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We propose optical polarization imaging as a minimally invasive technique for measuring the mechanical
properties of plastics and soft tissues through their change in reflectance properties with applied strain
or force. We suggest that changes in surface roughness are responsible for the linear reflectivity changes
with applied stretch or strain. Several aspects of this model are tested, including the dependence on the
angle of incidence, the change in scattering and absorption coefficients with strain, and the lateral spatial
resolution. The application of the technique to multilayer structures such as skin and competing optical
effects such as laser speckle are discussed. © 2003 Optical Society of America
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1. Introduction

Several groups have used the reflection of polarized
light to image tissues such as skin.1–6 In using po-
larized light, one can take advantage of that fact
that linearly polarized light becomes increasingly
randomly polarized as it propagates through the
skin because of its large scattering coefficient.
Linearly polarized light with cross-polarizing filters
has been used in lens photography to investigate
the skin surfaces and to improve anterior segment
photography.2–6 Light that is reflected from the
skin has two components. The first one, which
maintains the polarization of the incident light, is
the regular reflectance that comes predominately
from the surface of the skin. The second component
comes from within the tissue and is due to backscat-
tering of light from the various skin layers. The
backscattered light is predominately randomly polar-
ized because of the large scattering coefficient of the
skin. Using a polarized light source and another
polarizer in front of the camera parallel to the first
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polarizer �in front of the light source�, researchers
have observed skin surface details from the reflected
light �surface reflection�. In crossed-polarization
they eliminate the surface reflection and preferen-
tially detect the diffusely backscattered light. From
the backscattering light reflection they obtain infor-
mation about pigmentation, erythema, infiltrates,
vessels, and other intracutaneous structures.

The polarization properties of reflected or trans-
mitted light depend on the number of scattering
events that take place for each photon.1 For photons
that suffer virtually no scattering events �so-called
ballistic photons�, their polarization properties are
preserved. As photons participate in more and more
scattering events, their final polarization state be-
comes more randomized. In the limit of many scat-
tering events in a turbid tissue such as skin, the
outgoing photons �diffusive photons� are unpolarized
with equal-intensity components parallel and per-
pendicular to the polarization of the incident light.
Although the diffusive photons can provide informa-
tion along the tissue’s thickness �depending on the
penetration depth of the light source�, it is difficult to
determine which areas of tissue were sampled be-
cause of the multiple scattering events. On the con-
trary, ballistic photons are partially reflected
whenever there is an index of refraction difference
from one tissue layer into another. Hence the diffu-
sive photons generally contribute to a background
noise in every direction that masks the tissue imag-
ing information carried by the ballistic photons. In
the two-dimensional polarization imaging tech-
nique,1 as well as other similar polarization measure-
ments,7,8 the perpendicular component of diffusely



reflected light is subtracted from the parallel compo-
nent �ballistic plus diffusive� to remove the back-
ground noise.

Recently we reported that polarization imaging can
be used to measure some of the mechanical properties
of stretchable materials such as plastic as well as soft
tissues such as skin.7,8 This optically based mini-
mally invasive, noncontact, in situ technique that is
used to measure strain is based on changes in the
reflectivity of polarized light as the soft material is
stretched. It has been suggested that, as the mate-
rial is stretched, the surface roughness is reduced
resulting in a smoother reflecting surface and a com-
mensurate increase in the polarized reflected light.
A simple model of surface roughness predicts7 that
the reflectivity should vary linearly with strain as is
observed experimentally. In addition to the mea-
surement of strain in diffusely reflecting plastics, po-
larization imaging might find use in minimally
invasive measurements of tissue strain such as
wound closure, healing, and scar tissue formation.8
In this paper we test various aspects of the surface
roughness model for polarization imaging measure-
ments of plastics and investigate its lateral spatial
resolution. In Section 2 we develop the theoretical
model for light reflection from a rough surface. In
Sections 3 and 4 we describe the details of our exper-
imental measurements for testing various aspects of
the model. In Section 5 we discuss applications of
the technique to measurements of multilayered ma-
terials such as skin. We summarize our conclusions
Section 6.

2. Theoretical Formulation

Our previous theoretical analysis of polarization im-
aging of stretchable materials assumed a simple two-
dimensional model for the position of the boundary z
between two surfaces �e.g., air and plastic or air and
skin�7:

z � A sin� gx� , (1)

where A is the height of the surface boundary with a
spatial scale of s � 2��g. This periodic model was

originally suggested for the surface roughness of the
skin and is used to explain how the surface patterns
of the skin change because of tension loads.9

The spatial scale of the surface undulations s can
be related to the horizontal length of the sample l �
sM where M is the number of oscillations in the sur-
face. �The length l is not the same as the length of
the undulating surface profile L that is defined in
Subsection 2.E.� From Eq. �1� the strain applied to the
sample can be written as ε � �l � l0��l0 � �s � s0��s0
where l is the horizontal length of the sample after
stretching and l0 is the unstretched length.

The detected reflected power from the surface can
be expressed as7

P��i� � � ��I0k̂ � dSr��i� , (2)

where I0 is the incident intensity �power�area� of the
illuminating light �assumed to be constant�, k̂ is a
unit vector in the direction of the incident radiation,
dS is an infinitesimal area element of the surface
defined by z � A sin�gx�, r��i� is the local reflectivity
coefficient for light interacting with the local surface
at incident angle �i, and the double integral is eval-
uated over the portion of the surface that reflects
light into an optical detector. The geometry of the
local angle of incidence �i, the effective angle of inci-
dence �i, and detection angle 	�x is shown in Fig. 1.
Interference among the various rays of light reflect-
ing from the surface �laser speckle� is ignored. In
the theoretical treatment that follows, the diffusive
component to the reflected power is neglected. This
is justified because the polarization imaging mea-
surement technique removes the contribution of the
diffusive �unpolarized� component from the experi-
mental data. Therefore the specularly reflected
power will be dominated by light reflection from
boundaries for which there is an index of refraction
mismatch.

If the function z � f�x, y� maps the surface of the

Fig. 1. �a� Geometry of the effective angle of incidence �i and the detection angle 	�x. All light rays reflected from the surface within
the detection angle contribute to the detected light in the specular reflection direction. The material is stretched parallel to the plane of
incidence. �b� Geometry of the local angle of incidence �i for two different locations on the undulating surface topology. For regions of
the surface for which the vector normal to the surface dS is oriented close to the ẑ direction, the reflected light is within the detection angle
	�x.

1 September 2003 � Vol. 42, No. 25 � APPLIED OPTICS 5199



material, then one can use the following identities
from vector calculus10:

dS �

� z � f � x, y��

�
� z � f � x, y�� �
dS , (3)

��G� x, y, z�dS � ��G� x, y, f � x, y��

� �
� z � f � x, y�� �dxdy , (4)

where G is a function of x, y, and z. In Eq. �4� an
integral is converted over a three-dimensional sur-
face to an integral over the x–y plane. Equation �2�
then becomes

P��i� � � ��I0 k̂ � 
� z � f � x, y��r��i�dxdy . (5)

From the geometry defined in Fig. 1, k̂ � �cos �i ẑ

 sin �i x̂. The double integral is evaluated over the
ranges of x and y such that the surface reflects light
into the detector.

A. Determination of Limits of Integration

Light is detected in the specular reflection direction
within a small solid angle as shown in Fig. 1�a�.
This implies that the portions of the surface that will
reflect light in the specular direction satisfy the equa-
tion 
f�x, y� � 0. For these regions, the normal to
the surface is nearly parallel to the z direction and
the slope of the surface is nearly zero. We first con-
sider a sinisoidal topology z � A sin�gx� with the
strain applied in the x direction parallel to the plane
of incidence. As illustrated in Fig. 2, the portions of
the surface that reflect light into a detector within a
collection angle determined by 	�x will have normal
vectors close to ẑ. From Fig. 2, the angle � must be
sufficently small such that �n̂ � ẑ� � sin � � sin 	�x
where the unit normal vector to the surface is n̂ � 
�z

� f �x, y����
�z � f �x, y��� and 	�x is assumed to be
small. For f�x, y� � A sin �gx�, this condition becomes

� Ag cos� gx��
�1 � A2g2 cos2� gx��1�2 � sin 	�x .

For detection of specularly reflected light, 	�x is a
small angle so that the range of x that satifies the
above equation is given by gx � ���2 
 g	x�, �3��2 

g	x�, �5��2 
 g	x�, . . . The range of x near each
topological peak in the surface that contributes to the
detected light can be related to the maximum detec-
tion angle: Ag2 	x � 	�x.

B. Specular Reflection Limit

Two further simplifications can be made to Eq. �5�
that are justified in Subsection 2.C: �a� The Fresnel
reflectivity coefficient can be treated as an effective
constant r��i� and brought out of the integral. �b�
The contribution to the integral from the 
f�x, y� term
can be neglected. These approximations are valid in
the limit of a small collection angle 	�x. With these
simplifications, the detected power that will change
with strain is then

P��i� � I0 cos �ir��i���dxdy , (6)

where the integral is over the x–y plane of the surface
with the correct range of tilts to reflect light into the
detector.

C. Change of Fresnel Reflection Coefficient with Strain

Ultimately, one is interested in the change in de-
tected reflected optical light that is due to applied
strain. Taking the derivative �s0���s � ���ε� of Eq.
�5�, we obtain

dP��i�

ds
� � ��(��I0k̂ � 
� z � f � x, y���

�s
r��i�

� �I0k̂ � 
� z � f � x, y���
�r��i�

�s )dxdy , (7)

The leading term of the first term on the right-hand
side of Eq. �7� is a constant independent of s as was
shown in Ref. 7 and is shown here in more detail.
Below we show that the leading term of the second
term on the right-hand side of Eq. �7� is a higher-
order term and can be neglected in the limit of a small
detection angle. Refering to Eq. �7� and Fig. 3, the
partial derivative of the Fresnel coefficient with
strain has two contributions: one for which the
slope of the topology is positive and one for which the
slope is negative:

�r��i�

�s
�

�r��i�

��cos��i��

��cos �i�

�s
,

��cos �i�

�s
�

��cos �i�


�s
�

��cos �i��

�s
. (8)

Fig. 2. Illustration of light reflection from a surface. The point
on the right illustrates light reflected from a point of zero slope.
At this point, the local angle of incidence is the same as the effec-
tive angle of incidence �i. Light reflected within an angle of 	�x

of the specular reflection direction is detected. The point on the
left illustrates the relation between the normal to the surface and
the z direction.
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In regions of the topology for which the slope is
positive, stretching increases the local angle of inci-
dence, whereas regions for which the slope is nega-
tive tend to decrease the local angle of incidence with
strain. The net result is that these two effects tend
to cancel each other.

Calculating cos��i� � �k̂ � n̂ yields

cos��i� �
cos �i � Ag cos� gx�sin �i

�1 � A2g2 cos2� gx��1�2

In taking the derivative with respect to strain of
the above equation, we treat X � gx as a contant.
This is justified because one is interested in how the
local angle of incidence changes near a topological
peak where 
f�x, y� � 0. As the surface is stretched,
the location of x where a peak occurs will change, but
the phase X � gx at which a peak occurs is invariant.
In the limit of a small detection angle such that cos
X � 0, the leading term is

��cos��i��

�s
�

�� Ag�

�s
cos�X�sin �i .

Because the above equation changes sign depend-
ing on whether one is to the left or right of the topo-
logical peak, ��cos��i��
��s � ���cos��i�����s for
symmetric positions about the peak. This implies
that �r��i���s�0 is approximately zero, and the sec-
ond term of Eq. �7� is small compared with the first
term and can be neglected. In this case, r��i� can be
approximated as r��i� in Eqs. �5� and �7� and removed
from the integrals.

In the same limit of a small detection angle, the

f�x, y� term vanishes in Eq. �5� because 
f�x, y� � 0
and the integral is symmetrically evaluated about
this point of zero slope. Equation �5� becomes

P��i� � � r��i���I0k̂ � 
� z � f � x, y��dxdy

� r��i���I0�cos �i � sin �i x̂ � 
f � x, y��dxdy .

(9)

The integration is evaluated only for a small range
of x and y values near 
f�x, y� � 0. Assuming 
f �x0,
y0� � 0, expanding the function as a Taylor series

near this point yield. f �x, y� � f �x0, y0� 
 �f��x�x0
�x

� x0� 
 �2f��x2�x0
�x � x0�2�2 
 . . . . The linear term

in the expansion vanishes. The quadradic and con-
stant terms are symmetric with respect to displace-
ment from the point of zero slope. Consequently,
when the antiderivative of x̂ � 
f dx is evaluated about
the symmetric points, the result is zero. Therefore
the 
f term of Eq. �9� is small compared with the first
term in the limit of a small collection angle. The
detected optical power that will change with strain is
then approximately P��i� � I0 cos��i�r��i���dx dy.

D. Dependance of Specularly Reflected Power on Strain

For z � A sin�gx�, areas that contribute to Eq. �6� are
given by solutions to cos�gx� � 0. There are two
zeros per cycle of the cosine. The integral in x of Eq.
�6� can then be replaced by the integral over one of the
narrow regions where the cosine is zero. Using 	�x
� Ag2 	x with 2N zeros and N equal to the number of
illuminated oscillations, then �dx � �2	x�2N and the
detected optical power become

P��i� � P0 r��i�
	�x

Lx

4N
Ag2 , (10)

where the integration over y yields Ly, the horizontal
length in the y direction of the illuminated area, and
P0 � I0 cos �i LxLy is the total incident power on the
surface. The number of peaks illuminated can be
written as N � Lx��2��g�, which is just the horizontal
length of the area illuminated by the incoming light
divided by the spatial scale length of the surface un-
dulations. Note that with this definition the num-
ber of peaks illuminated will change with strain.
This is correct because, as the surface is stretched,
some peaks will no longer be within the illuminated
area. Substituting this expression into the Eq. �10�
yields

P��i� � P0 r��i�
	�x

Ag
2
�

. (11)

To write Eq. �11� only in terms of the strain, one
needs to relate the amplitude A and the spatial scale
s � 2��g of the topology to the strain of the material.
We now follow our previous analysis7 and assume
that the length of the surface remains constant as the
material is stretched. In the x direction, the length
of the surface is calculated from

L � ��
� z � f � x, y�� �dx

� ��1 � A2g2 cos2� gx��1�2 dx ,

where the limits of integration are over the physical
limit of the material in the x direction. Because the
total number of oscillations of the surface M is con-
stant, the above integral can be cast into the length of

Fig. 3. Illustration of the change in local angle of incidence with
stretch: �a� before stretch, �b� after stretch.
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the surface over a single cycle times the number of
cycles. Substituting gx � � yields

L �
M
g �

0

2�

�1 � A2g2 cos2����1�2 d�

�
M
g

�1 � A2g2�1�2 E�2���� , (12)

where E�2���� is an elliptic integral of the second
kind and � � sin�1��A2g2��1 
 A2g2��1�2�.

In the limit of rough surfaces, Ag �� 1, � � ��2,
and E�2� � ��2� � 4. This implies that L � 4MA
approximately. In this rough-surface limit, the am-
plitude of the surface ripple is approximately con-
stant. The reflected power changes predominately
because of changes in the periodicity of the surface
ripples. In this limit, Eq. �11� becomes

P��i� � P0 r��i�	�x

4sM
�2L

, (13)

where s � 2��g was substituted.

E. Numerical Solution and Verification of the Analytic
Solution

To justify the approximations that are used to derive
Eq. �13�, Eq. �5� is numerically integrated with
MATLAB. As with the analytic solution, it is assumed
that a large number of topological peaks are illumi-
nated. The Fresnel reflection coefficient and angle
of incidence are a function of position along the sinu-
soidal surface. For the numerical evaluation, the
surface is broken into a grid with a grid spacing of
10�4 of a sinusoidal oscillation. At each grid posi-
tion, the reflected power and corresponding direction
of the reflected light are calculated. Light that is
within the solid angle of collection 	�x contributes to
the total reflected power. Results of these numerical
simulations are compared with the analytic solution
to Eq. �13� as well as with experimental results. The
relation between amplitude A and spatial frequency g
as the material is strained is found when we solve Eq.
�12� assuming that the surface length L remains con-
stant during the stretch.

There is a linear relationship between the numer-
ically calculated reflectance and the strain as shown
in Fig. 4. Within the first 20% of strain, the data are
roughly linear. Insight into the origin of the linear
slope can be attained when Ag versus g is plotted for
a given L in Eq. �12�. Over a wide range 0.5 � Ag
�10, Ag is roughly proportional to g as shown in the
inset of Fig. 4. This implies from Eq. �11� that the
specularly reflected light is proportional to length l �
Ms of the sample �s � 2��g � 1� Ag� over a wide range
of values for Ag.

3. Experimental Setup

To test the validity of the rough-surface model, two
aspects of the model are investigated experimentally.
The first aspect is the dependence of the reflectivity
gradient �slope of reflectivity versus strain curve� on

the angle of incidence. From Eq. �13� the reflectivity
gradient is

1
P0

dP��i�

dε
�

s0

P0

dP��i�

ds
� r��i�

	�x

�2L
4l0 . (14)

Note that the reflectivity gradient depends on the
Fresnel coefficient, the solid angle of collection, and
the unstretched horizontal length l0 and length of the
surface L. By varying the angle of incidence for the
incoming light, we determine if the measured reflec-
tivity gradient is proportional to the Fresnel reflec-
tion coefficient as predicted by Eq. �14�.

The second aspect to be tested is the dependence of
the scattering ��s� and absorption ��a� coefficients as
a function of strain. If the surface roughness
changes as the soft tissue is stretched, there should
be a corresponding reduction in the measured scat-
tering coefficient. The effective attenuation coeffi-
cient can be derived from our analytical model
discussed in Section 2. Consider the measurement
of the collimated transmission through a material
placed at normal incidence with respect to the incom-
ing light. As the light interacts with the undulating
front surface, the light is refracted at an angle deter-
mined by the local angle of incidence and the index
difference between the air and the material. If the
refraction angle were too large, the refracted light
would not be within a small angle of detection for the
collimated transmitted light. Consequently, with a
single rough surface, the detected light is dominated
by light rays that pass through the material near
regions where the local slope 
f�x, y� � 0. The trans-
mission geometry is analogous to Fig. 2 with the an-
gle of incidence �i � 0 and the range of 	x that
contributes to the collimated transmission is deter-
mined by the local curvature of the topology. An

Fig. 4. For this numerical solution, M � 400, the illuminated spot
size is 1 mm by 1 mm and Ag � 2. The specularly reflected power
is calculated for 0° incidence with a solid angle of 0.0054 Sr. The
numerical solution is well represented by a linear fit for the first
20% strain. The solid line is a linear fit to the data. The inset is
a plot of Ag versus g for a fixed L � 436 �m in Eq. �12�. Over a
wide range, Ag is proportional to g suggesting that the Ag �� 1
limit of Eq. �13� is valid over a wide range of Ag values.
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analogous manipulation of the equations of Section 2
can be performed with the same conclusion as the
reflected light: The range of 	x that contributes to
the collimated transmission varies as 	x � 	�t�Ag2,
where 	�t is the detection angle of the transmitted
light. The theoretical analysis of the transmitted
light is essentially the same as the reflection analysis
that led to Eq. �14�: The change in the power of the
collimated transmission is proportional to the change
in strain of the material. From the collimated trans-
mission, one can use a Beer–Lambert law to calculate
the corresponding absorption and scattering coeffi-
cients:

P � P0 exp����a � �s�d� , (15)

where �a and �s are the absorption and scattering
coefficients of the material and d is the sample thick-
ness.

A. Reflectivity Measurements

An experimental setup similar to our previous mea-
surements is used8 in which the angle of incidence
can be varied from 0 to 80 deg. Linearly polarized
light from a He–Ne laser �� � 632.8 nm, P � 5 mW�
is reflected from the sample. The reflected light is
collected by a lens �f � 50 mm� after it passes through
a polarizer �analyzer�. The polarization of the inci-
dent light and the analyzer can be set in one of two
perpendicular orientations: either parallel or per-
pendicular to the plane of incidence. The incident
polarization is adjusted with a rotating half-wave
plate to ensure equal intensities in either plane of
polarization. We detect the laser power using the
silicon photodetector by mechanically chopping the
incident laser light and utilizing a lock-in amplifier
and standard phase-sensitive detection techniques.
The reflected power in both the parallel and the per-
pendicular polarization is measured as a function of
the incident light polarization and sample strain. A
simple device was built to apply stretch to the sam-
ples as described elsewhere.8 Samples are stretched
by equal displacement with the two computer-
controlled translation stages. This allows the center
of the sample to be stationary with respect to the
stretch device. During the measurements, laser
light is reflected from this central portion of the sam-
ple. Computer-controlled stepper motors are used
to change the stretch of the sample in 100-�m steps.
The stepper motors have a resolution of �1 �m. As
is done with the polarization imaging method,1,7,8 the
component of the reflected light that is polarized per-
pendicular to the direction of the incident light is
subtracted from the magnitude of the detected re-
flected light polarized parallel to the incident light.
The samples used in the experiment are latex sheets.
The front surfaces of the sheets are diffusely reflect-
ing.

B. Integrating Sphere Measurements

If the change in specular reflection were due to
changes in surface roughness as proposed, there

should be a corresponding change in the scattering
properties of the material with strain. To measure
the sample’s scattering and absorption coefficients,
an integrating sphere arrangement is used as shown
in Fig. 5. Using the integrating sphere technique in
combination with an inverse adding–doubling algo-
rithm,11 we can determine the scattering ��s� and
absorption ��a� coefficients as a function of strain.
Linearly polarized light from a He–Ne laser �P � 0.5
mW� is directed on to the surface of the sample. The
transmitted and reflected light is detected with 6-in.
�15-cm� integrating spheres. Three detectors are
used: one on each sphere and one to measure the
incident light power. The sample is stretched from
both ends by use of linear translation stages.

4. Experimental Results

A. Angle of Incidence Results

To verify the angle of incidence dependence of the
reflectivity gradient in Eq. �14�, reflectivity measure-
ments are performed for light polarized either paral-
lel or perpendicular to the plane of incidence. The
measured reflectivity gradients and those numeri-
cally calculated from Eq. �5� are shown in Fig. 6.
The strain ε is defined as ε � �� � �0���0 where �0 and
� represent the length of the sample between the
grips of the stretching device before and after the
deformation, respectively. The solid curves are the-
oretical Fresnel reflection coefficients r��i� for paral-
lel and perpendicular polarizations of incident light.
The similarity of the experimental data and numer-
ical solutions to the theoretical Fresnel curves con-
firms the angle of incidence dependence in Eq. �14�.

B. Diffused Reflectance

The diffuse reflectivity is measured with the integrat-
ing sphere arrangement of Fig. 5. The entrance

Fig. 5. Diagram of the integrating sphere measurement to deter-
mine the scattering and absorption coefficients of a sample as a
function of strain.
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opening of the integrating sphere allows for specu-
larly reflected light withing a solid angle of �6 � 10�3

Sr to escape from the sphere. The diffuse reflectivity
as a function of stain is shown in Fig. 7. The data
show that, as the sample is stretched, the diffuse
component of the reflectivity decreases by a small
amount. Within the surface roughness model, this
is expected because a decrease in surface roughness
should lead to a smaller component of scattered light
and an increase in the specularly reflected light.
This experimental result is consistent with surface
roughness measurements on in vivo human skin9

that show that the surface roughness of skin is re-
duced by strain.

C. Optical Coefficients �a and �s

The absorption and scattering coefficients are deter-
mined from the integrating sphere measurements by
the inverse adding–doubling method. The experi-
mentally derived scattering ��s d� and absorption ��a
d� are plotted in Figs. 8 and 9, respectively, as a
function of strain. The effective thickness of the ma-
terial is d. Both the absorption and the scattering

are linear functions of the strain. However, the op-
tical properties are dominated by changes in the scat-
tering with strain because the change in absorption
coefficient is much less than the change in scattering.
The decrease in the scattering with strain is consis-
tent with a decrease in the surface roughness.

To compare the experimental results of Fig. 8 with
our theory, the equivalent of Eq. �5� is numerically
integrated for transmission geometry. Figure 10
shows the theoretical plot from our model of the
transmitted power and total attenuation coefficient
��ln�P�P0� from Eq. �15�� for collimated transmis-
sion. Note that, over the range of small strains
��20%�, both lines are approximately linear. The
collimated power scales linearly with strain as pre-
dicted by the theory presented in Sections 2 and 3.
Moreover, the theoretically and experimentally mea-
sured attenuation coefficient both scale linearly with
strain. However, there is an apparent discrepancy
between the nearly linear dependence of both the

Fig. 6. Reflectivity gradient as a function of incident angle for �a�
parallel and �b� perpendicular polarization. The crosses and tri-
angles represent experimental measurements and numerical so-
lutions to Eq. �5�, respectively. The solid curves are the Fresnel
reflection coefficient multiplied by a scaling factor. The parame-
ters for the numerical simulation are M � 400, a detection angle of
0.0054 sr, and Ag � 2.

Fig. 7. Measured diffuse reflectance obtained with the integrat-
ing sphere technique. The solid line is a linear regression fit to
the data. The unstretched length is 52.8 mm.

Fig. 8. Plot of experimentally measured scattering versus strain.
The solid line is a linear fit to the data.
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collimated power and the scattering coefficient as a
function of strain. A simple Beer–Lambert law de-
pendence �Eq. �15�� predicts that, if the scattering
coefficient depends linearly on strain, then the de-
tected power scales exponentially. This functional
discrepancy can be explained by the fact that the
change in the scattering coefficient with strain is
small. In this limit, the exponential dependence of
the power in Eq. �15� is approximately linear with
strain.

D. Spatial Resolution and Laser Speckle

We investigated the lateral spatial resolution of the
polarization imaging technique by illuminating an
extended area of the sample with a He–Ne laser and

imaging the reflected light with a CCD camera �640
by 480 pixel Si array detector�. Several images per
strain position are acquired and then transferred to a
computer to be analyzed. The digital image process-
ing algorithms were written and computed with
MATHCAD 7.0. By taking several frames of the same
strain condition, we could average the images of sev-
eral frames together to minimize random noise fluc-
tuations of the imaged laser power that are due to
laser speckle. The captured image is manipulated
by an algorithm that is commonly utilized to analyze
images with laser speckle; the total detected laser
power within a specified area is calculated when the
pixel count for all pixels within the specified area are
summed and divided by the total number of summed
pixels.12 In applying this technique to our data to
estimate the spatial resolution, we calculated the de-
tected power as a function of strain from the CCD
images by averaging the pixel counts within a certain
radius of the center of the beam profile. Various
diameters are used corresponding from 3 pixels
across to 350 pixels across an equivalent 2-mm illu-
minated spot size. We calibrated the corresponding
spatial resolution by measuring the width in pixels of
the illuminated spot size on the sample �2 mm in
diameter for 99% power�.

The slope of the summed reflected power versus the
strain curve is determined by linear regression.
Typical results are plotted in Fig. 11 for the He–Ne
laser source. As the radius of the summed area in-
creases, the quality of the linear fit improves because
of the averaging of a large number of pixels. As the
pixel averaging area decreases, the linear correlation
coefficient gradually decreases and then sharply

Fig. 9. Plot of experimentally measured absorption versus strain.
The solid line is a linear fit to the data.

Fig. 10. For the same properties as Fig. 6, the calculated atten-
uation �from an equation similar to Eq. �5�� that is due to scattering
�diamonds� decreases with strain, whereas the collimated trans-
mitted power �squares� increases with strain. The solid lines are
linear fits. If the scattering coefficient is written as a linear func-
tion of strain �s � �0 �1 
 �s1 ε��0�, the best-fit parameters to the
detected collimated power show that �s1��s0 �� 1. In this case,
exp���sd� is approximately linear for small values of strain
��20%�.

Fig. 11. Slope �diamonds� and linear correlation coefficient
�squares� for data acquired with a CCD. The corresponding linear
correlation coefficient obtained when the spot size of the laser
beam was varied �triangle� is consistent with results obtained with
the CCD. The significant drop in the correlation coefficient for the
�200-�m spot size suggests that this value is approximately the
lateral spatial resolution needed to measure the strain of soft
material with a coherent He–Ne laser source.
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drops for a spot size of roughly 200 �m. This spot
size is consistent with experimental measurements
when the single-element photodetector is used and
the spot size of the laser beam is varied on the sample
with a focusing lens.

To estimate the effect of laser speckle on the lateral
spatial resolution, we replaced the He–Ne laser with
an incoherent red LED. The data for the LED
source are depicted in Fig. 12. The drop in the linear
correlation coefficient near a spot size of 24 �m sug-
gests that the lateral spatial resolution of polariza-
tion imaging on flexible plastic with the LED source
is comparable to this value.

Within the proposed model of interface roughness
for polarization imaging, it is assumed that the re-
flected light rays do not interfere with each other.
This is strictly true if the illuminating light source is
incoherent. For a coherent light source, interfer-
ence between the various light rays scattering from
the different surface bumps leads to the well-known
speckle effect.13 For large ��1-mm� laser spot sizes,
interference among the various rays of light reflect-
ing from the surface can be ignored. This approxi-
mation is valid because of the large area of
illuminated tissue. For large spot sizes, the de-
tected light contains many uncorrelated speckles
arising from different locations on the sample sur-
face. When all the collected light is detected by a
single-element photodiode, any spatial fluctuations
in light intensity that are due to laser speckle are
averaged out.

5. Application to Multilayer Materials: Skin

When polarization imaging is applied to strain mea-
surements of multilayer materials such as skin, the
assumptions made in a single spatial-frequency,
single-layer model and subsequent derivations are an
oversimplification of the problem. However, in this
section we show that Eqs. �6�, �10�, and �13� are es-
sentially correct even when applied to multilayer
structures such as skin. In applying our model to
skin, we consider two complications: �a� the rough-

ness of skin cannot be exactly represented by a single
spatial frequency and �b� skin has a multilayered
structure whereas the model presented concerns only
a single-surface reflection.

Topological measurements of skin9,14,15 show a
rough surface that can be characterized by a charac-
teristic height and spatial scale of the roughness �es-
sentially the parameters A and g of our model�.
Ferguson and Barbenel9 showed that, as human fore-
arm skin is strained, the average height of the rough-
ness decreases. When we use the measured
roughness height �A� 60 �m� and spatial separation
between major peaks �2��g � 350 �m� from Ref. 9, Ag
for the skin surface is approximately 1.1. Micro-
graphs of the epidermis16 suggest that the parameter
Ag � 6 for the undulating base of the epidermis.
This region is the germination layer for new cell
growth. In vitro studies of skin strain have shown
that the undulations �i.e., surface roughness� of the
epidermal surface and dermoepidermal interface are
flattened with strain before elongation of the cells
occur.17 Essentially, as the sublayers of skin are
strained, the primary effect is that the roughness of
the various skin layers decreases.

A. Nonsinusoidal Topology

The model can account for light reflection from a
nonsinusoidal surface when we replace Eq. �1� with a
generalized Fourier series:

f � x� � �
i

Ai sin� gix� � �
i

Bi cos� gix� , (16)

for which the integral of Eq. �6� is evaluated over the
area of the surface that reflects light into the accep-
tance angle of the detector. As discussed in Section
2, it is assumed that the detection angle is small so
that regions at which the slope of the topology van-
ishes, 
f � 0, contribute to the integral. Recall that
in Section 2, Eq. �6� is valid in the limit of a small
detection angle 	�x. For a nonsinusoidal surface,
the same conclusion holds if one considers each peak
in the topology. The main difference is that the size
of 	x in Fig. 2 depends on the local curvature of the
topology near each peak. In this case, the size of the
surface that contributes to the specularly detected
reflected light is

�dx � �
j

	xj ,

where the sum is over the number of illuminated
peaks. From this equation, we can define an effec-
tive 	x as

�dx � �
j

	xj � 	xeff�
j

wj ,

where wj are the weighting factors for each illumi-
nated peak. In determining the limits of integration
of Eq. �6�, we use as before �n̂ � ẑ�� sin 	�x where the

Fig. 12. LED source showing the results of reflectivity slope and
linear correlation coefficient versus spot size by use of CCD detec-
tion.
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unit normal vector to the surface is n̂ � 
��z � f �x���
�
�z � f �x��� and f�x� is given by Eq. �16�:

� ẑ � 
f �
�1 � �
f �2�1�2 � sin 	�x .

For the jth peak in the topology located as xj, f�x�
can be expanded as a Talyor-series expansion:

f � x� � f � xj� �
1
2

�2f � xj�

� x2 � x � xj�
2 .

The linear term vanishes because the local slope
vanishes at the peak. In this case, the limits of x
integration for the jth peak can be determined from

��2f � xj�

� x2 � x � xj�� � ��
i

� Agi
2sin gixj � Bigi

2 cos gixj�

� � x � xj�� � 	�x . (17)

In examining Eq. �17� we note that the range of
	x � x � xj that contributes to the specularly re-
flected light depends on the local curvature near each
peak. Introducing an effective 	x defines the effec-
tive amplitude and spatial scale of the roughness:

�� i
� Agi

2 sin gixj � Bigi
2 cos gixj�� x � xj�� �

	xeff Aeff geff
2 � 	�x .

Evaluating Eq. �6� for a nonsinusoidal surface given
by Eq. �17� yields Eqs. �10� and �13�, provided that N,
Ag2, and L are interpreted as effective or average val-
ues for the rough surface. Therefore the linear in-
crease of specular reflectivity with strain is a general
property of rough surfaces and does not depend on the
presence of a single sinusoidal spatial frequency.

B. Effect of Multiple Layers

In considering polarization imaging of a multilayered
structure, one must assume that the absorption and
scattering coefficients and indices of refraction are
different for each layer. Because the detection angle
	�x is small when only specularly reflected light is
detected, only ballistic photons will contribute to the
measured reflectivity. Any scattered photons will
be removed by the polarization imaging method �e.g.,
subtracting the orthogonal polarization removes the
contribution from diffusive photons�. Therefore the
specularly reflected light contribution is dominated
by the reflection of ballistic photons from the inter-
faces between the layers �i.e., whereever there is an
index mismatch from one layer to the next�. This
implies that the laws of reflection and refraction at
each interface dominate the specularly reflected
light. The contribution to the detected power from
each interface is weighted by the corresponding loss
of ballistic photons in each layer, as determined by �s
and �a. The roughness parameters A and g can then
be interpreted as weighted averages that are averaged

over the optical penetration depth of the light and
roughness of the layers within that penetration depth.

6. Conclusion
The surface roughness model for polarization imag-
ing of stretchable soft materials is investigated both
experimentally and theoretically. The dependence
of the reflectivity gradient with incident angle is mea-
sured and agrees with the functional dependence pre-
dicted by the surface roughness model. Integrating
sphere measurements show that the integrated dif-
fuse reflectivity decreases as a function of strain
whereas the specularly reflected light increases.
The optical properties of the material are dominated
by scattering. As the material is strained, a
smoother surface is produced that leads to a linear
reduction in the measured scattering coefficient with
strain. Because of relatively small changes in the
scattering coefficient with strain, the corresponding
change in the specularly reflected or transmitted op-
tical power is also approximately linear with strain.
The linear dependence of specular reflection is also
expected for nonsinusoidal, multilayered structures.
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