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ABSTRACT

Observations of solar granulation obtained with the New Solar Telescope of Big Bear Solar Observatory are used
to study the turbulent pair dispersion of photospheric bright points in a quiet-Sun area, a coronal hole, and an
active region plage. In all the three magnetic environments, it is found that the pair mean-squared separation Δ2(t)
follows a power-law timescaling Δ2(t) ∼ tη in the range 10 s � t � 400 s. The power-law index is found to be
η � 1.5 for all the three investigated regions. It is shown that these results can be explained in the same framework
as the classical Batchelor theory, under the hypothesis that the observed range of timescales corresponds to a
non-asymptotic regime in which the photospheric bright points keep the memory of their initial separations.
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1. INTRODUCTION

Understanding the diffusion and transport of magnetic fields
within the turbulent motions in the solar convection zone and
atmosphere is of fundamental importance for several solar
physics problems, such as dynamo, magnetoconvection, and
energy release processes in the atmosphere. In this context, the
motions of local magnetic flux concentrations and magnetic
bright points (BPs) represent one of the main sources of
information.

These magnetic elements represent the photospheric signa-
ture of strong, i.e., kilogauss, magnetic flux tubes and undergo
random walk motions driven by turbulent convection. These mo-
tions have been studied extensively as a diffusion process and in
this framework they have been investigated through the analysis
of scaling properties of mean-square displacements 〈(Δl)2〉 with
time. For normal diffusion (in two dimensions), 〈(Δl)2〉 = 4Kt ,
where K is the diffusion coefficient. When 〈(Δl)2〉 ∼ tγ , with
γ �= 1, the diffusion is called anomalous. The cases γ < 1
and γ > 1 are called sub-diffusion and super-diffusion, respec-
tively. Of course, in the case of anomalous diffusion, the quantity
K(t) = 〈(Δl)2〉/4t is not a constant anymore as in the case of
normal diffusion, but it scales with a power law K(t) ∼ tγ−1

with time. This is due to the violation of the central limit theo-
rem arising form the presence of long-range correlations in the
velocity field.

Previous studies of the diffusion properties of magnetic el-
ements and photospheric G-band BPs have shown significant
discrepancies. In some cases, normal diffusion has been re-
ported, but with different values of the diffusion coefficient.
Wang (1988) derived a value of K ≈ 150 km2 s−1 for magnetic
elements in network regions using cross-correlation techniques
on videomagnetograms. Hagenaar et al. (1999) studied mag-
netic flux concentrations in SOHO/MDI magnetograms and
found two time ranges of nearly constant diffusion coefficients,
K = 70–90 km2 s−1 for t < 104 s and K = 200–250 km2 s−1

for t > 3 × 104 s. Other authors reported anomalous diffu-
sion. Lawrence & Schrijver (1993) found γ = 0.89 ± 0.20 for
t > 0.5 days by studying magnetic elements in and around an

active region (AR). Berger et al. (1998a) tracked G-band BPs
and found that K(t) decreases approximately as K(t) ∼ t−0.47

for times less than 1400 s, while for larger times they identi-
fied two regions of constant diffusion coefficient, namely K ≈
50 km2 s−1 in the range 26–40 minutes and K ≈ 79 km2 s−1

in the range 42–57 minutes. Cadavid et al. (1999) analyzed the
diffusion properties of G-band BPs in the granulation network,
finding sub-diffusion with γ = 0.76 ± 0.04 in the range 0.3–22
minutes and nearly normal diffusion (γ = 1.10 ± 0.24) in the
range 25–57.5 minutes. In a later paper, Lawrence et al. (2001)
reanalyzed the same observations in the framework of continu-
ous time random walk and reported evidence of super-diffusion.

In a recent paper, Abramenko et al. (2011) used the very
high resolution data on solar granulation obtained with the
New Solar Telescope (NST; Goode et al. 2010) of the Big
Bear Solar Observatory (BBSO) to study diffusion properties
of BPs. They reported super-diffusion with γ = 1.48 in the AR
plage area, γ = 1.53 in the quiet-Sun (QS) area, and γ = 1.67
in the coronal hole (CH). The turbulent diffusion coefficient,
which follows the power-law scaling K(t) ∼ tγ−1 as previously
mentioned, was found to be 22 and 19 km2 s−1, respectively, in
the CH and QS areas at the smallest timescale considered (10 s),
whereas it was about 12 km2 s−1 in the AR plage at the smallest
timescale of 15 s.

The aim of this Letter is to study the pair dispersion of BPs
by using the same NST observations as in Abramenko et al.
(2011). A first motivation for this work stems from the fact that
the scaling properties of single particle Lagrangian diffusion in
turbulent flows, even in the long-time asymptotic range, depends
on the local, detailed structure of the velocity field (see, e.g.,
Crisanti et al. 1991; Castiglione et al. 1999). On the contrary, the
two-particle dispersion reflects the diffusivity properties arising
from the inertial range of turbulence. Another important point to
be stressed is that the pair dispersion problem in turbulent flows
is closely linked to fluid mixing and transport processes (see,
e.g., Bourgoin et al. 2006; Salazar & Collins 2009), which, in the
case under study here, concern the photospheric magnetic field.
Therefore, the study of pair BP separation properties allows us
to access more direct information about turbulence properties of
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the solar photosphere. To our knowledge, the pair separation of
BPs has been investigated so far only by Berger et al. (1998a),
who analyzed the mean separation of randomly selected pairs
of BPs as a function of time. Here, we study this process by
analyzing the mean-square separation in the framework of two-
particle dispersion theory in turbulent flows.

The theory of pair dispersion in turbulent flows is briefly
reviewed in Section 2. Section 3 presents the observations, the
algorithm used for the detection of BPs, and the results on
BP pair dispersion statistics. The results are summarized and
discussed in Section 4.

2. PAIR DISPERSION OF PASSIVE FLUID TRACERS
IN TURBULENT FLOWS

The relative motion of pairs of fluid particles in isotropic tur-
bulence was first studied by Richardson (1926), who established
the theoretical foundations of pair dispersion. For fluid parcels
that are small enough and neutrally buoyant so as to be con-
sidered passive tracers, the kinematic equation governing the
separation vector r(t) = X i(t) − Xj (t) (X i and Xj being the
positions of the two particles) is

r(t) = r0 +
∫ t

0
u(t ′)dt ′, (1)

where u(t) is the relative velocity between the two particles
and r0 is the initial separation vector. In the case of turbulence,
r(t) is a stochastic quantity and it is interesting to investigate
the statistical behavior of the mean-square separation Δ2(t) =
〈[r(t) − r0]2〉, where brackets indicate the average over all
particle pairs.

Richardson (1926) investigated the dynamics of particle pairs
at spatial scales within the inertial range of turbulence. In this
range of scales, in the framework of the Kolmogorov theory
(Kolmogorov 1941), statistical quantities must depend solely on
the scale of turbulent fluctuations � ∼ Δ and on the energy
dissipation rate ε, assumed to be finite as the kinematic viscosity
tends to zero. Under these assumption, since [K] = [L2T −1]
and [ε] = [L2T −3], it can be conjectured that K = K0Δαεβ

(K0 is a non-dimensional constant). Dimensional analysis gives
α = 4/3 and β = 1/3, that is,

K(Δ, t) = K0ε
1/3Δ(t)4/3 . (2)

This is the famous Richardson 4/3-law. Introducing (under
the hypothesis of isotropy) the definition of an effective eddy
diffusivity Keff ,

Keff = 1

2d

dΔ2

dt
, (3)

where d represents the space dimension, by using Equation (2)
and integrating Equation (3), it follows that, asymptotically,

Δ2(t) = gεt3, (4)

(g being a constant) which is the Richardson law for the pair
diffusion in turbulence.

Batchelor (1950) noted that, actually, the Richardson law is
asymptotic, in the sense that K depends on time only through
Δ(t), and pairs are distant enough so that they completely lose
memory of the initial separation r0. Following the argument
by Batchelor (1950), assuming that in the small t range K
depends explicitly on time and on r0, the following general
scaling relation for K can be written as

K(Δ, t) = K0r
α
0 εβtζ . (5)

Dimensional analysis of Equation (5) gives α = 2 − 2(1 + ζ )/3
and β = (1 + ζ )/3. Therefore, several possible solutions
are found depending on the value of the ζ parameter. Using
Equation (5) to integrate Equation (3), the scaling relation for
Δ2 is (neglecting the constant of integration)

Δ2 = g1r
α
0 εβtζ+1 , (6)

with g1 being constant.
Batchelor (1950) used the further assumption that the time

dependence is linear (ζ = 1). This leads to

K(Δ, t) = K0ε
2/3r

2/3
0 t , (7)

from which, again using Equation (3) and integrating, it follows
that

Δ2 = g1(εr0)2/3t2, (8)

which is the Batchelor law for pair diffusion. Note that
Equations (6) and (8) are valid for small times, when the pairs
keep memory of their initial separations.

Due to the limited range of Reynolds numbers that can be
achieved, the observation of the Richardson scaling in labora-
tory experiments and numerical simulations is a difficult task.
The most convincing confirmation of the Richardson law has
been found in two-dimensional turbulence experiments (Jullien
et al. 1999; Rivera & Ecke 2005), but evidence of Richardson
scaling has also been provided in three-dimensional turbulence
experiments (Ott & Mann 2000; Berg et al. 2006) and in the
direct numerical simulations of Navier–Stokes equations (see,
e.g., Boffetta & Celani 2000; Boffetta & Sokolov 2002; Ishihara
& Kaneda 2002; Biferale et al. 2005; Sawford et al. 2008). Rel-
ative dispersion consistent with the Batchelor regime has been
found in three-dimensional fluid turbulence simulations (Yeung
1994), while a robust scaling in agreement with the Batche-
lor law has been reported in the three-dimensional turbulence
experiments of Bourgoin et al. (2006).

3. OBSERVATIONS, ANALYSIS, AND RESULTS

3.1. Data and Data Processing

In this study, we analyzed the same data sets as we did
in Abramenko et al. (2011). Solar granulation data were ob-
tained with the NST (Goode et al. 2010) of BBSO in 2010
August–September. Series of speckle-reconstructed images
taken with a TiO filter (centered at a wavelength of 705.7 nm,
with a bandpass of 1 nm) for three magnetic environments on
the Sun were utilized. Namely, we analyzed (1) the quiet-Sun
internetwork/network area (QS, 648 images of 10 s cadence),
(2) CH area (CH, 183 images of 10 s cadence), and (3) plage
area inside an AR (ARP, 513 images of 15 s cadence).

Bright features, apparent inside dark inter-granule lanes, are
called BPs and they are thought to be footpoints of magnetic
flux tubes, e.g., Muller et al. (2000), Berger & Title (2001), and
Ishikawa et al. (2007). Therefore, studying BPs makes it possible
for us to measure the dynamics of the photospheric magnetic
flux tubes. Only a fraction of magnetic elements (about 20%; de
Wijn et al. 2008) are thought to be associated with BPs, therefore
they allow us to study only a subset of the entire magnetic flux
tube population.

BPs were automatically detected in all images and then
tracked from one image to the next. We used the detection
and tracking code previously described in Abramenko et al.
(2010). In general, our method uses the same approach as that
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Figure 1. Trajectories of a pair of BPs separating from their initial positions,
marked with the blue circles.

(A color version of this figure is available in the online journal.)

of Berger et al. (1998a, 1998b), i.e., BPs are first enhanced in the
images and then selected by applying thresholding and masking.
When two elements merged, the tracking of the smallest one was
terminated. More details on our tracking code can be found in
Abramenko et al. (2010, 2011). Examples of TiO images for
each data set and trajectories of BPs are shown in Figures 1–4
in Abramenko et al. (2011).

3.2. Pair Dispersion Statistics

As mentioned in the introduction, a common approach used to
study the dynamics of magnetic elements consists in considering
the diffusion process of these elements as a result of the
turbulent fluid motions occurring in the convection zone and
in the photosphere (see, e.g., Lawrence & Schrijver 1993). In
other words, it is assumed that magnetic flux concentrations are
transported by turbulent flows and that they can be treated as
Lagrangian “fluid particles” (see, e.g., van Ballegooijen et al.
1998; Abramenko et al. 2011). Following this idea, we utilize
here the Lagrangian approach to investigate the turbulent pair
dispersion of BPs in the solar photosphere.

Our first step is to compute the pair separations r ij (t) =
X i(t) − Xj (t) of two BPs as a function of time interval, t,
measured in seconds, where X i(t) = (xi(t), yi(t)) and Xj (t) =
(xj (t), yj (t)) are the coordinates of the ith and jth BPs at the
time instant t. Figure 1 shows a typical example of a pair of BP
trajectories separating with time. We then calculate the averages
(over all pairs) Δ2(t) = 〈[r(t)−r0]2〉 as a function of time, where
r0 are the initial pair separations.

This procedure is repeated for the QS, CH, and ARP data in
order to compare the pair dispersion properties in these different
areas (Figure 2). A power law Δ2(t) ∼ tη is found for the
mean-squared separation in the range 10 s � t � 400 s with
η = 1.469 ± 0.006 for QS areas, η = 1.469 ± 0.009 for CH
areas, and η = 1.487 ± 0.004 for ARP areas. This result can be
compared with the analysis of the mean separation of randomly
selected BP pairs performed by Berger et al. (1998a), who
reported a power-law dependence with an exponent 0.67±0.03.
This corresponds to a mean-squared separation power-law
scaling with η � 1.34. For t > 400 s, it can be seen that the
statistics is not sufficient to identify breaks and other scalings,
such as for the Richardson law. The ARP data show the smallest

Figure 2. Mean-square BP separation Δ2(t) determined for the CH data (green), QS area (blue), and AR plage area (red). The dashed lines represent power laws
Δ2(t) ∼ tη , with the values of the power-law index η obtained from best fits in the range 10 s � t � 400 s and shown in the inset.

(A color version of this figure is available in the online journal.)
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BP separations as expected, since the BP surface density is larger
in ARP areas compared to CH and QS (Abramenko et al. 2011).

The Δ2(t) scaling of photospheric BPs is not compatible either
with the Richardson or with the Batchelor model. However, the
scaling exponent η � 1.5 is consistent with the general scaling
relations (5) and (6) when ζ = 1/2. In this case, the diffusivity
law (5) becomes

K(Δ, t) = K0r0ε
1/2t1/2 , (9)

which yields the following scaling relation for the pair
separation

Δ2(t) = g1
(
r2

0 ε
)1/2

t3/2 . (10)

We can conjecture that the pair dispersion with a smaller
scaling exponent with respect to Batchelor theory can be related
to the fact that BPs represent the photospheric mark of small-
scale magnetic flux tubes, which oppose a stronger stiffness to
dispersion with respect to ordinary fluid particles.

4. CONCLUSIONS

In this Letter, very high resolution observation of the solar
granulation are used to investigate the turbulent pair dispersion
of photospheric BPs. It is found that the pair mean-squared
separation of BPs follows a power-law timescaling in the range
10 s � t � 400 s. The power-law index is η ≈ 1.469 for quiet-
Sun and coronal hole areas and η ≈ 1.487 for AR plage. This
result is shown to be consistent with scaling laws of turbulent
pair dispersion obtained in a non-asymptotic regime in which the
Lagrangian tracers keep the memory of their initial separations.
Due to the lack of sufficient statistics of tracked BPs, it is
currently not possible with the observations at our disposal to
know if the observed scaling also extends for t � 400 s or if
other scaling regimes are present in the asymptotic range.

At variance with the case of single particle diffusion, for
which the scaling index γ , and therefore the super-diffusion,
is found to increase from the AR plage area to the QS and
to the CH (Abramenko et al. 2011), the power-law index of
the mean-squared pair separation Δ2(t) has nearly the same
value η ≈ 1.5 for all the three regions. This difference can be
attributed to the fact that single particle diffusion is significantly
influenced by the detailed structure of the velocity field, while
pair dispersion reflects the diffusivity properties arising from
the local correlations in the inertial range of turbulence.

Further studies of BP pair dispersion can provide information
about the magnetic field transport in the photosphere. Moreover,
the transport properties of local magnetic field concentrations
are closely related to the dynamics of solar atmosphere tur-
bulence. The physical processes analyzed in the present work
represent one of the possible ways to investigate the efficiency
of the turbulent energy transfer to small scales, which may play

an important role in the energy dissipation processes occurring
in the upper atmospheric layers.
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