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Effects of rare-earth ion size on the stability of the coherent Jahn-Teller distortions in undoped
perovskite manganites
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We present a theoretical study on the relation between the size of the rare earth ion, often known as chemical
pressure, and the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites. Using a
Keating model expressed in terms of atomic scale symmetry modes for a simplified two-dimensional model,
we show that there exists a coupling between the uniform shear distortion and the staggered buckling distortion
within the Jahn-Teller energy term. It is found that this coupling provides a mechanism by which the coherent
Jahn-Teller distortion is more stabilized by a smaller rare earth ion. We analyze the appearance of the uniform
shear distortion below the Jahn-Teller ordering temperature, estimate the Jahn-Teller ordering temperature and
its variation among LaMnO3, PrMnO3, and NdMnO3, and obtain the relations between distortions. We find good
agreement between theoretical results and experimental data.
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I. INTRODUCTION

Since the discovery of the colossal magnetoresistance
effect, a lot of attention has focused on a class of materials
known as perovskite manganites.1–3 During the last two
decades, substantial progress has been made in the theory
for perovskite manganites. Importance of the electron-lattice
coupling was identified shortly after the discovery of colossal
magnetoresistance effect.4–6 First-order character of the metal-
insulator phase transition has been found from Monte Carlo
simulations.7 Mechanism for inhomogeneity and its relation
to metal-insulator transition have been studied.8 Effects of
disorder have been investigated for doped manganites.9,10 The
competition between short range super-exchange interaction
and long range double exchange interaction has been ana-
lyzed for multiferroic undoped manganites.11 Most recently,
novel mechanisms for ferroelectricity, including electronic
ferroelectricity, have been proposed for undoped manganites
with E-type antiferromagnetic ordering.12,13 These materials
have the chemical formula in the form of RE1−xAKxMnO3,
where RE and AK represent the rare earth and alkali metal
elements, and have a perovskite structure. One of the major
research themes for these materials is the relation between their
physical properties and the average size of ions at the RE/AK

site, often known as the chemical pressure effect. The size of
the RE/AK ion is usually parameterized by a tolerance factor,
and one of the most important phase diagrams for these materi-
als has been the one in the temperature versus tolerance factor
plane for a fixed 30% (x = 0.3) doping ratio.14 The RE/AK

ions with size smaller than the space created by the surrounding
MnO6 octahedra induce buckling of the Mn-O-Mn bonds,
observed through various structural refinement analyses.

To understand the effect of the chemical pressure, semi-
classical theories4–13 with quantum mechanical electrons

coupled with the classical lattice through the Jahn-Teller
(JT) interaction often present the phase diagram with one
axis representing the ratio between the electron hopping
energy and the JT energy gain. This ratio parameterizes
the competition between the kinetic and potential energy in
perovskite manganites. Theoretical phase diagrams from these
approaches agree well with experimental phase diagrams,
when this ratio is related to the Mn-O-Mn buckling distortion
due to smaller RE/AK ions. However, whether this buckling
distortion affects the electron hopping energy or the JT
energy gain has been controversial. It is well known from
experimental observations that there is a strong competition
between the insulating phase with a coherent JT distortion
and the metallic phase without such distortion.3 So far, most
of the attention has centered on the impact of the buckling
on the metallic phase, in particular, the possible change in the
effective Mn-O-Mn electron hopping parameter and the band
width.14 At the same time, there has been a debate whether
the variation of the hopping parameter due to the Mn-O-Mn
bond angle change of several degrees would be significant
enough to explain the observed metal-insulator transition.15–19

For instance, the spin wave stiffness, which depends sensitively
on the electron hopping amplitude in double exchange model
in ferromagnetic metallic phase, shows very little dependence
on Mn-O-Mn bond angle.16,18 A less studied effect of the
Mn-O-Mn bond buckling, except for a few early efforts based
on experimental data,20 is the possibility that the buckling
distortion may significantly stabilize the insulating phase with
a coherent JT distortion, by affecting the JT energy gain.
The main goal of this paper is to examine such a possibility
with a simplified model of the perovskite manganites. To be
specific, we analyze the interplay between the JT ordering
and chemical pressure for undoped perovskite manganites.
With one localized eg electron per site, the electronic degrees
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of freedom can be integrated out in undoped manganites
(except for electronically ferroelectric undoped manganites
postulated at low temperatures for very small RE ions), which
allows us to adopt a purely classical model with the energy
expressed in terms of lattice distortions only. The study on
undoped manganites is merited, because they are not only
parent compounds of doped perovskite manganites,21 but also
because one of the first multiferroic materials discovered is
an undoped manganite, TbMnO3, with a relatively small RE

element.22 Recently, electronic ferroelectricity has been also
proposed for undoped perovskite manganites.12,13 Therefore,
the chemical pressure effect in undoped manganites reported
in this paper would also be relevant for future studies on
how the multiferroic and electronically ferroelectric properties
would appear in REMnO3 with small RE ions, as well as how
the chemical pressure affects the distorted insulating phase of
doped manganites.

II. MODEL SYSTEM AND ENERGY EXPRESSION

We study a two-dimensional (2D) model for the perovskite
structure which incorporates both buckling and the JT distor-
tions. We define a 2D perovskite structure shown in Fig. 1
which includes the following aspects of the three-dimensional
(3D) perovskite structure for undoped manganites: (1) symme-
try breaking distortion of O ions around Mn ion, (2) chemical
pressure effect, which is the attraction of surrounding O ions
toward the small RE ions, and (3) the rotation of O ions
with alternating directions around Mn ions, which is, in effect,
the buckling of Mn-O-Mn bonds. Although our 2D model
inevitably misses some aspects of 3D lattice distortions, we
propose that we can still achieve the correct order of magnitude
estimation of energies associated with the chemical pressure
and the JT effect. For example, the size of the 3D tetragonal JT
distortion mode, commonly known as Q3 mode23 with Mn-O
bond lengths changed in all directions, is typically about a
third of the size of the planar JT distortion mode, commonly
known as Q2 mode with Mn-O bond lengths changed only
in the plane. The Q2 mode is kept in our 2D model, but the
Q3 mode is not. The error from omitting the Q3 mode in
our 2D model can be estimated by comparing actual 3D and
our approximate 2D Jahn-Teller energy gain, proportional to√

Q2
2 + Q2

3 and
√

Q2
2, respectively, which are different by only

about 10%. The Q2 mode is expected to couple dominantly

Mn O

RE

FIG. 1. Two-dimensional model for the perovskite structure
considered in the text.

around Mn around RE

(a) (b)

FIG. 2. Two structural motifs chosen for the 2D structure shown
in Fig. 1.

with the in-plane Mn-O-Mn bond buckling and the in-plane
contraction of O ions surrounding a small RE ion. Therefore,
we expect that our 2D model would be sufficient for an order
of magnitude estimation of the energy associated with the
stabilization of the phase with the JT distortion by small RE

ions.
For our 2D model of perovskite structure, we apply

the recently developed atomic scale description of lattice
distortions24,25 to describe the elastic energy of the system.
In this approach, atomic scale modes of lattice distortions and
their constraints are used instead of displacement variables.
The structural motifs can be chosen in any convenient way
as long as they have the symmetry of the crystal structure.
We choose two “structural motifs” shown in Fig. 2: One
consists of one Mn ion and four surrounding O ions and the
other comprises one RE ion and four surrounding O ions. We
obtain ten symmetry modes for each motif, shown in Fig. 3
for the MnO4 motif.26 Similar symmetry modes are defined
for the REO4 motif and are distinguished with primes on the
symbols in this paper. The modes defined for each plaquette on
the lattice are constrained by each other because neighboring
motifs share ions, which leads to constraint equations between

FIG. 3. Distortion modes for the motif around the Mn ion in
Fig. 2. Similar distortion modes e′

1, e′
2, e′

3, s ′
x , s ′

y , t ′
x , t ′

y , w′
x , w′

y , and
r ′ are defined for the motif around the RE ion.
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(a) (b)

(c) (d)

FIG. 4. Four distortion modes considered in the current study: (a)
uniform dilatation mode e10, (b) uniform shear mode e20, (c) staggered
deviatoric mode e3s , and (d) staggered buckling mode e′

3s . All figures
are drawn for the positive values of the modes with the Mn site at the
bottom left corner chosen as the origin.

the Fourier components of the modes. In terms of these twenty
modes and constraint equations, any distortion of the 2D
perovskite structure shown in Fig. 1 can be described.

For the current study, since we are interested in the ordered
state, we consider distortions with wave vectors �k = (0,0) and
(π,π ) only. For these wave vectors, the constraint equations
are as follows, where we use subscripts 0 and s to represent
�k = (0,0) and (π,π ), respectively: e10 = e′

10, e20 = e′
20, e30 =

e′
30, sx0 = −s ′

x0, sy0 = −s ′
y0, e1s = −e′

2s , e′
1s = −e2s , sxs =

sys = s ′
xs = s ′

ys = 0. The rest of the modes are unconstrained,
particularly e3s and e′

3s . We search for the interplay between
the staggered deviatoric distortion mode e3s and the staggered
rotation of O ions around Mn ion (or equivalently staggered
Mn-O-Mn bond buckling mode) e′

3s , where the latter is due to
the compression e′

10 = e10 by small RE ions. Therefore, we
limit ourselves to the modes e10 = e′

10, e20 = e′
20, e3s , and e′

3s ,
shown in Fig. 4. We include the uniform shear mode e20 = e′

20
because it is coupled to e′

3s through the JT term, as will be
discussed later in this paper.

Even though it is possible to analyze an energy expression
including higher order symmetry-allowed anharmonic energy
terms, such a method would generate many parameters and
would make the model less predictive. Therefore, we start
with a Keating model with a small number of parameters27,28

and map the Keating model onto the approach based on the
symmetry modes. In the Keating approach, the elastic energy
is represented in terms of bond length and bond angle changes
from equilibrium. For our 2D perovskite structure, we consider
the following set of Keating variables and harmonic moduli
for each Mn ion, as shown in Fig. 5: δln (n = 1, 2, 3, 4) and
modulus a1 for Mn-O bond length change, δθn (n = 1, 2, 3, 4)
and b1/4 for 90◦ O-Mn-O bond angle change, δrn (n = 1, 2, 3,
4) and a2 for RE-O bond length change, and δϕn (n = 1, 2) and
b2/4 for 180◦ Mn-O-Mn bond angle change. We note that the

FIG. 5. The Keating variables considered for each Mn ion. l1, l2,
l3, and l4 represent the Mn-O bond lengths. θ1, θ2, θ3, and θ4 represent
the O-Mn-O bond angles. r1, r2, r3, and r4 represent RE-O bond
lengths. ϕ1 and ϕ2 indicate Mn-O-Mn bond angles.

MnO4 motif is considered as relatively stiff compared to other
components of the structure, so that a1 � a2 and b1 � b2.

We consider the following Keating elastic energy expres-
sion per Mn ion,

Eelastic = 1

2
a1

∑
n=1,2,3,4

(δln)2 + 1

2
b1

∑
n=1,2,3,4

(δθn/2)2

+ 1

2
a2

∑
n=1,2,3,4

(δrn)2 + 1

2
b2

∑
n=1,2

(δϕn/2)2. (1)

We express the Keating variables in terms of e10, e20, e3s , and
e′

3s . For example, we obtain

δl1 =
√

(1 + e10 + e3s)2 + (e20 + e′
3s)

2 − 1

2
, (2)

δθ1 = tan−1

(
e20 + e′

3s

1 + e10 + e3s

)
+ tan−1

(
e20 − e′

3s

1 + e10 − e3s

)
. (3)

The Taylor expansion of Eelastic in terms of e10, e20, e3s , and e′
3s

produces all the terms of any order. We make an approximation
that b2 is much smaller than other parameters, as mentioned
above, and drop the terms with b2. We keep all harmonic
order terms and select the cubic and quartic order terms that
are responsible for the Mn-O-Mn bond buckling instability,
which are shown below as Ehar, Ecubic, and Equartic.

We further define the JT energy per Mn ion EJT and the
energy associated with the tolerance factor per Mn ion Etol as
follows:

EJT = −λ

2
|δl1 + δl3 − δl2 − δl4|, (4)

Etol = p̃

2
(δr1 + δr2 + δr3 + δr4), (5)

where we define “chemical pressure” as

p̃ = C ′
1(1 − t). (6)

The parameter t is a two-dimensional analog of the tolerance
factor for the 3D perovskite structure, and the coefficient
C ′

1 represents the coupling between the average RE-O bond
length and the tolerance factor t . The chemical pressure p̃

induces the shortening of the average RE-O bond length due
to small RE ions. We also define the JT distortion mode

eJT = (δl1 + δl3 − δl2 − δl4)/2, (7)
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which represents the anisotropic bond length change, similar
to the JT distortion modes Q2 and Q3 for 3D perovskite
manganites.23 As mentioned above, eJT in our 2D model
corresponds to Q2 mode only and we omit Q3 mode. The
expression EJT = −λ|eJT| is based on the 3D JT energy
EJT,3D = −λQ

√
Q2

2 + Q2
3, which is obtained after minimiz-

ing JT electron-lattice coupling energy in manganites with
respect to the eg orbital state.23 In undoped manganites,
Q3/Q2 is about 0.3–0.4 (Refs. 29 and 30), which allows an
approximation EJT,3D ≈ −λQ|Q2|[1 + (Q3/Q2)2/2]. Further
neglecting the small (Q3/Q2)2/2 term of about 0.1, we
get the 2D analog of the JT energy EJT with the 2D JT
distortion eJT corresponding to 3D JT distortion Q2 except
for a normalization factor difference.

We expand EJT and Etol in the form of a Taylor series in e10,
e20, e3s , and e′

3s . Only the leading order energy terms being
kept, our total energy expression per Mn ion Etot is given
below.

Etot = Ehar + EJT + Etol + Ecubic + Equartic, (8)

Ehar = 1
2 (a1 + a2)(e10)2 + 1

2 (4b1)(e20)2

+ 1
2a1e

2
3s + 1

2a2(e′
3s)

2, (9)

EJT = −λ|e3s + e20e
′
3s |, (10)

Etol = p̃e10, (11)

Ecubic = 1
2a1e10(e′

3s)
2, (12)

Equartic = 1
4

a1

2
(e′

3s)
4, (13)

where the relation

eJT ≈ e3s + e20e
′
3s (14)

is used for EJT. The physical origin of the coupling between
e20 and e′

3s is important for the current study and is explained
in more detail in Sec. V A.

III. ESTIMATION OF PARAMETERS

In this section, we present our estimate of the parameters.
We choose the Mn-Mn distance before the distortion, which
is around u = 4 Å, as 1. Therefore, e10, e20, e3s , and e′

3s are
unitless, and a1, b1, a2, b2, and λ have the unit of energy.
The parameter a1 can be estimated from the Mn-O bond
stretching phonon mode energy, which is about 70 meV from
optical measurements.23 From h̄

√
2a1/mO = 70 meV with

mO the mass of the O ion, we obtain a1 ≈ 150 eV. We
estimate b1 from the elastic modulus, c44. From Ref. 31, c44 ≈
55–60 GPa. The uniform shear mode e20 corresponds to the
conventional exy/2 (Ref. 32). Using the identity 1 GPa Å3 =
6.3 meV, we find b1 ≈ 20–25 eV. To estimate b2, we use the
results33 for ReO3, which has no RE/AK ion and, therefore,
a2 = 0 and the buckling of Re-O-Re bond depends only on b2.
According to the analysis in Ref. 33, the oxygen oscillation
along Re-O-Re direction has the angular frequency ωx

o =
905 cm−1, whereas the oscillation perpendicular to Re-O-Re

direction has the angular frequency ω
y
o = 30 cm−1, from which

we can estimate b2/a1 = (ωy
o/ω

x
o )2/2 ≈ 0.5 × 10−3. We can

expect a similar order of magnitude for b2 in manganites, order
of 10−3a1, for example 0.2 eV, which is negligible compared to
other parameter values and justifies neglecting the terms with
b2 as mentioned above. Various probes, such as neutron or
optical spectroscopy, indicate the buckling mode frequency in
manganites of about 35–50 meV (Ref. 34). From the analysis
of (π,π ) phonon mode for our model, we obtain the frequency
of buckling mode ωbk =

√
(2a2 + 4b2)/mO. Therefore, we

obtain a2 ≈ 30–80 eV. For the estimation of λ, we match the
JT energy gain for our 2D model with that for the 3D model
to ensure that our 2D model represents the energy scale of the
3D materials correctly. For our 2D model �EJT = −λ2/(2a1).
For the 3D model in Refs. 23 and 35, �EJT ≈ −0.39 eV, and
therefore, we obtain λ ≈ 10.8 eV.

IV. INTERPLAY BETWEEN Mn-O-Mn BOND BUCKLING
AND THE JAHN-TELLER DISTORTIONS

A. Buckling instability without the Jahn-Teller term

We find the condition for the buckling instability without
the effect of the JT energy term EJT. We take a perturbative
approach rather than try to solve high order polynomial
equations. By minimizing Ehar + Etol, we obtain

(e10)min ,∗ = − p̃

a1 + a2
, (15)

where the superscript * indicates that the JT term is not yet
taken into consideration. This isotropic compression of the
MnO4 motif renormalizes the coefficient of the (e′

3s)
2 term

through the Ecubic term. From this, we obtain the critical
condition for the buckling instability,

p̃∗
c = a2

a1
(a1 + a2), (16)

(e10)min ,∗
c = −a2

a1
. (17)

If p̃ > p̃∗
c , Mn-O-Mn bond buckling occurs and the quartic

order term Equartic should be considered for the equilibrium
e′

3s ,

|(e′
3s)

min ,∗| =
√

2

a1 + a2

√
p̃ − p̃∗

c (18)

=
√

2
√

(e10)min ,∗
c − (e10)min ,∗. (19)

The minimized Etot without the EJT term is given by

E
min ,∗
tot = − p̃2

2(a1 + a2)
− a1

2

(
p̃

a1 + a2
− a2

a1

)2

. (20)

B. Buckling instability with the Jahn-Teller term

We now examine how the JT energy term EJT al-
ters the buckling instability. From Ehar + Etol + EJT, we

184106-4



EFFECTS OF RARE-EARTH ION SIZE ON THE . . . PHYSICAL REVIEW B 86, 184106 (2012)

obtain

(e10)min = − p̃

a1 + a2
, (21)

(e3s)
min = λ

a1
, (22)

where we consider the (e3s)min > 0 case only. The buckling
instability is found from the second order terms in e20 and e′

3s

in Etot:

1
2 (4b1)(e20)2 + 1

2 [a2 + a1(e10)min](e′
3s)

2 − λe20e
′
3s , (23)

where we assumed (e3s)min + e20e
′
3s > 0. From the condition

4b1[a2 + a1(e10)min] < λ2, we obtain the critical condition

p̃c = a2

a1
(a1 + a2) − λ2

4b1a1
(a1 + a2), (24)

and the buckling distortion occurs for p̃ > p̃c. Comparing
with p̃∗

c in Eq. (16), we find that the JT energy makes buckling
more likely. After this buckling instability, we should include
the Equartic term to find the equilibrium result. For this, we first
minimize Etot with respect to the shear distortion e20 to obtain

(e20)min = λ

4b1
e′

3s . (25)

Inserting this back, we get an energy expression for Etot

in terms of e′
3s only, which gives the equilibrium buckling

distortion and the minimum energy,

(e′
3s)

min =
√

2

a1 + a2

√
p̃ − p̃c, (26)

Emin
tot = − p̃2

2(a1 + a2)
− λ2

2a1

−a1

2

(
p̃

a1 + a2
− a2

a1
+ λ2

4b1a1

)2

. (27)

Therefore, the energy gain due to the JT energy term is given
by

�EJT = − λ2

2a1
− (p̃ − p̃∗

c )λ2

4(a1 + a2)b1
(28)

up to order λ2. The second term corresponds to the part of
�EJT which depends on the size of RE ion, or p̃. This result
shows that the small rare earth ion, or large chemical pressure,
stabilizes the JT distortion.

V. COMPARISON WITH EXPERIMENTS

We make comparisons between our model and experimental
results. In Sec. V A, we explain the simultaneous appearance
of the uniform shear distortion and the long range JT
distortion observed in undoped manganites.29 In Sec. V B,
we estimate the changes in the JT ordering temperature TJT

among LaMnO3, PrMnO3, and NdMnO3, and compare with
experiments. In Sec. V C, we calculate the ratios between
different distortion modes and compare with experimental
data for LaMnO3, PrMnO3, NdMnO3, and other undoped
manganites with even smaller RE ions.

A. Appearance of uniform shear distortion below the
Jahn-Teller ordering temperature

Experimental data in Refs. 29, 30, and 36 show that the
difference between the lattice constants a and b along the
diagonal directions in the plane appears simultaneously with
the long range JT distortion below TJT for LaMnO3, PrMnO3,
and NdMnO3. This distortion corresponds to the uniform shear
distortion in our model, related by e20 = (b − a)/(2

√
2u) with

u = 4 Å. We analyze the coupling between the JT distortion
and the uniform shear distortion, which is important for the
stabilization of JT ordered state by the chemical pressure. In
our model, such coupling originates from the term e20e

′
3s in eJT

in Eq. (14) or in EJT in Eq. (10), which can be understood as
follows. We consider applying a positive e20 shear distortion
to the lattice, as shown in Fig. 6 by the axis of elongation and
compression along 45◦ and 135◦, respectively. Such uniform
shear distortion makes the Mn-O bond lengths either longer
or shorter depending on whether the direction of the bond is
closer to the orientation of elongation (45◦) or compression
(135◦), except for the bonds with directions right between the
two directions. If the system does not have (π,π ) buckling,
as shown by the thin solid lines in Fig. 6, all Mn-O bonds
make equal angles from the axis of elongation/compression,
and therefore e20 shear distortion keeps all Mn-O bond lengths
equal. This implies that e20 distortion alone does not contribute
to the JT distortion or JT energy gain. In contrast, if the system
has a buckling distortion e′

3s with a wave vector �k = (π,π ),
as shown by the thick solid lines in Fig. 6, the e20 shear
distortion elongates Mn-O bonds marked with l and shortens
Mn-O bonds marked with s, depending on whether the bond
direction is closer to the axis of elongation or the axis of
compression, which results in the JT distortion eJT with a

Axis of elongation

Axis of compression

l

sl

l

l

l

l

l

l

s

s

ss

s

s

s

FIG. 6. Superposition of (π,π ) buckling e′
3s and uniform shear

distortion e20 effectively generates the extra (π,π ) JT distortion of
Mn-O bond lengths, as indicated by the s and l for the shortened and
elongated bonds, which is responsible for the e20e

′
3s coupling within

eJT and the JT coupling EJT. In the (π,π ) JT ordered state, this adds
up to the e3s deviatoric mode if e3s and e20e

′
3s have the same sign.

This mechanism is responsible for the appearance of the uniform
shear distortion below the JT ordering temperature, as explained in
Sec. V A. The extra JT energy gain for the buckled lattice is
responsible for the increase in TJT in REMnO3 with small RE ions,
as explained in Sec. V B.
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wave vector �k = (π,π ). If this extra JT distortion is in the
same [opposite] phase as [to] the deviatoric e3s distortion,
in other words, if e20e

′
3s and e3s have the same [opposite]

sign, this extra JT distortion increases [decreases] the net JT
distortion, which explains the expression for EJT in Eq. (10)
or eJT in Eq. (14). We emphasize here that the extra JT energy
gain occurs only when the e2, e3, and e′

3 distortions are in the
right phase with respect to each other. Experiments29 show
that the (π,π ) Mn-O-Mn bond buckling persists even above
TJT without much change in size. However, above TJT, the
coherent e3 distortion does not exist, and therefore the extra
JT distortion due to the uniform e20 distortion in the presence
of staggered buckling distortion would increase the JT energy
gain in some regions and decrease the JT energy gain in other
regions, and does not change the net JT energy. In other words,
the energy gain due to the cooperative effect between e3, e′

3, and
e2 does not exist at T > TJT. We therefore expect that the e20

mode does not exist above TJT and appears simultaneously with
the long range JT ordering, consistent with the experimental
results.

B. Jahn-Teller ordering temperature and its variation among
LaMnO3, PrMnO3, and NdMnO3

It is reported36,37 that TJT changes from 750 K for
LaMnO3 to 1050 K for PrMnO3, and further to 1100 K for
NdMnO3, that is, by about �TJT(Pr) = 300 K and �TJT(Nd) =
350 K relative to LaMnO3 respectively, where �TJT(RE) =
TJT(REMnO3) − TJT(LaMnO3). We estimate �TJT(RE) from
our model to understand how such a drastic change of the JT
ordering temperature can occur by the increase in chemical
pressure.

We rewrite Emin
tot in Eq. (27) for p̃ > p̃c as follows.

Emin
tot = − p̃2

2(a1 + a2)
− λ2

2a1
− a1(p̃ − p̃c)2

2(a1 + a2)2
, (29)

where

p̃c = p̃∗
c − δp̃c, (30)

δp̃c = λ2

4b1a1
(a1 + a2), (31)

and p̃∗
c represents the critical chemical pressure without the

JT energy term. Since δp̃c, the change in the critical chemical
pressure due to the EJT term, is small relative to p̃ − p̃∗

c , with
δp̃c/(p̃ − p̃∗

c ) ≈ 0.3 for parameter values in Sec. III, we keep
the terms linear in δp̃c only and rewrite according to the origin
of each term as follows.

Emin
tot ≈ Emin

comp + Emin
JT + Emin

bk + Emin
bk,JT,sh, (32)

Emin
comp = −1

2

p̃2

a1 + a2
, (33)

Emin
JT = −1

2

λ2

a1
, (34)

Emin
bk = −1

2

a1

(a1 + a2)2
(p̃ − p̃∗

c )2, (35)

Emin
bk,JT,sh = − a1

(a1 + a2)2
(p̃ − p̃∗

c )δp̃c,

= − λ2

4b1(a1 + a2)
(p̃ − p̃∗

c ). (36)

The first three terms, Emin
comp, Emin

JT , and Emin
bk , represent the

energy terms purely due to compression, JT distortion, and
buckling, respectively. The fourth term is the energy due to the
coherent buckling, JT and shear distortions, indicated by its
dependence on p̃ − p̃∗

c , λ and b1, which gives extra stability
to the JT ordering due to the chemical pressure.

To estimate TJT, we consider a high temperature state with
random JT distortions, for which the energy can be written
in a similar way as Eq. (32) except for the absence of the
fourth term due to the lack of coherence among distortions as
explained in Sec. V A,

Eran
tot = Eran

comp + Eran
JT + Eran

bk . (37)

We expect Eran
comp ≈ Emin

comp and Eran
bk ≈ Emin

bk since the unit
cell volume and buckling angle do not change very much
as the temperature crosses TJT (Ref. 29). Therefore, the energy
difference between JT ordered and JT disordered state is

Eran
tot − Emin

tot ≈ Eran
JT − Emin

JT − Emin
bk,JT,sh. (38)

We first verify that our model gives the correct order of
magnitude of TJT itself. An order of magnitude estimate for TJT

can be made from the energy difference between two different
JT ordered states, one the most favored state and the other
relatively unfavored state. The most favored state is that with
the JT distortion of �k = (π,π ) considered so far in this paper
and has the JT energy of Emin

JT = −λ2/(2a1). We choose a state
with the same size of JT distortion e3 but with a wave vector
�k = (0,0) as a relatively unfavored state, with energy Eunif

JT =
−λ2/[2(a1 + a2)]. Using the estimated parameter values, a1 =
150 eV, a2 = 30–80 eV, λ= 10.8 eV, we obtain Eunif

JT − Emin
JT ≈

600–1300 K, which has the same order of magnitude as the
experimentally observed TJT in the range of 750–1100 K.

For the change in TJT between LaMnO3 and REMnO3

(RE = Pr, Nd), the only term in Eq. (38) which changes with
the RE ion size is −Emin

bk,JT,shear. Therefore, the JT ordering
temperature variation between LaMnO3 and REMnO3 can be
related to −Emin

bk,JT,sh(REMnO3) + Emin
bk,JT,sh(LaMnO3) within

a factor of the order of one. We express Emin
bk,JT,sh in terms of

(e′
3s)

min,

Emin
bk,JT,sh = −1

2

λ2

4b1
[(e′

3s)
min]2. (39)

According to the experimental data,29,30,36,37 the Mn-O-Mn
bond angle is 155.1◦ for LaMnO3, 150.5◦ for PrMnO3, and
149.8◦ for NdMnO3, which corresponds to (e′

3s)
min of 0.217,

0.257, and 0.264, respectively. These distortions, along with
parameter values λ = 10.8 eV and b1 = 20–25 eV, result
in −Emin

bk,JT,sh(REMnO3) + Emin
bk,JT,sh(LaMnO3) of 11–14 meV

≈ 130–160 K for RE = Pr and 12–16 meV ≈ 140–190 K
for RE = Nd. From a classical Monte Carlo simulation
for the double-well potential model in Ref. 24, we find
that the structural ordering temperature is about twice the
energy difference between the distorted ground state and
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undistorted high energy state.38 Although such a relation
would depend on the details of the model, if we assume
a similar situation in the current model, the JT ordering
temperature variation can be estimated as twice the energy
difference, therefore, T JT(NdMnO3) − T JT(LaMnO3) ≈ 2 ×
[−Emin

bk,JT,sh(NdMnO3) + Emin
bk,JT,sh(LaMnO3)] = 300–375 K,

which agrees well with the experimental change in TJT,
350 K. Similar analysis for PrMnO3 leads to T JT(PrMnO3) −
T JT(LaMnO3) ≈ 255–320 K, which agrees well with the
experimental value of 300 K.

This agreement shows that indeed the JT ordered state is
more stabilized when the buckling increases for smaller RE

ions for undoped compounds. The relatively large increase in
the JT ordering temperature, both in theory and experimental
data, shows that the interplay between the RE ion size and the
JT distortion is significant, and should be taken into account
to explain the well-known temperature-tolerance factor phase
diagram of both undoped and doped perovskite manganites.

C. Relation between shear, buckling, and deviatoric distortion
and comparison for other undoped manganites

Equations (22) and (25) imply that the following quantities
remain constant regardless of the variation in chemical
pressure:

(e3s)
min = λ

a1
, (40)

(e20)min

(e′
3s)

min
= λ

4b1
, (41)

(e20)min

(e3s)min(e′
3s)

min
= a1

4b1
. (42)

We calculate these quantities from the experimental data for
LaMnO3, PrMnO3, and NdMnO3, and present the results
in Table I, in which we also show the relation between

the distortion variables in our model and experimental pa-
rameters and the estimate of TJT and �TJT obtained in
Sec. V B. The results show that (e3s)min, (e20)min/(e′

3s)
min, and

(e20)min/[(e3s)min(e′
3s)

min] agree well with theoretical estimates
obtained from the parameters in Sec. III, and vary 7%,
29%, and 32%, respectively, smaller than up to 41% changes
in (e20)min and (e′

3s)
min. The results underscore the strong

coupling between these distortions, in particular, the important
role played by the uniform shear distortion in connecting the
JT and buckling distortions.

We extend the analysis to undoped perovskite manganites
with even smaller RE ions. The results are summarized in
Fig. 7, along with values from available experimental data.
Figure 7(a) shows the JT ordering temperature variation with
respect to LaMnO3 from our theory along with measured TJT

for LaMnO3, PrMnO3, and NdMnO3, which indicates rapid
increase of the JT energy gain as the RE size becomes smaller.
Figure 7(b) shows that the ratio e20/e

′
3s from experimental

data remains relatively close to the range of theoretical
constant ratios of λ/(4b1). Explanation for the deviation
from theoretically estimated constant for the whole range
of RE ions may require higher order expansions of the
energy expression. Figure 7(c) shows eJT from experimental
data and theory. For the experimental data, eJT is calculated
from (l − s)/u, where l and s are in-plane long and short
Mn-O bond lengths, as in Table I. Theoretical range of eJT

versus e′
3s is from eJT ≈ e3s + e20e

′
3s with e3s ≈ λ/a1 and

e20 ≈ e′
3sλ/(4b1). Both theory and experiment consistently

show an overall increase of eJT as Mn-O-Mn bond buckling
increases.

VI. DISCUSSION ON HOW TO EXTEND THE MODEL TO
DOPED MANGANITES AND ELECTRONICALLY

FERROELECTRIC UNDOPED MANGANITES

Although the primary focus of this paper is the high tem-
perature JT structural phase transition in undoped perovskite

TABLE I. Parameters from experimental data and comparison with theoretical estimates. Experimental data for the lattice constants, bond
lengths, and bond angles for LaMnO3, PrMnO3 and NdMnO3 are from Refs. 29, 30, 36, and 39, measured at room temperature.

Experimental data

Parameters LaMnO3 PrMnO3 NdMnO3 Theoretical estimates
Lattice constant, a 5.54 Å 5.45 Å 5.41 Å
Lattice constant, b 5.75 Å 5.81 Å 5.73 Å
Long Mn-O bond length within ab plane, l 2.18 Å 2.21 Å 2.20 Å
Short Mn-O bond length within ab plane, s 1.91 Å 1.91 Å 1.90 Å
Mn-O-Mn bond angle within ab plane, ϕ 155.1◦ 150.5◦ 149.8◦

Mn-Mn distance with e10 only, (a + b)/(2
√

2) 3.99 Å 3.98 Å 3.94 Å Compressed from u ≈ 4 Å
e20 = (b − a)/(2

√
2u) 0.0186 0.0322 0.0280

e′
3s = (π − ϕ)/2 0.217 0.257 0.264

e20/e
′
3s 0.086 0.125 0.106 λ/(4b1) = 0.108–0.135

eJT = (l − s)/u 0.0678 0.0753 0.0750
e3s ≈ eJT − e20e

′
3s 0.0637 0.0670 0.0676 λ/a1 = 0.072

e20/(e3se
′
3s) 1.35 1.86 1.57 a1/(4b1) = 1.5–1.9

TJT 750 K 1050 K 1100 K Eunif
JT − Emin

JT = 600–1300 K
�TJT(Pr) = TJT(PrMnO3) − TJT(LaMnO3) 300 K −2�Emin

bk,JT,sh = 255–320 K
�TJT(Nd) = TJT(NdMnO3) − TJT(LaMnO3) 350 K −2�Emin

bk,JT,sh = 300–375 K
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FIG. 7. Available experimental data and bounds estimated from
theory, plotted against Mn-O-Mn bond angle and e′

3s , for (a) JT
ordering temperature, (b) e20/e

′
3s ratio, and (c) eJT . Experimental

data are from Refs. 36,39–41, and references therein.

manganites, we briefly comment in this section on how to
extend the model to doped manganites and electronically ferro-
electric undoped manganites. In the case of doped manganites,
each Mn site has a fractional number of 3d eg electrons, which
would require quantum mechanical description of eg electrons,
similar to the ones in Refs. 7–11. Furthermore, RE and
AK ions with different sizes distribute randomly, effectively
generating site-dependent chemical pressure. Experimentally,
it is observed that the increased variance of RE and AK

ion sizes has a similar effect as the decreased average RE

and AK ion size in doped manganites. If we focus on the
effects of chemical pressure, the first necessary modification
to the existing models in Refs. 7–11 would be a classical
coupling between local chemical pressure and local dilatation
mode of surrounding O ions, similar to e′

1. The second
necessary modification would be anharmonic lattice energy
terms obtained from the Keating model, similar to the ones
presented in this paper. Because chemical pressure p̃�i is
dependent on site, we should consider all modes shown
in Fig. 3 at each site and the constraints between Fourier
transforms of these variables, instead of just the four modes in
Fig. 4. With many variables involved, numerical approaches,
such as Monte Carlo methods, would be essential.

Our model can be extended and serve as a phenomenologi-
cal model for the magnetism and electronic ferroelectricity in
undoped manganites,12,37,41 complementing existing theories,
such as the ones based on local density approximation.13 In
undoped manganites, the magnetic interaction also shows a
prominent dependence on the size of RE ions, changing
the ground state from A-type to E-type antiferromagnetic
phase through incommensurate phases as RE ion becomes
smaller. This behavior has been proposed to originate from the
reduced nearest neighbor ferromagnetism and the increased
next nearest neighbor antiferromagnetism,37 or alternatively,
the reduced antiferromagnetism between t2g spins and long
range ferromagnetic double exchange interaction.11 It has been
further proposed that electronically ferroelectric phase may
emerge in E-type antiferromagnetic phase, associated with the
displacement of Wannier function center (WFC) from the ionic
location due to the magnetic inversion symmetry breaking
for E-type spin ordering.13 Within our phenomenological
approach, the dependence of the first nearest and the second
nearest neighbor magnetic interaction J1 and J2 on the Mn-
O-Mn bond buckling can be expressed as J1 = J10(1 + α1e

′
3s)

and J2 = J20(1 + α2e
′
3s) for a small range of e′

3s , in which
the linear coefficients α1 and α2 can be decided from more
fundamental theories. The t2g-t2g super-exchange interaction
can be expressed in a similar way.

As for the electronic ferroelectricity, although the explicit
form of the Wannier function would require quantum me-
chanical analysis, the WFC itself can be treated as a classical
variable and the lattice of the WFC can be considered in
addition to the lattice of Mn ions. Therefore, symmetry-based
analysis can be applied to both the WFC lattice and the ionic
lattice. To demonstrate the idea, we consider an example of
three connected Mn-O motifs at sites (−1,0), (0,0), and (1,0)
shown in Fig. 8. The x directional displacement of Mn ion
at site �i, the x directional displacement of WFC associated
with Mn 3d3x2−r2 state with spin parallel to the t2g core spin
at site �i, and the t2g spin at site �i with magnitude of |St2g

| are
represented by d�i , D�i , and �S�i . We also consider the buckling
distortion e′

3s . If we consider a situation without any other
distortions, the energy associated with these limited degrees

FIG. 8. Schematic drawing that demonstrates how our model
can be extended to include electronic ferroelectricity in undoped
manganites. Three connected MnO4 motifs are shown. Open and
solid circles represent O and Mn ions. Open squares represent WFC’s
associated with the Mn 3d3x2−r2 state with spin parallel to the t2g core
spin, which would coincide with Mn ions in the nonferroelectric
phase. Thick arrows at the bottom represent the t2g spin directions
for E-type antiferromagnetic phase of undoped manganites. Thin
horizontal arrow represents the displacement of WFC from Mn
ion location, resulting in the ferroelectric moment of electronic
origin.
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of freedom can be written in the following form based on the
symmetry:

EeFE = Kd

2

(
d2

(−1,0) + d2
(0,0) + d2

(1,0)

) + KD

2
[(D(−1,0) − d(−1,0))

2

+ (D(0,0) − d(0,0))
2 + (D(1,0) − d(1,0))

2]

+ J10 �S(−1,0) · �S(0,0)[1 + α1e
′
3s + β(D(0,0) − D(−1,0))]

+ J10 �S(0,0) · �S(1,0)[1 + α1e
′
3s + β(D(1,0) − D(0,0))],

(43)

where the terms with β represent how the magnetic interac-
tion depends on the distance between the nearest neighbor
WFC’s. In the case of d(0,0) = d(−1,0) = d(1,0) = 0 due to
other elastic energy terms that are not considered above
and �S(−1,0) = �S(0,0) = −�S(1,0) due to the E-type magnetic
ordering, the minimization with respect to D(0,0) leads to
D(0,0) = −2J10|St2g

|2β/KD , shown schematically in Fig. 8
with a thin arrow and an open square representing WFC,
which demonstrates how our model can be expanded to model
ferroelectric moment of electronic origin. Our symmetry-
mode-based approach can be also used to model conventional
ionic ferroelectricity in perovskite transition metal oxides by
including energy terms with inversion symmetry breaking
modes, such as tx , ty , t ′x , and t ′y in Fig. 3.

VII. CONCLUSION

From the analysis of a Keating energy expression expanded
in terms of the atomic-scale symmetry-modes, we find that
the effect of small RE ion size, known as chemical pressure
effect, is significant in stabilizing the long range JT distortion
in undoped perovskite manganites. We obtain good agreement
with the experimental data on the JT ordering temperature
and the substantial increase of the JT ordering temperature
from LaMnO3 to PrMnO3 and NdMnO3. We propose that
similar effects need to be considered to understand the phase
diagram for doped perovskite manganites. We also explain
the appearance of the uniform shear distortion below the
JT ordering temperature in terms of the coupling between
coherent shear, buckling, and deviatoric distortions within the
JT energy. Moreover, we estimate the ratio between these
distortions at low temperature, and find good agreement with
experimental data for LaMnO3, PrMnO3, and NdMnO3, which
confirms the coupling proposed between them in our model.
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