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Abstract For the past few decades there has been tremendous innovation and development
of Terahertz (THz) science and imaging. In particular, the technique of 3-D computed
tomography has been adapted from the X-Ray to the THz range. However, the finite
refractive index of materials in the THz range can severally refract probing THz beams
during the acquisition of tomography data. Due to Fresnel reflection power losses at the
boundaries as well as steering of the THz beam through the sample, refractive effects lead to
anomalously high local attenuation coefficients near the material boundaries of a
reconstructed image. These boundary phenomena can dominate the reconstructed THz-CT
images making it difficult to distinguish structural defect(s) inside the material. In this paper
an algorithm has been developed to remove the effects of refraction in THz-CT reconstructed
images. The algorithm is successfully implemented on cylindrical shaped objects.

Keywords Terahertz . Computed tomography (CT) . Non-destructive evaluation (NDE) .

Natural cork . Structural defect

1 Introduction

Terahertz Time-Domain Spectroscopy (THz-TDS) and imaging is a coherent measurement
technology which is based on the measurement of a THz pulse in the time-domain. The
Fourier transform of the pulse waveform gives measurement of both the frequency
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dependent phase as well as amplitude of the THz pulse. Pulsed Terahertz (THz) imaging was
first proposed by Hu and Nuss in 1995 [1].

Time-domain THz waves provide temporal and spectroscopic information that enables
development of various three-dimensional (3D) terahertz tomography imaging modalities
[2, 3]. The interaction between a coherent THz pulse and an object provides rich information
about the object under study; therefore, three-dimensional terahertz imaging is a very useful
tool to inspect or characterize several types of objects. THz tomography was first demon-
strated in 1997 by Mittleman et al. [4]. X-Ray computed tomography (CT) is an excellent
methodology to measure the 3D cross sectional images of materials and much of the same
methodology has been adapted in the THz and millimeter wave regions. For example, a
variety of instrumentation hardware have been used for THz tomography systems including
all-electronic 3D computed THz tomography operating in the 230–320 GHz frequency range
of [5], 3D THz imaging using single cycle THz pulses [6], continuous wave (CW) terahertz
tomography with phase unwrapping [7], THz-CT using CW a gas laser operating at 2.25
THz [8], and THz optical coherence tomography based on quantum cascade lasers [9].
Applications of THz computed tomography include 3D images of turkey [10] and human
bones [11] as well as foam material [12] with various defects and voids. Using foam samples
with voids as well as a wooden doll as test objects, Recur et al. [13] compared different THz-
CT image reconstruction methods. Maryelle et al. investigated 3D THz-CT of dried human
bones [11]. The authors generated THz-CT images of lumbar vertebra, a coxal bone, and a
skull and made direct comparison with X-Ray 3D-CT images. Although THz has lower
resolution than X-Ray, it was evident from their measurement that THz-3D-CT images can
distinguish between compact bones and spongy bones.

Due to its non-ionizing nature THz imaging has been used widely as for non-destructive
evaluation (NDE) of different materials. Non-destructive evaluation (NDE) of natural cork,
for example, has been demonstrated [14] by imaging the internal crack, voids, and grain
structure of natural cork samples. For NDE of materials for which the internal structure is not
uniform, artifacts in the reconstructed image can mask the subtle but important contrast in a
sample’s internal structure. In our previous study of internal defects in natural cork, [15]
pulsed THz-CT was used to reconstruct the cork’s internal structure. However, the strong
boundary artifact made resolution of the mass density variations, cracks, voids, and channels
of the cork structure difficult to discern. For natural cork, it is the internal structure which is
thought to determine the gas diffusion properties of natural cork which are essential for the
functionality of natural cork as barrier to gas and liquid diffusion [16, 17].

Clearly, the vastly different spatial scales of X-Rays and Terahertz radiation suggest that
the reconstruction methodologies which are routinely employed in the X-Ray range may not
be optimal in the THz range. X-Rays, due to their nature, travel through the target material in
almost straight lines without much refraction. Due to the refractive index change at material
boundaries, THz waves are susceptible to refraction as well as loss of signal due to Fresnel
reflection from boundaries. Due to the enhanced loss of THz power at a boundary due to
both Fresnel reflection losses as well as refractive losses, reconstructed THz–CT images
exhibit enhanced attenuation at the boundaries and also a distortion of the boundary shapes.
Examples of the boundary effect can be seen in many papers on THz CT imaging [3, 4,
18–20]. Only in the case of a low refractive index contrast material [8, 9, 21, 22] can the
refractive and reflective effects be ignored in the image reconstruction.

Other examples of adapting X-ray CT to the THz range include incorporating the
Gaussian beam properties in the image reconstruction process to improve the quality of
the reconstructed images [23]. In that work the authors simulated Gaussian beam properties.
When the beam properties are included, the reconstructed images show differences
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compared to standard reconstructed images. A small number of papers have studied bound-
ary artifact phenomenon and have tried to remove the prominent boundary effect phenomena
by different methodologies. E. Abraham et al. [24] introduce a multi-peak averaging method
to eliminate boundary effects due to refraction losses of the THz beam inside the material.
As the THz beam propagates through the material, it suffers refraction inside the material
and thus produces multiple peaks - instead of a single peak - when it passes through a
material. In [24] a time delay from a particular peak is used to generate tomographic images.
However, the presence of multiple peaks makes it difficult to choose the correct peak for
time delay measurement. By averaging several of the peaks and considering the time delay
of that averaged peak, the boundary effect can be reduced. In applying this technique to 3D
THz-CT images of a Teflon cylinder (refractive index 1.37) with a hole on it, the effect of the
boundaries is reduced, but the visibility of boundaries are still artificially enhanced in the
reconstructed image.

In the present paper, we show that by correcting for the two most dominant phenomena
(i.e. steering of the THz beam and Fresnel reflection) prior to image reconstruction, the
boundary effect can be essentially eliminated. While an accurate reconstruction of an object
with arbitrary shape and composition by THz CT is problematic due to refraction artifacts,
THz CT can still be an effective NDE tool if the general shape of an object under test is
known. If the shape and refractive index of a ‘standardized’ object were known a-priori,
then in principle the effects of Fresnel reflection and refraction could be removed from CT
projection data prior to applying an inverse Radon transformation to reconstruct the image.
By removing the boundary artifacts, the discrimination of internal structure of a test object
compared to the ideal ‘standardized’ object could be greatly improved. For the specific
example of NDE of cylindrically shaped natural cork stoppers, the outer size and shape of
each sample is essentially the same from sample to sample. Removing the boundary artifacts
enables a more detailed reconstruction of each sample’s internal structure which is so critical
to the functionary of the stoppers with regards to their gas and liquid diffusion properties.

In this paper, a methodology is introduced for removing boundary artifacts in THz CT
imaging for cylindrically shaped objects. In Section 2, the experimental procedure and
manifestation of the boundary artifact in the reconstructed image are described. In Section
3, the mathematical algorithms for correcting CT projections prior to image reconstruction
are described. In Section 4, the correction algorithm is applied to a series of plastic rods and
natural cork. The major conclusions are summarized in Section 5.

2 Experimental Procedure and Boundary Artifacts

While the longer term goal is to apply the developed algorithms to NDE of cylindrical cork
stoppers, the non-homogeneous internal structure of cork and significant sample to sample
variations clearly precludes natural cork as a model material for the development of
correction algorithms. In order to study the boundary effect and develop algorithms for
removing them from THz-CT reconstructed images, several cylindrically shaped plastic
Plexiglas rods (real refractive index 1.54) are used as target material. Cylindrically shaped
plastic rods provide a uniform, homogeneous material for development of boundary correc-
tion algorithms. Four identical plastic rods were chosen for the study. One of them was kept
intact. In two of the samples, a uniform cylindrical shape hole (1mm and 5mm diameter) is
drilled near the geometric center of the cylinder. In the fourth sample, a cylindrically shaped
hole (5mm diameter) is drilled near the periphery of the sample. These sample plastic rods
are subjected to transmission scans by the pulsed THz beam.
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The Plexiglas rod and natural cork samples are scanned in transmission using a
Picometrix T-Ray 2000 system. Details of the experimental set-up have been discussed in
our previous work. [15] For the tomographic scanning, samples are attached to a rotation
stage such that the geometric center of the cylinder is nominally collinear with the rotation
axis of the stage. Each sample is rotated in 2 degree intervals from zero to 360 degree (up to
180 rotations) relative to its original position. Full tomographic scanning is obtained by
vertically (resolution 1mm) and horizontally (0.5mm resolution) scanning a sample at each
rotational position.

From the THz time-domain spectra, we calculate the average attenuation (A=ln(1/t)),
where T is the transmission at 0.15 THz for each scan position. For each horizontal slice
through circular cross-section of the cylinder at a fixed rotational angle, the array of
attenuation data represents a projection [3] through the sample. A typical projection for a
solid Plexiglas rod is shown in Fig. 1 (a). By measuring the project array at each rotation
angle, a 2D reconstruction of the slice can be generated using MATLAB’s built in
function for Radon transformation with filtered-back propagation. A typical reconstructed
slice using the measured (uncorrected) projection arrays is shown in Fig. 1(b). A
complete 3D reconstruction is achieved by stacking the reconstructed slices at each
vertical position.

Fig. 1 (a) shows a typical plot of the experimentally measured and ideal attenuation
projection through a solid Plexiglas rod measured at 0.15 THz. The ideal projection data is
calculated using measured values for the real refractive index and the attenuation coefficient

Fig. 1 (Color online) (a) Plot of experimentally measured average THz attenuation (solid) between 0.1-0.2
THz and theoretically calculated attenuation (dashed) of a solid, uniform Plexiglas rod. (b) Reconstructed
pulsed THz-CT image of a horizontal slice through a uniform Plexiglas rod
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of a homogenous sample. These values can be measured by propagating the THz beam
through the diameter of the sample and analyzing the resulting frequency dependent phase
and magnitude. The ideal projection assumes that the THz beam propagates straight through
the sample. For this ideal projection, the attenuation should depend only on the material’s
attenuation coefficient αo and the path length through the sample. The path through the
sample depends on the offset distance l relative to the geometric center of the circular cross-
section

Ath lRð Þ ¼ αoL lRð Þ ¼ αo2R
ffiffiffiffiffiffiffiffiffi
1−l2R

q
ð1Þ

where lR=l/R, and R is the radius of the sample. According to Eq. (1), the centre position
corresponding to lR=0 should exhibit the maximum attenuation with decreasing atten-
uation as the offset parameter increases away from the centre diameter. However, in
reality, the measured attenuation (Fig. 1(a)) is a minimum at the centre position and
increases with increasing |lR|. Consequently, the reconstructed 2D tomographic image of
a horizontal slice through the rod shows an enhanced attenuation at the boundaries of
the rod (Fig 1(b)). Ideally, the reconstructed attenuation coefficient should be uniform
throughout the material.

3 Theoretical Formulation – Fresnel losses

In this work, an algorithm is developed that eliminates the effect of the Fresnel reflection and
beam steering, so that the anomalous attenuation shown in the reconstructed image
(Fig. 1(b)) can be removed. Essentially the goal is to develop algorithms to correct the
measured attenuation curve of (Fig. 1(a)) by removing the effects of Fresnel reflection and
beam steering from attenuation projection data prior to reconstructing the image using
Radon transformations.

3.1 Fresnel reflection losses

Fig. 2 shows a pictorial depiction of THz beam transmitting through circular cross section of
a cylindrical rod. From Fig. 2, the distance that the THz beam travels inside the material
upon refraction clearly is not the same as if the beam were to travel in a straight line. Using

Fig. 2 Transmission of THz beam with bending inside the material
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the geometry of Fig. 2 with Snell’s law of refraction na sin θi=np sin θt, where θi and θt are
the angles of the incident and refracted rays, it is straight forward to show that the path length

which the THz beam travels inside of the sample upon refraction is Lr ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2al

2
R=n

2
p

q
,

where na and np are refractive index of air and plastic, respectively. In order to estimate the
relative change in length, consider the refractive indices of the plexiglass (1.54) and air (1.0).
If the ray were to travel at a distance lR=1/2 from the centre axis, then the path length through
the sample assuming that there is no refraction would be L=1.73R, while the path length with
refraction would be Lr=1.89R corresponding to a ~9% increase in path length due to
refraction.

For our experimental configuration, the polarization of the incident THz wave is parallel
to the plane of incidence. The Fresnel reflection losses can be included using the power
reflection coefficient [25]

R ¼ ntcosθi−nicosθt
nicosθt þ ntcosθi

� �2

: ð2Þ

where ni, nt, θi and θt are refractive index of the incident medium, refractive index of the
transmitted medium, incidence and transmitted angle, respectively. Applying both Snell’s
law and Eq. (2) to both the air-plastic and plastic-air interfaces gives the following reflection
losses at the two boundaries

Rap lRð Þ ¼
np

ffiffiffiffiffiffiffiffiffi
1−l2R

q
−na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2al

2
R=n

2
p

q

na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2al

2
R=n

2
p

q
þ np

ffiffiffiffiffiffiffiffiffi
1−l2R

q
0
B@

1
CA

2

ð3Þ

Rpa lRð Þ ¼
na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−l2Rn2a=n2p

q
−np

ffiffiffiffiffiffiffiffiffi
1−l2R

q

np
ffiffiffiffiffiffiffiffiffi
1−l2R

q
þ na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−l2Rn2a=n2p

q
0
B@

1
CA

2

: ð4Þ

The total transmission of a THz beam through the sample can be written as

T lRð Þ ¼ 1−Rap

� �
exp −αLrð Þ 1−Rpa

� � ð5Þ

where α is the power attenuation coefficient for the plastic. The first term of Eq. (5)
represents the power loss when the THz beam refracts as it enters the sample. The second
term represents the attenuation loss of the THz beam propagating through the sample, while
the third term represents the reflective power loss as the beam exits the sample. It should be
noted that this loss term could be 100% if the THz beam were totally internally reflected at
the plastic-air interface. As an estimate of the Frensel power losses, consider a beam
travelling through the material at a distance lR=1/2. Using the measured linear attenuation
coefficient α=0.0311/mm and radius of the plastic rod (14mm), the transmission of the THz
beam through the material can be estimated from Eq. (5) to be 0.41 including Fresnel
reflection losses and roughly 0.47 when the losses are neglected. Therefore, inclusion of
the Fresnel losses reduces the transmission by ~14% which corresponds to an attenuation
change of about 0.14.
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3.2 Beam Steering Losses

While the increase in sample path length and Fresnel losses increase the attenuation from
what one would ideally expect for an undeviated beam, the magnitude of these losses is too
small to explain the rapid increase in attenuation observed (in Fig 1(a)) as the offset
parameter lR (in Fig. 2) of the THz beam relative to the geometric center of the cylindrical
rod is increased. In the absence of the sample, the lenses and other optical components of the
THz system are aligned to optimize the THz power from the THz transmitter to the detector.
Clearly, the presence of any sample in the beam path becomes part of the optical system
since refraction of the THz beam by the sample will steer the THz beam from its optimal
path to the detector. As illustrated in Fig. 3 (b), when the cylindrical sample is off center
in the THz optical system, the resulting beam steering will reduce the measured THz
transmission.

In order to predict the effects of beam steering on the THz-CT system, a ray-tracing
software program BEAM4 (https://www.stellarsoftware.com) is used to model the optical
system. A table of the optical components, their spatial locations, and physical sizes which
were used for the ray-tracing calculation are listed in Table 1 and illustrated in Fig. 3. Using

Fig. 3 (a) Illustration of optimal propagation of the THz radiation through the collimating and focusing lenses
in the absence of a sample. (b) Illustation of the beam steering of the THz radiation by the sample as an optical
component in the system. Tx and Rx stands for transmitter and receiver, respectively
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the geometric ray tracing software, we define a fan of rays emerging from the source and
trace their progression through the optical components. The fan of rays simulates the THz
beam as it propagates through the optical system. By counting the percentage of the rays
which propagate through the optical system to the detector as a function of the offset
parameter lR, we estimate the transmission Tst of THz radiation. It is assumed that when
lR = 0, corresponding to optimal optical alignment, the transmission is a maximum (100%).

The simulated attenuation due to beam steering Ast (lR) = −ln (Tst (lR)) is shown in Fig. 4.
For |lR|>1 (2R=28 mm), the attenuation is zero since the sample is not in the path of the THz
beam. Note that as |lR| increases above zero, the predicted attenuation due to beam steering
Ast (lR) continues to increase monotonically. In theory, the attenuation due to steering
becomes infinite for large values of |lR| due to extreme beam deviations as well as total-
internal reflection of the THz beam at the sample-air exiting interface. In practice, the
maximum correctable attenuation should be capped at roughly 4.6 because this is the typical
maximum attenuation which can be measured due to the signal-to-noise limitations of our
THz spectroscopy system.

In order to define a correction term due to beam steering, we fit the simulated attenuation to a
quadratic polynomial given by ln(Tst (lR))=alR

2+blR+c where a, b, and c are constants deter-
mined by the best fit to the data of Fig. 4. Clearly, the fitting parameters will change depending
on the refractive index of the smaple. Fitting of the data from Fig. 4 to higher order polynomials
(4th order, 6th order and 8th order polynomials) exhibits an improved fit as indicated by lower

Table 1 Optical components, their locations and physical size used in the experiment

Components Distance from the
source (mm)

Diameter
(mm)

Refractive
Index

Curvature of the
Surface

Source 0 0.1

First Lens S1=76.2 38.5 1.5 0.05194/mm

Second Lens S2=215.1 38.5 1.5 0.05194/mm

Scanned Object S3=292.1 28 1.1 0.07142/mm

Third Lens S4=368.3 38.5 1.5 0.05194/mm

Forth Lens S5=571.5 38.5 1.5 0.05194/mm

Detector S6=647.7 0.1

Fig. 4 Predicted attenuation from ray-tracing simulation data (dotted grey curve) and quadratic fit (solid
black curve). The fit is determined by - ln(Tst(lR))=alR

2+blR+c where a is 2.94. The values for b and c are on
the order of 10-16 and can be regarded as zero respectively
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χ2 values. But when the higher order polynomial fits are used as part of the correction algorithm,
the corrected data for a homogenous, uniform plastic rod does not follow the ideal curve of
Eq.(1). On the contrary, a quadratic ray-tracing correct term accurately reproduces Eq.(1). For
this reason a quadratic polynomial has been used to fit the ray-tracing correction curve.

The effects of beam steering can be included into Eq. (5). Using an additional factor Tst
(lR) which accounts for the effective transmission of the THz-CT system in the presence of
beam steering

T lRð Þ ¼ Tst lRð Þexp αLrð Þ 1−Rpa

� �
1−Rap

� � ð6Þ
where the left-hand side of Eq. (6) is the measured THz transmission. Solving this equation
for the parameter of interest αLr gives

αLr ¼ −ln T lRð Þð Þ þ ln Tst lRð Þð Þ þ ln 1−Rpa

� �þ ln 1−Rap

� �
: ð7Þ

Equation (7) illustrates the three correction terms which are applied to the measured THz
attenuation prior to reconstructing the THz-CT image using a Radon transformation. The αLr
term represents the corrected attenuation projection array data which will be inverted using the
Radon transformation. The −ln (T(lR)) term is the experimentally measured attenuation. The ln
(Tst(lR)) term is the correction for beam steering, while the ln(1−Rpa) and ln(1−Rap) terms
account for the Fresnel’s reflection loss at the incident and exiting air-plastic interfaces.

3.3 Corrections for Finite Beam Size

The shape of the measured attenuation near the sample boundaries results from the finite
beam size of the probing THz beam. For large values of |lR| > 1.11 , the sample is not in the
THz beam path and the measured THz transmission (attenuation) is unity (zero). As the
sample is scanned horizontally in lR, the edge of the sample partially blocks the THz beam
leading to an increase in measured attenuation. Due to the large angle of incidence near the
edges of the sample, the beam steering is so severe as none of the light which enters the
sample is able to propagate to the detector. The attenuation near the edges of the sample,
therefore, can be modelled assuming that the edge of the sample partially blocks the THz
beam. Assuming that the THz beam propagates in the z direction as a Gaussian beam with a
spot size of ao at the focus, the local intensity of the THz beam is given by [26]

I x; yð Þ ¼ Ioexp −2 x2 þ y2
� �

=a2o

� �
ð8Þ

where I0 ¼ 2P0

πa2
0

and P0 is the total power of the beam at any cross section. The total power of

THz radiation which gets blocked by the sample edge can be calculated by integrating Eq.
(8) over the transverse directions as illustrated in Fig. 5.

The measured transmittance near the sample’s right edge (corresponding to positive
values of lR) should be

Tedge lRð Þ ¼
ffiffiffiffi
2

π

r
1

a0

Z∞

−R lR−1ð Þ

exp −2x2=a20
� �

dx ð9Þ

where lR respresents the horizontal (ie. x) location of the sample’s edge from the centre of the
beam. After integrating Eq. (9) and taking the negative of natural log on the right side of the
expression, one can derive the attenuation near the sample right edge as,
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Aedge lRð Þ ¼ −loge
1

2
þ 1

2
erf

ffiffiffiffiffiffi
2R

p

a0
lR−1ð Þ

� �	 

ð10Þ

For the left edge (negative values of lR), the equation is the same except the limits of
integration range from negative infinity to −R(lR + 1).

Fig. 6 (a) shows a comparison of the measured THz attenuation −ln[T(lR)] with beam
steering correction term -ln[Tst(lR)]. The correction term has been offset vertically in the plot
in order to compare the shapes of the two curves. Note that the similarity in the two curves
strongly suggests that the large increase in attenuation with increasing offset parameter lR is
primarily due to beam steering. In Fig. 6(a), we show a typical plot of Eq. (10) for the left
and right edges. From a best fit to the experimental data, we extract the fixed THz beam spot
size (a0=2mm) as well as the values of lR for the left and right edges of the sample. The lR
position of the sample’s physical edge is determined when the measured value for the
attenuation Aedge(lR) = ln(2) corresponding to half of the THz beam being blocked by the
sample’s edge.

As part of the correction algorithm, one must account for the fact that the rotational axis
for the tomography scans does not exactly coincide with the geometric axis of the cylindrical
rod. Consequently, the first step in the correction algorithm is to use Eq. (10) to determine
the left and right boundaries of the rod. Once these boundaries are determined, the offset
between the rotational and geometric axes can be used to apply correction terms of Eq. (6)
for both Fresnel reflection losses and beam steering.

While the beam steering and Fresnel correction factors of Eq. (6) can be used to
correct the middle portion of the projection data, the THz-TDS system’s detection limit
as well as the severe beam steering when the THz beam passes near the edges of the
rod implies that the measured attenuation for |lR| > 0.36 in Fig. 6(a) is an artifact and
not related to the attenuation of the sample material. Near the edge of the sample, the
deviation of the THz beam is so large that much of the beam from that region does not
reach the detector. Since THz radiation which passes through this region is not
detected, tomographic information from this region can not be determined and thus
we call that area a ‘blind’ region. In order to correct the attenuation projection data

Fig. 5 A cyllindrical object approaching a Gaussian beam which is propagating perpendicular to the page
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near the blind region of the sample, one must assume a functional form for the data in
this range and match the experimental data to the measured values in the regions which
are valid. Since the cylindrical rods are supposed to be homogenous and uniform, the
expected functional form for the attenuation project array should ideally (in the absence
of refraction) be due only to the attenuation coefficient αo of the material and the
length of material through which the THz beam propagates.

At the physical edge corresponding to lR = 1, the attenuation through the material should
have a limiting value of zero. Since the radius of the rod is known, the only free parameter in
Eq. (1) is the attenuation coefficient αo. This value is determined by matching the attenu-
ation value from Eq. (1) to the corrected value of the measured attenuation from Eq. (7) at a
fixed value of lR corresponding to the attenuation detection limit of the THz-TDS system. As
an example, Fig. 6(b) shows the corrected attenuation projection data for a fixed rotation
angle and illustrates regions of experimentally corrected attenuation as well as regions near
the periphery of the sample for which the attenuation is assumed to follow Eq. (1).

In summary, the correction algorithm is applied as follows:

& For each projection slice, use Eq. (10) to determine the location of the left and right
edges of the cylinder relative to the center of rotation of the sample.

& Based on the maximum detectable attenuation (typically ~4.6) , determine the range of lR
values for which the measured attenuation is not instrument limited.

& Apply the correction terms of Eq. (7) to that range of lR parameters

Fig. 6 (a) Plot of experimentally measured attenuation (solid line), the ideal attenuation projection (gray
dotted line) assuming no refraction, beam steering correction (dotted line) and predicted attenuation due the
samples edge blocking the THz beam (dashed line). (b) Corrected attenuation from Eq. (7) using the beam
steering correction term determined from ray-tracing and Eq. (10) to determine the edges of the sample
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& Use the ideal form for the attenuation Eq. (1) to fill in projection array data as a function of
lR in the ‘blind’ region from the sample’s edges to the boundary of the valid corrected data.

& Repeat for each projection slice for all rotation angles of the sample.

4 Results and Discussions

The correction algorithm described in Section 3 is applied to all of the projection data as a
function of sample rotation from the homogenous plexiglass rod and the results are shown in
Fig. 7. Comparing the reconstructed image with (Fig. 7 (a)) and without (Fig. 1 (b))
correction clearly shows that the anomolously large attenuation near the boundaries of the
rod have been removed in the reconstructed image. Fig. 7(b) shows a profile of the
reconstructed localized attenuation coefficient taken along a diameter through Fig. 7 (a).
Note that the localized attenuation coefficent is nearly constant across the sample as would
be expected for a homogeneous sample.

Fig. 7 (a) Reconstructed pulsed THz-CT image of a circular cross-section through homogeneous
cylindrical Plexiglas rod after correction algorithm is applied to the measured projection data. (b) Plot
profile of through a diameter of (a). Note the contrast bewteen the corrected images and the uncorrected
image of Fig. 1b
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Clearly, THz rays which pass near the boundary of the object are subjected to severe
beam steering. For a homogenous material for which Eq. (1) is a good representation of the
true sample attenuation, there is not much error in the reconstructed image by using Eq. (1)
to match the projection array data from the physical edge of the sample to the regions for the
measured attenuation is accurately measured. However, if a structural feature were present in
the peripheral region of the sample, the measured attenuation – since it is dominated by the
blocking of the THz beam by the sample’s edge – would not be representative of the
structure feature. In essence, the measured THz attenuation near the periphery of the sample
is ‘blind’ to the presence of any structural features which might cause either an increase or
decrease in the measured attenuation. For the blind regions, no real information about the
internal structure of the object can be obtained.

In order to test the sensitivity of the algorithms of Section 3 to the presence of defects near
the periphery of a sample, the algorithms were applied to three plastic rods with defects as
discussed in Section 2. The reconstructed images of the rod with 1 mm hole near the centre
are shown both without (Fig. 8 (a)) and with application of the correction algorithm (Fig. 8
(b)). The reconstructed local aborbance along slices through the images are shown in Fig. 8
(c) and Fig. 8 (d). The reconstructed hole appears as a spot of large localized attenuation
because the hole itself acts as a beam steering obstruction which deviates the THz rays
resulting in an increased of attenuation. The reconstructed hole size appears larger than the
actual size of the hole which we attribute to the finite size a0 = 2 mm of the THz beam.

Fig. 9 shows the 2D THz-CT reconstructed images and plot profiles of a plastic rod with a
5mm hole near the center region. Without correcting for the boundary effects, note that the

Fig. 8 Reonstructed 2D tomographic images of the plastic rod with a 1mm hole near the centre without (a)
and with (b) correction algorithm applied. Corresponding plot profile of the images taken through the
diameters are indicated in (c) no correction applied and (d) correction applied
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presence of the 5mm hole in the reconstructed image (Fig. 9 (a)) is not as prominent as when
the correction algorithms are applied. After correction, both the shape and approximate size
of the defect are reconstructed in Fig. 9(b) and Fig. 9(d). In both Fig. 8 and Fig. 9, the hole in
the rod steers the THz from its nominal direction leading to an increase in measured
attenuation. Clearly, the increase in attenuation due to the presence of the hole is much
more prominate when the boundary effects are eliminated using the correction algorithms.
These results suggest that the application of the correction algorithms should work reason-
ably well if any defects are in the central region of the plastic rods.

However, when the defect in the rods is located in the ‘blind’ region near the physical
boundaries of the rod, discerning the hole near the edge becomes difficult. Fig. 10 shows the 2D
reconstructed images and plot profiles of a plastic rod having a 5mm diameter hole near to the
edge of the rod. In comparing Fig. 10(a) with Fig. 1(b), it is clear that the distortion of the
uncorrected reconstructed image near the top edge of the rod corresponds to a defect in the
material, but the shape of the defect is unrecognizable. When the correction algorithm is
applied, the resulting reconstructed image does show the presence of a defect in the material
(comparing Fig. 10(b) with Fig. 8(a), but neither the shape nor the exact location of the defect is
accurately determined. The source of the error can be understood to result from incorrect

Fig. 9 Reconstructed 2D tomographic images of the plastic rod with a 5mm hole near the centre with (a) and
without (b) correction algorithm applied. Corresponding plot profile of the images taken through the diameters
are indicated in (c) no correction applied and (d) correction applied
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projection data as a function of sample rotation. For a certain range of rotation angles, the hole
near the periphery of the sample is in a ‘blind’ spot. For other angles, the probing THz radiation
will interact with the hole and manifest the presence of the hole through an increase in the
measured attenuation. The presence of the hole in attenuation projection data for some but not
all of the rotation angles leads to errors in the reconstructed image.

As an example of a potential application, we apply the correction algorithms to attenu-
ation projection data from natural cork wine stoppers. For this material, the presence of
lenticel structures as well as internal cracks and voids are characterized by an increase in the
measured THz attenuation [14]. Lenticels are naturally occurring cell structures which
enable the exchange of gases between the atmosphere and the interior of plant tissues.
While an accurate reconstruction of an object with arbitrary shape and composition by THz
CT is problematic due to refraction artifacts, THz CT can still be an effective NDE tool for
corks since the size and shape of cork stoppers are standardized. Moreover, the relatively
low refractive index (approximately 1.1) of natural cork reduces both the refractive and
beam steering effects and the volume of ‘blind’ volumes within the cork relative to the
Plexiglas samples discussed above. Removing the boundary artifacts enables a more detailed
reconstruction of each sample’s internal structure which is so critical to the functionary of the
stoppers with regards to their gas and liquid diffusion properties [16, 27].

Fig. 10 Reconstructed 2D tomographic images of the plastic rod with a 5mm hole near the periferry of the sample
without (a) andwith (b) correction algorithm applied. Corresponding plot profile of the images taken parallel to the
bottom of the page through the diameters are indicated in (c) with no correction applied and (d) correction applied
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To test the correction algorithms on a cylindrically shaped natural cork stopper, we select a
cork sample with a ~3mm diameter hole which was bored into the sample by an insect. This
insect hole is analogous to the holes which were drilled into the plastic rod samples. Fig. 11
shows the 2D reconstructed THz-CT images of the cork sample. Since cork has a lower
refractive index than plastic, the bending and steering of the THz beam is much less inside
the cork than inside the plastic. Without application of the correction algorithms, Fig. 11 (a)
shows a prominent boundary surrounding the cork. However, when the correction algorithm is
applied (Fig. 11 (b)), the boundary is removed and more of the cork’s internal structure is
revealed. The arrows in Fig. 11 (b) illustrates the location of the insect hole and lenticel channel
in the cork which is not visible in Fig. 11 (a). Plots of the reconstructed attenuation through the
diameter of the cork (Fig. 11 (c) and Fig. 11 (d)) illustrates that the correction algorithms remove
the boundary artifact and enable visualization of the sample’s internal structure.

5 Conclusion

Due to the finite beam size of the probing THz radiation as well as strong refractive effects in
the THz range including refractive power losses and beam steering, artificially large
boundaries are produced in reconstructed THz-CT images. Of these three effects, the beam
steering is found to introduce the largest distortion in the THz projection data. In this paper, a
correction algorithm is introduced for cylindrically shaped objects which can be applied to
the projection array data prior to reconstruction of the THz-CT image using Radon

Fig. 11 Reconstructed 2D tomographic images of the natural cork without (a) and with (b) correction algorithm
applied. The round spot near the solid arrow is an insect hole in the cork while the dashed arrow indicates a
lenticular channel in the cork structure. Corresponding plot profile of the images taken parallel to the bottom of the
page through the diameters are indicated in (c) with no correction applied and (d) correction applied
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transformations. The algorithm corrects the edges of the projection data for the finite THz
beam size as well as beam steering and Fresnel reflection losses. When the algorithms are
applied to plastic rods, the artifically large attenuation near the boundary of the cylindrical
sample is removed. Defects such as holes which are present near the central region of the
sample are reproduced using the correction algorithms. When the defects are located near the
periphery of the sample, the correction algorithms indicate the presence of the defect, but can
not accurately determine the shape nor exact location of the defect. When the correction
algorithms are applied to a low refractive index (~1.1) material such as natural cork, the
boundary effect is significantly reduced in the reconstructed images enabling visualization of
the cork’s internal structure including holes and lenticels.
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