different notation for  
ij  and 'ij  tensors. 

ME effect exists only in materials that do not have a center of inversion and no time-

inversion symmetry. In most cases, center of inversion is destroyed by electric 

polarization in ferroelectrics, while the time-reverse invariance is destroyed by the 

magnetic order or by external magnetic field. That means, ME crystals allow a 

simultaneous presence of magnetization (that destroys time reversal) and electric 

polarization (that destroys the center of inversion). The role of symmetry is extremely 

important in determining which crystals can display the magneto-electric effect. Crystal 

symmetry, for example, determines the form of each of the  , , ,  ,   tensors. 

Neumann’s principle states that the symmetry elements of any physical property of a 

crystal must include the symmetry elements of the point group of the crystal. This 



principle makes clear connection between the physical properties of a crystal and the 

material tensor which describes those properties.  

 



CHAPTER 2  

 

ELECTROMAGNETIC WAVE PROPAGATION  

IN BI-ANISOTROPIC BULK STRUCTURES 

 

 

Chapter 2 of this thesis describes the 4×4 matrix formalism applied to bulk structures, 

which is the most advanced approach for the light propagation problem in bi-anisotropic 

medium. The main references of this chapter are the original Berreman’s paper [7], the  

Azzam’s book [8] and the thesis of Paul Rogers [9,10]. In addition to the theoretical 

background, in this Chapter we will discuss some analytical solution of Fresnel’s 

coefficients, which describe behavior of light when propagating  through an interface 

between two optical media, for general bulk structures with anisotropic ˆ( )  , ˆ( )    and 

magneto-electric interaction which characterizes by magneto-electric (ME) tensor ˆ( )  . 

Also we show which components of Mueller matrix depends on ME interactions for ME 

tensors with different symmetries. It is a useful knowledge for measurements to 

determine for which sample orientation magneto-electric interaction can be observed in 

optical spectra and exhibit the strongest effect. 

 

 

Figure 2.1 Light propagation from isotropic ambient to semi-infinite bi-

anisotropic bulk structure. 

 



2.1 Constitutive and Dispersion Relations. 

We concern with structures which exhibit coupling between electric and magnetic 

interactions. For such a media different form of constitutive relations should be obtained 

in order to proper characterize wave propagation in this matter. Dzyaloshinskii obtained 

constitutive relations in the following form  [6]:   
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Details on these equations were discussed in the section 1.2 on multiferroics in the 

previous chapter. Another question, which arises after all relevant relationships are 

written down, is how to characterize electric, magnetic and electromagnetic interactions 

with a few measurable quantities in the optical spectra, such as resonant frequencies, 

broadening, and oscillator strength. One of the most suitable approaches is Lorentz model 

(or simple harmonic oscillator) for dispersion relations: 
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where 
0n  - oscillator resonance phonon or magnon frequency or electronic transition 

frequency, 
nS  - corresponding oscillator strength, 

n  - broadening of the n
th

 excitation or 

electronic transition. The same is valid for treating ME interactions: 
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Also we will often assume that the same oscillator that appears in several ̂ , ̂ , 

̂ , and ̂  tensors has at the same frequency 
0   and the same value of the decay 

parameter  . In the figure below graphs for each type of excitation are shown. Panels (a) 

and (b) show real and imaginary part of electric excitation respectively, panels (c) and (d) 

show real and imaginary part of magnetic excitation, panel (e) and (f) show real and 

imaginary part of magneto-electric excitation. Parameters for each oscillator are 

presented in Table 2.1.  

Table 2.1 Parameters for electric, magnetic and magneto-electric oscillators as described 

by Equations (2.2), (2.3), and (2.4). 
 ( )   ( )   ( )   

Infinity value 10    1   0   

 Resonant frequency  0, 300e   
0, 300   

0, 300   

Strength  0.01eS    0.01S   0.01S   

Broadening  1e    1   1   

 

 

( )       ( )           ( )    

 

Figure 2.2 Graphs of different types of excitations: (a),(b) – electric; (c),(d) – magnetic; 

(e),(f) – magneto-electric. Real parts are in blue color, imaginary parts are in red color. 

Parameters are presented in Table 2.1. 

 

 



2.2  Basics of the 4x4 Matrix Formalism 

The 4×4 matrix formalism developed by Berreman [7] allow to calculate optical 

properties of stratified bi-anisotropic media if ̂ , ̂ , ̂  tensors are known. Figure 2.3 

shows the optical matrix M that is composed of the  ̂ , ̂ , ̂  tensors for a single layer 

with bi-anisotropic properties. For analysis of experimental data, it is always useful to 

have analytical solutions for transmittance and reflectance of the media as a function of 

frequency and angle of incidence to be able to explore phenomena like in the case of the 

adjusted oscillator strength matching (AOSM), total reflection, skin depth, etc. The 

schematics of the investigated experimental configuration is shown in Figure 2.4. In 

Berreman formalism, it is assumed that the time variation of fields are harmonic and 

given by i te  , the direction of stratification coincides with the positive direction of the z-

axis, there is no 
yk  wave vector component of incident light and structures are 

homogeneous along  x. The theory utilizes the fact that parallel components of the fields 

are continuous through ought the medium (no surface charges, no surface currents). 

 

Figure 2.3 Constitutive relations for bi-anisotropic structures. Sample can be described 

by permittivity ˆ( )  , permeability ˆ( )   and ME ˆ( )   tensors. D  and B  relate to E  

and H  by means of optical matrix. 

 

The advantage of Berreman’s formalism is that it deals with the first order 

Maxwell’s equations which allow to easily incorporate the ME tensors. Note that in 



addition to the Berreman’s approach, there are some other ways to investigate 

electromagnetic wave propagation but they rely on the same physical principles though 

math is a bit different. In comparison, the Yeh’s [11] formalism deals with polarization 

eigenmodes, giving a more clear physical interpretation of boundary conditions, but this 

approach seems to be more difficult to describe magneto-electric activity and optical 

activity. We chose Berreman’s approach as an established one which allows to obtain all 

required results for our research. 

It is instructive to show derivation of  Berreman’s matrix wave equation and 

discuss application of boundary conditions to have clear understanding of incorporating 

ME effect into structure’s interactions. 
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(2.5) 

Figure 2.4 Axis orientation and schematics of wave propagation. 

 



For simplicity we assume that our laboratory x-y-z axes coincide with the 

symmetry axes of the sample. Such convention determines the diagonal form of both,  

dielectric permittivity tensor and magnetic permeability  tensors. Schematic of the axes 

notation is shown in Figure 2.4. When this condition does not hold we should rotate our 

optical axes, transforming correspondingly our optical matrix and it won’t have diagonal 

form anymore. Constitutive relations can be written in the following form: 
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It should be noted that a low-left part of optical matrix ˆ '  is a conjugate 

transpose of ̂ : †ˆ ˆ'   In the following discussion we focus on the cases when non-

zero components of ME tensor are xx ,
yy , zz ,

yx xy   ,  
yz zy    , xz zx    

which  corresponds to most common crystal structure.  

Let’s write down Maxwell’s equations (in the general case of ME tensor each 

field component is a function of others): 
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It is useful to represent curl vector as a matrix and note that our conditions assume that 

there is no 
yk  component of wave vector and our material is homogeneous as the result 
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x
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
 gives us x-component of a wave vector. Full curl matrix can 

be represented as in the following equation: 
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Taking into account our discussion above and writing down constitutive relations, our 

matrix equation  transforms to the following equation: 
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Most general view can be shown as: 



' ' '

' ' '

'

0 0 0 0 0

0 0
0 0 0 0

0 0

0 00 0 0 0 0 1

0 0
0 0 0 0 0

0 0

0 0 0 0

0 0 0 0 0

xx xx xy xzx

x
yy yx yy yzy

zz zx zy zzx z

xx yx zx xxx

xy yy zy yyy

xzz
x

x

z
E

ik
Ez

ik E

H c

z H

Hik
z

ik

   

   

   

   

   

 

 
 

 
  
 

   
 

    
   
 

  
       

 
 

' ' 0 0

x

y

z

x

y

yz zz zz z

E

E

E

Ht

H

H 

   
   
   
   
   

   
   
        

 

 

 

 

 

 

 

 

(2.10) 

 

Looking carefully at the curl matrix it should be noted that there is no 
z




 dependencies 

in third and sixth column. That means we can express zE  and zH  components in terms 

of xE ,
yE , xH ,

yH . Our “reduced” equation looks like:  
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Calculation of   matrix elements can be found in original Berreman’s paper [7]. Though 

Berreman used 
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 basis (and calculated   elements in this basis), we use 
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basis. It is not hard to get expressions for   elements in our basis by slightly  



modifying Berreman’s matrix as shown in Figure 2.5. There is no principle difference 

which basis to choose, but  it is more important to work with E  and H  because their 

tangential components are continuous through interfaces which as was shown earlier lay 

in the  xy-plane. 

 

 

Finally one arrives to 4x4 matrix wave equation (we use matrix on the right in 

Figure 2.5 but we rename components of   ): 
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or in a more compact form: 
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For our discussion about wave propagation in the bulk samples we do not need to solve                     

Equation (2.13). It’s enough to solve eigenvalue, eigenvector problem for substrate’s   

matrix. Further treatment of the Berreman’s wave equation will be continued in the 

chapter on electromagnetic wave propagation in bi-anisotropic multilayer systems.  

Because we assume that our structures are homogeneous along z, LHS of the 

Equation (2.12) yields zik  multiplier in front of   vector. We can rewrite wave equation 
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Figure 2.5 Transformation between different bases 



into the form below, where zq  is an effective refraction index in the z-direction and 

corresponds to the z-component of wave vector as z
z

ck
q


 .  
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where we consider field’s components at the interface between ambient and structure. For 

getting analytical solutions it is nice to construct transfer matrix T which relates incident 

and reflected components to transmitted ones of propagating wave. We desire to have 

relationship in the form:  
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Fresnel’s coefficient could be found easily from this equation: 
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What one needs is to construct matrices which project transmitted waves on xy-

plane and project xy-components on initial and reflected waves. Projecting 
pE , sE  

components of incident and reflected waves on the interface and using relationship 

between  H  and E  for isotropic medium we get following dependencies for incident 

light: 
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for reflected light: 
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Total projection on the xy-plane: 

 

Figure 2.6 Fields near the ambient-substrate interface. z-axis is along vertical line going 

down, y-axis is perpendicular out of the page and x-axis is along horizontal line with 

positive direction to the right. 
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or if we reshape RHS of Equation (2.19) we get: 
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In order to get p and s components along we multiply both parts on the inverse matrix in 

the RHS of Equation (2.20): 

1

0 0

0 0 0 0

0 0

0 0 cos cos

1 1 0 0

cos cos 0 0

0 0

x is

y rs

x ip

y rp

E E

E E

H EN N

H EN N

 

 


     

    
     
    
        

     

 

 

 

 

(2.21) 

 

and finally following Shubert [12] we obtain matrix Lin which project x,y-components of 

the incident and reflected waves on p,s-components: 
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Before calculating another matrix which projects the transmitted waves on the xy-

plane, let’s review Azzam’s method of solving wave propagation in bulk materials 

problem. As we pointed out earlier, in Equation (2.22) a simple relationship can be 



established between incident and reflected waves and their projections on the xy-plane. 

We assume that our media is bi-anisotropic in general case and then it’s sufficient to 

assume that propagating waves inside bulk structure will be nothing but linear 

combination of eigenvectors which corresponds to positive real part eigenvalues 

(condition for existing only two transmitted waves). This kind of relationship has the 

form: 
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After defining boundary conditions we can introduce transmission coefficients vector 
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 and rewriting our initial system of equations into more useful form we obtain: 
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Where S1 and S2 are defined by the following equations: 
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Finally we get Fresnel’s coefficients:  
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The disadvantage of such a method is a calculating inverse matrices several times. 

Shubert [12] proposed slightly different approach. We want to construct matrix which 

project transmitted waves on xy-plane. Let’s call it Lout. Then we have 
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From the system Equation (2.23) it’s clear that 
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where sub

ij  are the substrate’s   matrix eigenvectors components. As a small remark: 

when treating semi-infinite bulk structures we simply call it substrates because 

algorithms are similar to that for a multilayer structure on semi-infinite anisotropic 

substrate. Eigenvector components of semi-infinite bulk structures we call substrate 

eigenvector components sub

ij . So our  Lout matrix has the form: 
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Now we can write down transfer matrix T: 
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(2.30) 

 

And finally we get explicit formula of Equation (2.30) from which Fresnel’s coefficients 

can be obtained in analytical form. The only thing left is to calculate corresponding 

eigenvectors of transmitted waves. We consider several symmetries of ME tensor which 

more often occurs in real materials to simplify our calculation and then we determine 

which Mueller matrix components depends on ME oscillators. 
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Fresnel’s coefficients for general bulk bi-anisotropic structures with isotropic ambient 

(coefficients shown as a functions of the eigenvectors components): 
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sub

ij  calculated for some certain cases are available for download online in the form of  

MatLab m-files which are located at http://web.njit.edu/~sirenko/EllipsNJIT/index1.htm. 



When transmitted waves are decoupled there is a more physical way to show 

structure of exit matrix. In this case structure of optical and   matrices look like in the 

following equations correspondingly.  
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Let’s consider separately p-polarized and s-polarized waves. Rewrite Equation 

(2.14) into the form and consider p-polarized light first: 

 

Figure 2.7 Decoupled 
tpE  and tsE  wave propagating inside substrate. 
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We assume that there is no y-component of electric field thus and substitution all off-

diagonal terms of   matrix with zeroes we get: 
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From firth and fourth equations from the we get following dependencies on   matrix 

components of  fields’ projections and eigenvalues: 
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The same system of equations as System (2.43) can be written for s-polarized light  

(
0xE 

): 
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From second and third equations from the System (2.45) we get following dependencies 

on   matrix components of fields’ projections and eigenvalues: 
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From Figure 2.7 we define refracted angle cos p  as 
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Total transmitted wave has the form: 
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Hence out matrix for this particular case is turned to be: 
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From practical point of view substrates are usually made from materials which are 

isotropic or have anisotropic permittivity tensor, so we will be using Equation (2.50) for  

out matrix in the next chapter on electromagnetic wave propagation in multilayer 

systems. Consequently, the dependence of incident, reflected and transmitted wave has 

the following form: 
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To sum up, in this part of our work we present detailed discussion of 

electromagnetic wave propagation in bulk materials with arbitrary symmetry using 

Berreman’s matrix formalism. We calculated Fresnel’s coefficients as a function of 

substrate’s   matrix eigenvector components and also presented explicit view of outL  

matrix when transmitted modes in the substrate are decoupled. In the following Sections 

we’ll continue with the treatment of particular ME tensor symmetries and will determine 

which components of Mueller matrix are sensitive to ME interaction.  



2.3  Fresnel’s Coefficients for Materials with Certain ME Tensor Symmetry. 

In this section we determine Mueller matrix components dependencies on magneto-

electric interaction. First we consider a symmetry case with the off-diagonal components 

of the ME tensor ̂ , as shown in the following optical and matrices.  
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Figure 2.8 Normalized Mueller matrix components for 
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Figure 2.9 Normalized Mueller matrix components for 
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Figure 2.10 Normalized Mueller matrix components for 
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Figure 2.11 Normalized Mueller matrix components for 
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Figure 2.12 Normalized Mueller matrix components for 
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Figure 2.13 Normalized Mueller matrix components for 
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Table 2.2 Dependence of the MM components on the symmetry-allowed ME interaction. 

The ME tensor components are in the left column, MM spectra are in the middle column, 

and the comments are in the right column. 

ME tensor MM plot   appearance in 

MM components 

*

0 0

0 0

0 0 0

xy

xy





 
 
 
 
 

  

 

 

 

None 

 

*

0 0 0

0 0

0 0

yz

yz





 
 
 
 
 

 

 

 

 

m12,m21 

 

*

0 0

0 0 0

0 0

xz

xz





 
 
 
 
 

 

 

 

 

 

m12,m21 

 

0 0

0 0 0

0 0 0

xx 
 
 
 
 

 

 

 

 

Diagonal weak 

Off-diagonal strong 

0 0 0

0 0

0 0 0

yy

 
 
 
 
 

 

 

 

 

 

Diagonal weak 

Off-diagonal strong 

0 0 0

0 0 0

0 0 zz

 
 
 
 
 

 

 

 

 

 

All weak 



It should be noted as well that the strength of magneto-electric features in Mueller 

matrix spectra components depends on the background values of   and  . We pointed 

out earlier that magneto-electric interaction is bounded by the geometric mean of the 

diagonalized permittivity and permeability tensors. The closer   approaches to this 

thermodynamic limit the stronger contribution in MM components. Simultaneous 

increase in values of   ,   and  , when Equation (1.3) still holds, results in more 

stronger appearance in MM components of ME contribution.  

The main result of simulations presented in Table 2.2 is a demonstration of the 

fact that MM spectroscopic ellipsometry that measures all spectral components presented 

in Figures 2.8 – 2.13 can distinguish different symmetries of the   tensor. For example, 

xx and 
yy peaks have different sign (positive and negative) in the spectra of  m23  and 

m24.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.1 General schematics for a  bi-anisotropic multilayer system. Incident wave 

is in the xz-plane. Positive z-direction is vertically down. 

CHAPTER 3  

ELECTROMAGNETIC WAVE PROPAGATION IN  

BI-ANISOTROPIC MULTILAYER STRUCTURES 

 

In this Chapter original results are shown for calculation techniques for the wave 

propagation in bi-anisotropic multilayer systems. As shown in the previous Chapter,  

methods for wave propagation in bulk materials were based on the matrices Lin  and Lout  

in the form of  Equation (2.22) and Equation (2.29). For general anisotropic media when 

transmitted modes are coupled, Equation (2.29) should be used to find the Lout matrix. In 

order to take into account the optical response from thin film layers sandwiched between 

ambient and substrate one should construct matrices which project xy-components of the 

fields through all layers, from the top interface to the bottom interface. There are two 

common strategies of obtaining these matrices. In the first case, which is more detailed 

but not so desirable for obtaining analytical solutions, we will refer to as a “layer matrix 

L” method. This approach requires calculations of eigenvectors of each layer’s   matrix 



and, based on a trivial solution of the matrix wave equation, constructing propagating 

matrix K. Second method uses Cayley-Hamilton theorem [13] from linear algebra which 

provides a faster way to obtaining layer matrix without calculating eigenvectors. We will 

call layer matrix partial transfer matrix Tp  in this case. For discussion of advantages and 

disadvantages of each method we solve in the beginning anisotropic double layer system 

without ME activity problem on isotropic substrate, show consistency with previous 

developed works and then give general analytical expressions of Fresnel’s coefficients 

for arbitrary systems (Figure 3.1) using second method. We also show simulation of 

optical response for a single layer, bilayer and a superlattice structure with N bilayers for 

some cases of certain ME tensor symmetry in terms of MM and reflectance and compare 

it with numerical calculations. In the final section we briefly discuss simulating/fitting 

software developed as a part of this Thesis. Graphical user interface will be presented and 

some capabilities explained. 

 

 

 

Figure 3.2 Scheme for anisotropic single thin film wave propagation. 

 



3.1 Prior Works for Thin Films 

Light propagation in thin films has been studied in a number of theoretical papers. The 

review can be found in P.Rogers et al [9]. Here we present the summary for the most 

important theoretical developments for single layer systems on isotropic substrate from P. 

Rogers’ Theses and his papers [9,10]. Sketch of the system and wave propagation is 

shown in Figure 3.2.  Fresnel’s coefficients solutions are shown below. 
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(3.1) 

3.2 Layer Matrix Technique and Analytical Solutions for Bilayer Anisotropic 

Structure with Zero ME Tensor on Isotropic Substrate. 

In this section our original results for bilayer structures are presented. In short, we have 

increased the number of anisotropic layers compared (Figure 3.3) to that has been done 

previously by P.Rogers [9]. This step is conceptually important since it leads to the future 

 

Figure 3.3 Scheme for anisotropic bilayer thin film wave propagation 

 



development of the theory for multilayers and superlattices. The latter could be 

considered as 1D metamaterials, thus bringing together several directions of our research. 

We use layer matrix technique in this case.  

 

In the chapter on bulk structures we got explicit expression for matrix wave 

Equation (2.13). When   matrix does not depends on z we can integrate it and obtain 
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For each particular mode solution becomes: 
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(3.3) 

 

Let’s consider detail structure of the electromagnetic wave inside the multilayers (Figure 

3.4). Each mode variation inside a layer is shown in Equation (3.3). Thus if we want to 

construct a matrix, which contains all optical modes, such a matrix, which relates modes 

 

Figure 3.4. Notations for a bilayer structure calculations using a layer matrix L 

method. 

 



at the interfaces of the n and n-1 layers, must have the form shown below. It is called a 

propagation matrix K. 
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In order to obtain layer matrix which relates all components at one interface to another 

one we write down: 

i i i iL K   (3.6) 

 

It is easy to see that layer matrix can be expressed as  

1

i i i iL K    (3.7) 

 

If we have a multilayer structure, one needs to project components from n  to n m   

layer by doing simple multiplication between each layer matrices 1...n n n mL L L   . The 

resultant matrix, which project components from ambient interface to substrate interface, 

looks as follows 
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The layer matrix for a bilayer structure can be obtained as shown below. In the previous 

Chapter on bulk structures in Equation (2.23) we showed boundary conditions for an 

ambient-substrate interface. 
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After adding layer matrix and modifying Equation (2.23) for bilayer structure with 

isotropic substrate we obtain: 
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The system ratios , , ,
rp tp rs ts

ip ip is is

E E E E

E E E E
can be easily found, which give reflection and 

transmission coefficients for media, or more explicitly: 
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Fresnel’s coefficients for transmission can be found the same way, which gives 
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Finally we can obtain analytical expressions for Fresnel’s coefficients:
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Next we show some optical response simulations obtained with the help of the 

derived formulas. Parameters for simulation are given in the table below.  

  



Table 3.1  Parameters of the Lorentz model for the optical properties of the bilayer 

structure. The layer thickness h1=10 m   and h2=90 m is in cm. 

 

 

 

 

 

 

 

 

Figure 3.5 Simulation of (a) Rpp and (b) Rss for bi-layer structure with anisotropic 

ˆ ˆ( ), ( )     and isotropic substrate. Red line is a reference calculation with zero oscillator 

strengths. Blue line is the calculated response with parameters from Table 3.1 

 

 

 

Figure 3.6 Simulation of (a) Tpp and (b) Tss for bi-layer structure with anisotropic 

ˆ ˆ( ), ( )     and isotropic substrate. Red line is a reference calculation with zero oscillator 

strengths. Blue line is the calculated response with parameters from Table 3.1 
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3.3 Transfer Matrix Technique and Analytical Solutions for General Multilayer Bi-

anisotropic structures. 

In this section we use transfer matrix formalism for obtaining the most general form of 

solutions for arbitrary symmetry systems on anisotropic substrate. At the end of this 

Section we will compare the layer matrix and transfer matrix techniques. 

Information about ( )z  knowing (0) is provided in Equation (3.2). In other 

words, we start from projections of incident and reflected light on ambient interface and 

moving through layers till we get to the last substrate interface. There is a more 

convenient way to obtain solutions. Let’s assume that our final matrix equation should be 

in the form 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0

0 0

is ts ts

rs

ip tp tp

rp

E T T T TE E

E T T T T
T

E T T T TE E

E T T T T

      
      
       
      
       

     

 

 

 

 

(3.17) 

 

where T is the so called transfer matrix, which will be constructed below. It is a better 

choice (no need to construct projection matrix from the xy-components at substrate 

interface to transmitted waves, which contains inverse eigenvectors components of the 

substrate’s   matrix as in Equation (2.25) from the previous Chapter) to start from 

transmitted modes  tsE  and 
tpE , and move to the incident and reflected ones in ambient. 

For this purpose we rewrite Equation (3.2) in the following form: 
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(3.18) 

 



Now we can start from using  ( )z  and move back to (0) . In Equation (3.18)  

matrix exponent is nothing else but matrix which relates components at different 

interfaces. We call it a partial transfer matrix Tp. Instead of calculating layer matrix, 

which has a relatively complicated structure, we need to get an expression for matrix 

exponent, which is basically infinite series.  

Figure 3.7 Ray propagation shematics in bilayer system. 

 

In this situation the Cayley-Hamilton theorem is very useful.  In short, the 

theorem states that every square matrix satisfies its own characteristic equation. Wohler 

et al. [13] applied this theorem to partial transfer matrix and showed that matrix exponent 

can be written as a polynomial of the order of r-1, where r is the rank of the matrix, with 

coefficients solely depended on eigenvalues. Analytical expression is the following: 
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with coefficients defined as 
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and  
jq  are eigenvalues of   matrix. For obtaining expressions for eigenvalues the 

following equation should be solved 
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as a result we get fourth order polynomial with complex coefficients. If we reduce high 

order coefficient we obtain the following equation: 
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“The Handbook of Functions” by Abramowits and Stegun [14] provides solutions of 

Equation (3.22). That means there are no difficulties to construct analytical expression for 

partial transfer matrix. If we have multilayer structure total propagating matrix is given as 

a product of partial transfer matrices of each layer 
,1 , 1 ,...p p i p iT T T

.  In the previous chapter 

we defined Lin  in Equation (2.22) and Lout in Equation (2.50). In order to get solutions in 

the form of Equation (2.15) we can write: 
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After plugging in Equation (3.23)  the expressions for Lin and Lout , we obtain the final 

form: 
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Transfer matrix is defined as 
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As we discuss earlier for biaxial substrates Equation (2.50) could be used, then 
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where right RHS matrix  corresponds to substrate. Now it is easy to show solutions for 

Fresnel’s coefficients: 
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To conclude, we compare layer matrix and transfer matrix techniques. When we 

use the layer matrix we start from ambient, project waves on the interface and then move 

through the layers by means of propagation matrix and arrive to the substrate. Then we 

project transmitted modes on the interface and finally obtain a solution. It was pointed 

out earlier that projecting transmitted modes on the interface involves matrix inverse 

operation which is not desirable for obtaining analytical solutions. Expression quickly 

becomes too bulky. The layer matrix gives some advantages though. We calculate 

eigenmodes for each layer and thus we know dynamics inside layers (Poynting vectors 

can be obtained fairly quickly). Energy conservation arguments are easier to justify 

knowing such information.  

In the transfer matrix formalism we start from the substrate and represent 

substrate’s fields projection in terms of transmitted waves (opposite to what we do using 

layer matrix L). Then we move from the last layer to ambient using partial transfer 

matrix. At the ambient interface we use Lin matrix to obtain p and s components of 

incident and reflected waves in terms of fields’ projections.  Then we get the solutions. 



Partial transfer matrix does not contain any eigenmodes information and solely defined 

by the eigenvalues and by the elements of   matrix. We miss some information about 

waves propagation inside layers but get instead a faster method to obtain solutions and, as 

a result, more compact formulas. Both methods give the same results and both methods 

have their advantages and disadvantages.  

Let’s discuss the limitations for the applicability of our theoretical results, which 

cover only the linear optical effects and homogeneous layers without thickness gradient. 

We do not intend to cover the non-linear effects and inhomogeneous structures, which are 

outside of the scope of our work. For a non-linear media, certain approximations should 

be done to establish the relationship among the field vectors and to allow treating the 

material by means of the matrix formalism.  For inhomogeneous media, the sample 

should be divided into regions where optical matrix does not depend on z, after that 

procedure described above can be applied for further analysis.  

  



CHAPTER 4    

MMFIT FITTING PROGRAM MANUAL 

In this Chapter description of the developed MMFit program is given. There are three 

version of this software. One is for arbitrary bulk materials, second is for thin film layer 

on an anisotropic substrate, third is for a double layer superlattice on an anisotropic 

substrate. Both thin film layers and bulk layer can contain any combinations of electric, 

magnetic, magneto-electric and chiral oscillations. SHO model and Berreman formalism 

were utilized to get representation of pseudo-dielectric <  > function, ellipsometric , , 

reflectance, transmittance and Mueller matrices. Maximum number of oscillators in this 

version is 36 which can be increased if needed. Levenberg-Marquardt algorithm was used 

for fitting, where number of iterations changing is available for user. 

 

Figure 6.1 Start window of MMFit program. By default data panel (left) is for pseudo-

dielectric function and model panel (right) is for model creation (“Model Calc”). 

 



Program consists of three main panels. Left one, consisting of eight subpanels,  is 

for data and models representation, right one, consisting from four to five subpanels in 

different versions, is for loading, saving data and models, adjusting fitting parameters, 

creation of models, choosing tensor symmetry. Low panel allows to adjust data (reduce to 

desirable range), choose number of iterations for fitting, calculate current model and 

exchange columns in current model (analog to Euler rotation by 90 degrees in any 

direction). 

4.1 Working with Data 

In order to load or save data and models one should click on “Load/Save” button in right 

panel. 

 

Figure 6.2 Load/Save panel in MMFit program after loading mmd format file and 

clicking on “MM Panel” button, containing three Mueller matrix components 

(m21,m33,m34). Blue line – data. Red line – model. 

 



There are 17 buttons on “Load/Save” panel. “Load *.mmd Data” allows user to 

load Mueller matrices data in mmd format. There are 16 non-normalized columns in 

mmd data file. MMFit normalize all MM components to the first MM component (first 

column). 

 

Figure 6.3 MMD data file structure. 

 

“Load *.epd Data” button allows user to load data in epd format, containing real 

part of pseudo-dielectric function (column six), imaginary part of pseudo-dielectric 

function (column seven),  function (column two) , function (column three) . Mmd 

and epd data formats are shown in Figures 6.3,6.4 correspondingly. 



 

Figure 6.4 EPD data file structure. 

 

Following twelve buttons allow user to load separately pseudo-dielectric function 

data,  function data,  function data, reflection data, transmission data. Data files must 

contain two columns only without any headers. First column should be frequency in 

inverse centimeters, second column is intensity data. If one loads pseudo-dielectric 

function data using  “Load *.epd Data” and then load another pseudo-dielectric function 

data using “Load <Eps1> Data” and/or “Load <Eps2> Data”, corresponding data will be 

rewritten to the newest one. This works for  and functions data as well. 

“Reduce Data” button on the lower panel allows to cut data in the defined by user 

range”. To restore data original data file should be loaded and reduced data will be 

rewritten to the new one. 



“Load Project” button allows to load project previously saved by “Save Project” 

button. “Save Project” button gives overall saving option: all available data, models and 

parameters will be recorded. 

“Save FitData” button saves all models and all data to separate files, consisting of 

two columns: first one is frequency, second one is intensity. If there were no loaded data 

previously, MMFit programs provides file with zero data. The same is valid for models. 

Total number of files saved after “Save FitData” button clicked is 25. 

6.2 Working with Models 

For creation and modifying model function user should click on “Model Calc” button in 

the right panel. 

 

Figure 6.5 “Model Calc” panel with “MM” data panel after creating rough starting model 

for fitting. Blue line – data. Red line – model. 

 



There are three sliders available for adjusting different values. First slider (from 

the left to the right) always changes oscillation frequency value. Second slider always 

changes Gamma (broadening coefficient) value. Third slider changes value chosen by 

radiobuttons. When one changes values with sliders current models are redrawn 

dynamically. Main purpose of this visualization is to find starting fitting point maximally 

close to the original data. 

“Show Tab” button draws additional panel which gives overall picture of the 

 

Figure 6.6 “Show Tab” panel view with model parameters. 

current model. User has option to change available values from this panel as well. After 

adjusting all values additional click on free space should be made and current window 

should be closed. “L” stands for low fitting boundary. “U” stands for high fitting 

boundary. “F” stands for fit. If some value is supposed to be fitted, one should mark 

corresponding checkbox. When checkbox is chosen, “L” and ”U” values are updated 

automatically by  



 value from “L/U Range” edit field percent from the initial value of current parameter. 

“Fitting Range” allows to choose appropriate range in inverse centimeters for 

fitting. 

In order to choose ME tensor symmetry or add off diagonal components of 

electric permittivity tensor user should click on “Symmetry” button in the right panel.  

 

Figure 6.7 “Symmetry” panel view and pseudo-dielectric function data panel with model 

containing ME oscillator at 545 cm
-1

. 

 

There are six available options to construct ME tensor which are shown in Figure 

6.7. Checkboxes in the low part of the panel allows to choose different options for ME 

tensor. “Rho” checkbox makes component of ME tensor complex , “Alp” checkbox 

makes them real, “Ksi” checkbox makes them purely imaginary, “Eps” makes ME tensor 

0 and add corresponding real components to electric permittivity tensor. It should be 

noted that for this choice only off diagonal components available.”iEps” does the same as  

“Eps” but makes components purely imaginary.”Rho’ = 0” make transpose ME tensor 0 



and “-Rho/Eps” makes negative ME tensor or if “Eps”, “iEps” options are chosen makes 

negative off diagonal terms of permittivity tensor. 

After model is constructed clicking on “Calculate ” button plots model in the left 

panel for all functions. There is “Calculate ” button on the lower panel and on the “Model 

Calc” panel as well. 

6.3 Working with Fitting 

In this section fitting options are explained. 

 

Figure 6.8 “Fitting” panel view with “MM” data panel after fitting three Mueller matrix 

components. Blue line – data. Red line – model. 

 

“Fit” panel allows to choose different set of data for simultaneous fitting. Desired 

data for fit should be marked by means of radio buttons. After choosing appropriate sets 

of data fitting frequency boundaries could be adjusted in “Fitting range Field”.”Fit” 

button starts fitting procedure. After fit is finished, fitted values are renewed. Left edit 

box in the low panel allows to adjust number of fitting iterations. 



CHAPTER 5    

SUMMARY 

In this Thesis we accomplished the following research objectives: 

 Analysis of numerical and analytical methods for electromagnetic wave 

propagation in bi-anisotropic media has been done. 

 Analytical expressions for Fresnel’s coefficients have been derived for bi-

anisotropic bulk and multilayer materials. 

 Based on obtained theoretical results the original data fitting and simulation 

software have been developed. 

 IR spectra of Dy-IG and TbMnO3 multiferroics have been analyzed and their 

parameters such as frequencies and oscillator strengths have been determined. 

 Infrared active optical phonons in hexagonal rare earth manganites have been 

studied. A systematic variation of the phonon frequencies vs. the rare earth ion 

mass and rare earth ion radius has been observed in RMnO3 compounds.  

 

A logical continuation of the current research should be focused on the experimental 

observation of the optical properties for new materials with predicted magneto-electric 

interaction. Interesting behavior of such samples is expected under application of external 

magnetic and electric fields. Correspondingly, the developed theoretical formalism 

should be extended for cases with applied external fields. For thin film structures, which 

are suitable for different applications in industry and technology, interlayer interaction of 

ME oscillations is under considerable interest and should be studied in more details using 

Mueller matrix ellipsometry.   



APPENDIX A 

  MATRIX EIGENVALUES EXPLICIT FORMULAS 

In this appendix general formulas are given for eigenvalues of arbitrary structure   

matrix which is in the form 
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For the most general case when the symmetry of ME tensor is the lowest, optical 

matrix and   matrix have the following forms: 
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Components of   matrix can be extracted from Equation (5.3). Earlier we pointed out 

that in order to resolve eigenvalue problem we need to extract solutions of fourth order 

polynomial in the form Equation (3.22), where 
1 2 3 4, , ,C C C C  can be found from the 

condition 
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and z,iq  is one of the four eigenvalues of   matrix. Eigenvalues formulas are given 

below (discussion of universal method for solving quartic equation and analytical 

solutions are given in [15]): 

 



z,1q   

 

z,2q 

 



z,3q 

 

z,4q 

 
Thus we found solutions for eigenvalues in terms of   matrix components. MatLab m-

files with solutions can be found at [Error! Bookmark not defined.]. 



APPENDIX B 

  MATRIX EIGENVECTORS EXPLICIT FORMULAS 

In this appendix we find eigenvectors representation of   matrix. In order to get 

solutions we need to consider the following equation: 
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where z,iq  is one of the four eigenvalues of   matrix and their analytical solutions are 

given in Appendix A. Let’s rewrite Equation (6.1) in the following form: 
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Equation (6.2) is a linear system with respect to the tangential field components. It’s not 

hard to show that general solution for each out of four possible eigenvectors has the 

structure shown below: 
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(6.3) 



In Equation (6.3) eigenvector components are normalized by yH . In previous appendix A 

we showed explicit solutions for eigenvalues. That means eigenvectors problem is solved 

completely. Due to a very bulky structure of formulas in terms of optical parameters such 

as , , , AOI   , etc., we don’t show final results here, though they are available in 

MatLab m-functions.  



APPENDIX C 

DOUBLE LAYER STRUCTURE PARTIAL TRANSFER MATRIX 

REPRESENTATION 

In Chapter 3 on electromagnetic waves propagation in multilayer structures we showed 

that partial transfer matrix can be written in the form of Equation (3.19) with   

coefficients in the form of Equation (3.20). We present transfer matrix formulas for 

bilayer structure below: 
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