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Abstract
Brain tissue is extremely metabolically active in part due to its need to constantly
maintain a precise extracellular ionic environment. Under pathological
conditions, unhealthy cortical tissue loses its ability to maintain this precise
environment and there is a net efflux of charged particles from the cells.
Typically, this ionic efflux is measured using ion-selective microelectrodes,
which measure a single ionic species at a time. In this paper, we have used
a bio-sensing method, dielectric spectroscopy (DS), which allows for the
simultaneous measurement of the net efflux of all charged particles from cells
by measuring extracellular conductivity. We exposed cortical brain slices from
the mouse to different solutions that mimic various pathological states such
as hypokalemia, hyperkalemia and ischemia (via oxygen-glucose deprivation).
We have found that the changes in conductivity of the extracellular solutions
were proportional to the severity of the pathological insult experienced by the
brain tissue. Thus, DS allows for the measurement of changes in extracellular
conductivity with enough sensitivity to monitor the health of brain tissue
in vitro.
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1. Introduction

The maintenance of transmembrane ionic gradients is fundamental for a stable cellular
membrane potential (Kettenmann et al 1983, Hodgkin and Keynes 1955) and for the viability
of neurons (Husted and Reed 1977). The cellular death mechanisms of necrosis and apoptosis
are often preceded by a net efflux of ions from cells (Bortner et al 1997, Warny and Kelly 1998,
Remillard and Yuan 2004). Ionic homeostasis dysfunction may result from, or be exacerbated
by, a number of pathological conditions, including cocaine abuse (Du et al 2006), hypoxia
(Murai et al 1997, Müller and Somjen 2000), and traumatic head injury (Takahashi et al 1981,
Santhakumar et al 2003).

Dielectric spectroscopy (DS), a technique that characterizes a medium’s impedance
as a function of frequency, has been used to investigate a variety of cellular and tissue
properties, such as membrane potential (Bot and Prodan 2009), membrane structure and
properties (Gheorghiu and Gersing 2002, Di Biasio and Cametti 2011, Ron et al 2008),
glucose concentration in tissue (Caduff et al 2006), and to distinguish between the different
cellular death mechanisms (Lee et al 2009). DS has also been used to investigate pathology-
induced biophysical changes in tissue (Gersing 1998, Egot-Lemaire et al 2009, O’Rourke
et al 2007, Schaefer et al 2002). While DS has been used to determine the conductivity of
brain tissue (Schmid et al 2003) and the dielectric properties of aqueous ionic solutions (Chen
and Hefter 2003, Cametti et al 2011), we do not know of any previous investigations that
have assessed whether a correlation exists between the conductivity of the extracellular fluid
surrounding a brain slice and the health of brain tissue.

In this paper, we describe a bio-sensing method to assess, in a relatively noninvasive
way, the health of a tissue by measuring the conductivity of electrolytic solutions in which
cortical brain tissue slices from CD-1 mice were bathed. We mimic several insults such as
hyperkalemia, hypokalemia and oxygen-glucose depravation, using tissue from two age groups
of mice: weanling and neonatal. We found that these treatments lead to significant changes in
conductivity of the bathing solution surrounding the brains slices, suggesting that DS may be
used to measure the viability of brain tissue.

2. Materials and methods

2.1. Experimental solutions

Solutions, with varying concentrations of several key constituents (as detailed in table 1), served
as the bathing media for the cortical tissue slices. These solutions were intended to mimic
pathological conditions such as hypokalemia, hyperkalemia and oxygen-glucose deprivation
(OGD). They were buffered with 5 mM HEPES, and their pH values were adjusted to 7.4 using
1N NaOH or 1M HCl. Osmolarity was adjusted to a measured value of 310 mOsm (using
a Wescor Vapro 5600 vapor pressure osmometer) by adding an appropriate concentration of
sucrose. All solutions were saturated via an air stone with 100% oxygen, except for the OGD
solution, which was saturated with 100% nitrogen.

To better observe ion flux, the ionic concentrations of the solutions were maintained low,
thus minimizing the initial conductivity of the solution. Thus, we utilized a total of 10 mM
of monovalent cations (K+ and Na+) and 10 mM of a monovalent anion (Cl−). To vary the
extracellular K+ concentrations, an increase in K+ concentration was matched by an equimolar
decrease in Na+ concentration. While the concentration of sodium in the cerebrospinal fluid
(CSF) is approximately 147 mM (Morrison 2008), the majority of transmembrane sodium
channels are usually closed at the resting membrane potential, so this low extracellular
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Table 1. The ionic composition and glucose content of each experimental solution. Additionally,
each solution is buffered by 5 mM of HEPES and contains an appropriate concentration of sucrose
such that the measured osmolarity of the solution was about 310 mOsm. Aside from control, each
experimental solution had an ionic composition, glucose content, and/or gaseous saturation that
could be considered pathological.

Solution [KCl] (mM) [NaCl] (mM) [D-Glucose] (mM)

Control 3 7 15
Severe hypokalemia 0 10 15
Moderate hypokalemia 1 9 15
Hyperkalemia 10 0 15
Oxygen-glucose deprivation 3 7 0

Na+ level has little influence on membrane potential (van Mil et al 2003) and, therefore,
should not damage the neural tissue.

2.2. Preparation of cortical tissue samples

Experiments were performed using a slice preparation of the cerebral cortex of CD-1 mice.
The Animal Care and Facilities Committee at Rutgers approved this protocol, which is also
in accordance with EU directive 86/609/EEC. CD-1 mice were either obtained directly from
Charles River Laboratory (Wilmington, MA) or bred from Charles River Laboratory stock.
Two experimental age ranges were used: ‘neonatal’ mice ranged from postnatal day zero (P0)
to postnatal day two (P2) and ‘weanling’ mice ranged from postnatal day 14 (P14) to postnatal
day 16 (P16). Mice were anesthetized with isoflurane until the absence of a withdrawal reflex
from toe pinch. The mice were decapitated and the whole brain dissected in ice-cold slicing
solution containing: 7 mM NaCl, 3 mM KCl, 5 mM HEPES and 15 mM D-glucose. The
pH was adjusted to 7.4 with 1N NaOH or 1M HCl and the osmolarity was adjusted to 310
mOsm with sucrose. The excised brain was mounted (with cyanoacrylate glue) to an agar
block backing with the dorsal side of the brain facing up. Progressive sections in the coronal
plane were made in the rostral-to-caudal direction using a vibrating blade microtome (Leica
VT 1200). The brain slices were then incubated for a period of at least 15 min in room
temperature saline saturated with 100% O2.

2.3. Exposure of brain tissue to experimental solutions

In order to supply brain tissue slices with the appropriate gaseous mixture, incubation chambers
were constructed from 1.5 mL microcentrifuge tubes. Attempts to oxygenate the tissue
via direct flow of gaseous oxygen into the bathing solution resulted in the formation of
large bubbles that caused the mechanical disintegration of the tissue slices. Therefore an
interface between the oxygen and the bathing solution was required (figure 1). A composite of
poly(dimethylsiloxane) (PDMS) (Silgard 184; Dow Corning, Midland, MI, USA) and 1 mm
soda glass beads was utilized as this interface. PDMS was chosen as the membrane material
because of its excellent oxygen permeability (Hitoshi et al 2005) and the reinforcing beads
were utilized to support the gas conduit and the PDMS membrane. Gas flow was supplied
to the solution through a 30 G subcutaneous needle that was inserted through the side of the
microcentrifuge tube such that the tip of the needle came to rest immediately below the surface
of the PDMS. To further increase the oxygen saturation of the bathing solution, oxygen was
also supplied via a small gauge needle integrated in the cap of the microcentrifuge tube into
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Figure 1. A custom incubation chamber consisting of a 1.5 mL microcentrifuge tube was used
to bathe 600 μm thick cortical brain tissue slices in experimental solutions that mimic various
pathological conditions. A novel composite material, consisting of 1.0 mm diameter soda glass
beads embedded in a polydimethylsiloxane matrix, allowed for adequate supply of experimentally-
dictated gas (oxygen or nitrogen) to the tissue slice without causing mechanical trauma to the tissue
slice due to its interaction with large gas bubbles.

the airspace just above the bathing solution. A small hole in the cap of the tube enabled the
equalization of pressure.

All experiments were performed at room temperature (23 ◦ C). Prior to the exposure of
the brain slices to each experimental solution they were washed to rid them of any remnant
of the slicing solution. Each slice was transferred to a microcentrifuge tube followed by the
removal of all solution via a micropipette. The slice was then immediately washed with 0.2 mL
of the experimental solution, which was then removed after 60 s. This step was subsequently
repeated. Subsequently, the tissue was transferred to one of the previously described modified
incubation tubes. Pure oxygen, or nitrogen in the case of OGD, was supplied at this point.
325 μL of the desired experimental solution (control, hyperkalemia, OGD, etc) was transferred
to the modified incubation tube. Concurrently, a 325 μL sample of the experimental solution
was collected without exposure to tissue and preserved in order to act as a basis for conductivity
change comparison. The tissue was bathed in the experimental solution for 20 min, at which
point it was removed from the tissue while the tissue was discarded. The extracellular bathing
solution was removed for later analysis while the tissue sample was discarded at this point.
Consequently, only the conductivity of the bathing solution was analyzed. The exposed solution
and non-exposed solutions were stored at −20 ◦ C until analysis by DS occurred.

2.4. Conductivity measurements and analysis

Dielectric spectroscopy, which has previously been shown to successfully probe the
conductivity of polyelectrolyte solutions (Bordi et al 2004), was utilized to measure the
complex conductivity of each solution sample. The electrode system has been previously
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Figure 2. The molar conductivity of a strong electrolyte solution (KCl) with respect to molar
concentration is presented as the solid line. Kohlrausch’s law theoretically defines the relationship
between molar conductivity (�) and molar concentration as a power law regression for all strong
electrolytes.

described (Dobiszewski et al 2011) and shown to successfully measure conductivity. Briefly,
the electrode system consisted of two 14 karat gold electrodes held parallel to one another
at a precise distance apart. Prior to measurement of each solution, the distance between the
electrodes was calibrated using Milli-Q water.

The impedance analyzer (Solartron 1260; Solartron Analytical Hampshire, UK) and
electrical circuit (custom) have been previously described by Prodan et al (2004) and Bot and
Prodan (2009). The complex conductivity function σ = σ ’ + iω ε0ε of the sample can be
calculated from the expression for the impedance (Z):

Z = dσ + iω dεε0

σ 2A + ω2ε2ε2
0A

(1)

The obtained conductivity spectra were calculated from the experimental (impedance)
data by a custom Matlab program utilizing the relationship

σ (ω) = Re
{(

1

Z(ω)

) (
d

A R

)}
(2)

where d is the distance between the electrodes, A is the surface area of one electrode, ε is the
dielectric permittivity of the sample, σ is the conductivity of the sample, R is the experimental
resistance and ω = 2 π f, where f is the frequency of the applied signal.

Dielectric spectroscopy measurements were made on each solution from 100 Hz to 1 MHz
at a probing voltage of 50 mV. Here we present our analysis of conductivity at 100 Hz, which
is within the range used by others (Akhtari et al 2006). The conductivity of each solution
was calculated via a custom Matlab program. The change in conductivity was defined as the
difference between two solutions: a test solution exposed to the tissue slice and a control
solution that was not.
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2.5. Statistical analysis

Statistical analyses were performed using SigmaPlot v. 11.0 (Systat Software, San Jose, CA).
A two-way ANOVA, with experimental condition (control, severe and moderate hypokalemia,
hyperkalemia, OGD) and age (neonate versus weanling) as factors, was performed. Where
significant main effects of age, experimental condition, or an interaction between the two were
found, pair-wise post hoc tests (Holm-Sidak method) were performed for comparison. If a
significant interaction was found, main effects were discarded. For all tests, a p value of <0.05
was considered significant. The reported values have been expressed as mean ± SEM.

3. Results

In order to provide proof that our measurement system was capable of measuring the strong
electrolytes likely to be encountered in the extracellular solutions of the brain, we first
assessed the molar conductivity of a prototypical strong electrolyte (KCl) with respect to
molar concentration; the results are presented in figure 2. Notice that the result presented in
this figure follows the power law relationship described by Kohlrausch’s law (Coury 1999).
Therefore, we deduce that our system can accurately measure the conductivity of strong
electrolytes.

The focus of this study was the analysis of the change in conductivity of extracellular
solutions subsequent to bath exposure with live cortical tissue. Furthermore, as the brain’s
response to pathologic conditions can change as a function of age, two distinct age ranges
were tested: neonatal and weanling.

Figure 3 represents the conductivity versus frequency corresponding to ‘severe
hypokalemia’ (0 mM [KCl]O; top), control (3 mM [KCl]O; middle) and ‘hyperkalemia’
(10 mM [KCl]O; bottom). As one can see, for ‘severe hypokalemia’, the spectrum for the
weanling was greater than the spectrum for the neonatal at low frequencies. However, at
higher frequencies (above approximately 10 kHz), the spectra for both ages converged and
eventually overlapped. For the ‘hyperkalemia’ condition, this trend was reversed; the spectrum
corresponding to the neonates was greater than that of the weanlings at low frequencies. At
higher frequencies, the spectra for both age ranges converged and eventually overlapped.
The middle graph represents control conditions (3 mM [KCl]O) and was characterized by
overlapping spectra for neonates and weanlings at all frequencies.

Figure 4 shows the change in extracellular conductivity of the various experimental
solutions after exposure to brain slices. In tissue from weanlings, all three experimental
extracellular K+ concentrations produced statistically significant increases in conductivity
compared with the control solution (3 mM KCl). The largest change in conductivity was
in response to severe (0 mM [KCl]O) hypokalemia. The increase in conductivity, resulting
from moderate (1 mM [KCl]O) hypokalemia was less than the increase in severe
hypokalemia. Furthermore, the increase in conductivity was lower in response to hyperkalemia
(10 mM [KCl]O) compared to moderate and severe hypokalemia. Therefore, in weanlings
as the extracellular potassium concentration was varied there were graded increases in
conductivity, with severe hypokalemia leading to the greatest change and hyperkalemia leading
to the least change. In response to OGD, there was a greater increase in conductivity compared
with the control solution in weanlings. This increase was significantly different from those
observed after exposure to moderate hypokalemia and hyperkalemia (figure 4).

In the neonates, all experimental conditions produced statistically significant changes
when compared to the control solution (3 mM KCl). However, unlike the weanling data,
there was no significant difference between exposures to moderate hypokalemia and severe
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Figure 3. Conductivity with respect to frequency from 100 Hz to 1 MHz for three different
extracellular potassium concentrations (severe hypokalemia, control and hyperkalemia). In all the
graphs, the solid line ( ) represents the solution that never came in contact with the tissue slice,
the dotted line ( ) represents the conductivity of the solution after exposure to the tissue slices
from weanling-aged (P15-P17) mice, and the dashed line ( ) represents the conductivity of the
solution after exposure to tissue slices from neonatal-aged (P0–P2) mice.

hypokalemia. Furthermore, in neonates the increase in conductivity was significantly greater in
hyperkalemic solution compared to moderate hypokalemic solution. This is different from the
response observed in weanlings, in which the increase in conductivity was significantly smaller
in hyperkalemic solution compared to moderate and hypokalemic solutions. In response
to OGD, there was a greater increase in conductivity than that observed with the control
solution. However, unlike the weanling data, in which the response to OGD was greater
than that to moderate hypokalemia and hyperkalemia, in the neonate, there were no significant
differences between the response to OGD and the responses to the three experimental potassium
concentrations.
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Figure 4. Changes in conductivity at 100 Hz of the various experimental solutions (control, severe
and moderate hypokalemia, hyperkalemia and OGD) in which cortical tissue slices were bathed.
Significant changes (denoted ‘∗’; p > 0.05, n = 6–15) in conductivity with respect to the control
condition (3 mM [KCl]O) are seen in all experimental conditions over both age ranges tested
(weanling and neonate). Additionally, significant changes (p > 0.05) between different pairings of
pathological conditions are denoted by ‘ˆ’, ‘X’, ‘#’ ‘∼’, and ‘+’.

Figure 5. Change in conductivity (at 100 Hz) of solution due to exposure to tissue slice as a function
of the mouse age. Significance (P > 0.05) between age groups within the same experimental
condition is denoted by ‘+’ above each bar.

In figure 5 we plotted the data corresponding to the change in conductivity to facilitate the
comparison of the changes caused by each experimental solution between the two age ranges.
Both severe hypokalemia and OGD produced significantly greater changes in weanlings
compared to neonates. In contrast, the hyperkalemic solution produced a significantly greater
increase in conductivity in neonates compared to weanlings.
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4. Discussion

In this paper, the extracellular concentration of the potassium ion (K+) in solutions in
which cortical brain slices were bathed was altered (0 mM [KCl]O, 1 mM [KCl]O, 10 mM
[KCl]O) with respect to its normal physiological value. Under physiological conditions, the
intracellular concentration of K+ is many times greater than the extracellular CSF, which has
a K+ concentration that varies between 2.7 and 3.5 mM (Somjen 2002). Deviation from this
range leads to biophysical changes to the cells that impair neural function. Low extracellular
K+ concentrations lead to hyperpolarization (Kuwabara et al 2002), increased intracellular
Na+ concentration (Korff et al 1984), and the induction of apoptosis (D’Mello et al 1993).
Elevation of extracellular K+ concentration has pathological consequences and is so lethal that
a large exogenous dose of K+ is used for capital punishment (Wong 2006). Under pathological
conditions, such as epilepsy and stroke, the uppermost concentration limit of extracellular
K+ in the brain is approximately 12 mM (Heinemann and Lux 1977). During instances of
head injury, the cortical extracellular potassium concentration can reach as high as 50 mM
(Takahashi et al 1981).

In the present paper, we found that in cortical brain tissue from weanling mice there was a
graded response to changes in the extracellular K+ concentration. Severe hypokalemia led to
significantly greater increases in extracellular conductivity compared to moderate hypokalemia
or hyperkalemia. In contrast, there was no difference between the response to moderate and
severe hypokalemia in neonates. Additionally, the response to hyperkalemia was significantly
greater in neonates compared to weanlings. These results are consistent with the notion that
compared to older mice, neonates have a limited ability to regulate the K+ concentration in
the CSF (Jones and Keep 1987).

In order for cells in the brain to maintain a constant extracellular concentration of
potassium, the input of metabolic energy is essential. While the brain accounts for only a
small percentage of total body weight, it accounts for nearly 20% of the body’s total oxygen
consumption; 70% of which is used to provide energy for the Na+/K+ ATPase (Edvinsson
and Krause 2001), an enzyme that helps to maintain ionic concentration gradients across
the plasma membranes of cells (Rossier et al 1987). Accordingly, the dysfunction of the
Na+/K+ ATPase in brain cells leads to cellular death (Magyar et al 1994). Deprivation of
cellular oxygen and glucose input leads to a reduction in intracellular ATP and an indirect
shutdown of the Na+/K+ ATPase (Hertz 2008), potentially resulting in ionic hemostasis
dysfunction (Thompson et al 2006) and necrotic cell death (Miyamoto and Auer 2000).

Accordingly, we hypothesized that a large increase in conductivity would occur during
OGD. Interestingly, the increase in conductivity following OGD was significantly smaller
in neonates compared to weanlings (figure 5). This difference likely corresponds to the
observation that neonates possess a greater ability to withstand the OGD compared to
older animals (Haddad and Donnelly 1990). Also of interest, the increases in extracellular
conductivity in the severe hypokalemic and OGD groups were similar within each respective
age group (figure 4). This observation may be due to the effect that both conditions have on
the Na+/K+ ATPase. As the concentration of extracellular potassium diminishes, the efficacy
of the ATPase is markedly decreased (Heidlage and Jones 1981). Similarly, as the amount of
available ATP decreases during OGD, inhibition of Na+/K+ ATPase activity occurs (de Souza
Wyse et al 2000). Therefore, it is possible that the state of dysfunction and poor cellular health
in both cases is similar.

Since these measurements were conducted at low frequencies, it is quite likely that
the electrical double layer effect dominates the measurements. The effect of this double
layer impedance, which has been described by numerous researchers for decades, varies
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dramatically with both ionic concentration and frequency (Mirtaheri et al 2005). Instead of
viewing this double layer as a hindrance to collecting useful information, we actually used
it to our advantage. We took painstaking measures, such as precisely maintaining the ionic
concentrations presented in table 1, to ensure that the initial conductivities of baseline solutions
were identical prior to the addition of the tissue. To ensure proper ionic concentrations in our
solutions, we utilized both a conductivity meter and osmometer. Furthermore, instead of
trying to remove the effect of the double layer impedance, we only concerned ourselves with
evaluating the conductivity differences from these precise baseline solutions in order to use
DS as a sensor. Thus, any variation from the initial conductivity of the solution represents the
response of the tissue to the insult.

While the change in extracellular solution conductivity is clearly frequency-dependent,
it is likely that the change is also time-dependent. In pathological conditions such as
ischemia (OGD), there is a rapid and punctuated rise in extracellular potassium concentration
within minutes of the OGD onset (Hansen 1985). Subsequently, the extracellular potassium
concentration plateaus around 50 mM for the remainder of the ischemic insult. Given that our
exposure duration was 20 min, it is possible that a large flux of potassium ions could have
contributed to the extracellular solution conductivity.

5. Conclusions

Since both necrotic and apoptotic cellular death mechanisms involve a net efflux of ions
from the dying cell, evaluation of the extracellular ion profile may provide useful insight into
the health and vitality of neural tissue. While methods such as double-barreled ion-selective
microelectrodes measure changes in the concentration of a single ionic species, they lack the
ability to simultaneously assess the contribution of several different ionic species. In this paper,
we utilized DS, which allows for the measurement of the net change in number of all charged
particles in solution (i.e. a solution’s conductivity).
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