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Direct extraction of quantitative structural information from x-ray fluorescence holograms
using spherical-harmonic analysis

Yuhao Wang,1 Jianming Bai,2 and Trevor A. Tyson1

1Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11073, USA
(Received 16 November 2011; revised manuscript received 14 March 2012; published 12 June 2012)

An x-ray fluorescence holograph contains information on both the amplitude and the phase of the x-ray
scattering signal from a crystal structure. X-ray fluorescence holography is potentially a technique to directly
extract atomic level structure information from crystal samples. We present here a reconstruction algorithm using
a spherical-harmonic analysis that significantly improves the structure-resolving power of x-ray fluorescence
holography over the widely used multiple energy Barton transform approach. Compared to the direct method for
x-ray diffraction, this direct method has the advantages of full model independence and applicability to crystal
systems with a large contrast in atomic numbers.
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X-ray fluorescence holography (XFH) is a promising
technique for model-independent structure determination from
single crystals. Unlike standard x-ray diffraction (XRD)
methods that measure only the magnitude of the structure
factors and require significant a priori knowledge of the crystal
structure for generating a solution, XFH is sensitive to both
the amplitude and phase of the structure factor. However,
even though the experimental XFH measurement was realized
15 years ago,1,2 and data collection procedures have greatly
improved with the advent of high flux third generation syn-
chrotron sources, effective methods for retrieving quantitative
structural information from x-ray holograms are still needed.

The complete structural information of a crystal can be
represented by a three-dimensional (3D) density distribution of
electron charge, or its Fourier transformation in the reciprocal
space, viz., structure factors. The electron density is a funda-
mental physical property of an electronic system. As stated in
the Hohenberg-Kohn theorem,3 the ground state energy and all
other observables of the system are uniquely determined by the
density. Hence, establishment of an experimental method that
directly measures the electron density distribution of a crystal
structure will be an important progress in solid state physics.
The current direct methods of x-ray crystallography assume
that the crystals consist of discrete atoms,4 and thus provide
electron densities limited by the isolated-atom approximation.
The derivation of a more realistic electron density that reflects
the charge localization arising from chemical bonding still
relies on model building and refinements.5 We will introduce
a reconstruction algorithm for XFH data that can retrieve the
electron density directly without a discrete atom assumption.

Previous work widely used the Barton transform method,6

an atomic image reconstruction algorithm based on the
Helmholtz-Kirchhoff integral theorem, for analyzing XFH
data. The 3D image calculated with the Barton transform
method is the wave field amplitude around the fluorescence
emitting atoms formed by a fictitious converging spherical
wave through the recorded hologram. This image assumes
maxima at atomic positions, but is distorted because of
interference between the scattered waves. The interference
artifacts can be suppressed by summing multiple energy XFH
data.2 However, the resulting image differs significantly from

the true charge density of a material. Typically, it is extremely
difficult, if not impossible, to solve unknown structures or to
do any quantitative structural analysis with XFH data using
the Barton transform technique.

Much effort has been invested in developing methods
to extract the electron density directly from an XFH mea-
surement. Chukhovskii et al.7 proposed a Fourier transform
type algorithm to derive the distribution of electron charge
density from XFH data. Their results using a single wavelength
hologram are similar to, but have better spatial resolution than,
those obtained with the Barton transform method. Seemingly,
the algorithm can restore the true electron charge density from
data taken with a suitably large energy range, however, this is
impractical with current experimental approaches. Marchesini
et al.8 proposed an iterative image deconvolution method to
construct the electron charge density from XFH data. They
demonstrated the method by approximating the atoms in the
crystal as point charges. However, it is questionable that their
iterative procedure will converge to the true electron charge
density. Matsushita et al.9,10 developed the scattering pattern
matrix (SPM) method to derive a 3D atomic distribution
function defined in real space from the two-dimensional
(2D) hologram taken in k space with the iterative-scaling
algorithm of maximum entropy. By using the non-negative
constraint, and imposing translational symmetry of the atomic
distribution function, they successfully reconstructed atomic
images from measured XFH holograms without significant
artifacts. Most recently, the SPM method has been successfully
used to reconstruct 3D atomic images of a SrTiO3 crystal
from multiple energy internal-detector electron holography
data.11 This fitting-based reconstruction algorithm requires
atomic information of a unit cell before solving the structure.
Chukhovskii et al.12,13 defined a scattering function connecting
the XFH hologram function to the structure factors. Using
standard least square methods, they retrieved a set of structure
factors from an XFH hologram simulated with the same set
of structure factors. This formalism needs to be tested with
more realistic model holograms based on real space atomic
configurations. As we indicate later, each XFH hologram can
be expressed by a complete set of structure factors with a
finite number limited by the energy of the scattered waves.
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A complete set of structure factors is needed to avoid truncation
errors in the XFH structure analysis.

In order to solve an unknown structure using XFH data,
we developed a formalism connecting the structure factors
to the spherical-harmonic components of XFH holograms
via a set of linear equations. The electron density then is
obtained by Fourier expansion, using the structure factors
resolved by directly solving the linear equations. The major
differences between our algorithm and previous methods are
as follows: First, ours provides a better way to sample the
XFH data in k space. A spherical harmonic is essentially
a Fourier transformation on a spherical surface; a finite
number of spherical-harmonic coefficients contain all struc-
tural information in a set of XFH data. The advantage of
using a spherical-harmonic expansion lies in the fact that
each spherical-harmonic component represents a weighted
integration of the hologram on the surface of a sphere in
k space, analogous to the integrated intensity of the Bragg
peaks in x-ray diffraction. As Warren14 noted, intensity as
function of the diffraction angle usually is not an observable
quantity; rather the integrated intensity is more useful since
it can be both calculated and measured. In XFH, each
spherical-harmonic component of the hologram is a well
defined quantity, expressible as a linear expansion of structure
factors with a well behaved scattering matrix. Therefore, the
second advantage of our algorithm over previous methods
is that it solves the structure model independently without
any fitting or iteration procedures. We demonstrate below that
using the spherical-harmonic method allows us to retrieve the
structure factors from holograms simulated with real space
atomic configurations, and with these structure factors, the
electron charge density can be reconstructed with high fidelity.

The x-ray fluorescence hologram for a polarized probing
wave can be expressed15,16 as

χ (�k) = −
∫∫∫

ρ(�r)
re exp(ikr − i�k · �r)

r

× [A(kr) + B(kr)(ε · r̂)2]d�r + c.c., (1)

where χ (�k) represents holograph χ in k space, ρ(�r) is
the electron density distribution in real space, re is the
classical electron radius (e2/mc2), [A(kr) + B(kr)(ε · r̂)2] is
a generalized expression for the scattering factor between the
polarized photon and electron, ε is the direction of the electric
field, and r̂ is the direction of �r . Considering a near field
effect (the deviations from plane wave behavior of the probing
waves), A(kr) = i

kr
− 1

(kr)2 + 1 and B(kr) = − 3i
kr

+ 3
(kr)2 − 1.

�r represents the position of the scattering electron relative to
the fluorescent center at �r = 0. Most complex crystal structures
encompass multiple fluorescent atomic sites with a unique
atomic distribution in a unit cell. The experimentally measured
hologram χ (�k) from these structures is a superposition of
fluorescence patterns from different fluorescent atomic sites,
and the ρ(�r) in Eq. (1) should be the averaged electron charge
distribution with respect to all unique fluorescent atomic sites
of the same chemical species. In this Rapid Communication,
the term “electron density” refers to its averaged value when
multiple fluorescent atomic sites are involved.

The hologram χ (�k) is usually represented as χ (θ,ϕ) for a
fixed wave number k, where (θ,ϕ) is the direction of �k, as
represented in a spherical coordinate system of measurement.

In transverse waves such as x rays, the polarization vector
ε is always in a plane perpendicular to the wave vector k. In
the direct scheme XFH the unpolarized fluorescence wave is
the probing wave and the ε in Eq. (1) is averaged in the plane.
Equation (1) can be simplified as

χ (�k) =
∫∫∫

ρ(�r)
re exp(ikr − i�k · �r)

r

×
{
A(r) + B(r)

2
[1 − (k̂ · r̂)2]

}
d�r + c.c. (2)

For the indirect scheme XFH, the probing wave is the
polarized, elastically scattered x-ray wave. The indirect XFH
can be depolarized by summing the holograms measured with
two perpendicular polarization directions, ε⊥ and ε‖. With (ε⊥ ·
r̂)2 + (ε‖ · r̂)2 + (k̂ · r̂)2 = 1, the depolarized indirect XFH
also can be represented by Eq. (2). The following discussions
apply to both direct XFH and depolarized indirect XFH, as
described by Eq. (2).

Equation (2) resembles the Fredholm integral equation of
first kind commonly encountered in typical inverse problems.
However, here the observed hologram χ (�k) is only the real part
of the integral function and is defined on a sphere surface in k
space. In previous works, such as in Ref. 8, the discrete points
of the hologram were used to solve the integral equation. The
resulting system of linear equations was usually ill conditioned
and must be solved using least square methods.

To extract the electron density from XFH, we expand the
hologram with respect to spherical harmonics, and derive a
relation between the spherical harmonic coefficients and the
electron density function.

By replacing the expression for the plane wave with a
spherical wave expansion in Eq. (2),

exp(−i�k · �r) =
∞∑
l=0

(−i)l(2l + 1)jl(kr)Pl(k̂ · r̂), (3)

where jl is the spherical Bessel function and Pl the Legendre
function, the hologram χ can then be expanded to

χ = re

∞∑
l=0

∫∫∫
ρ(�r)

eikr

r
Sl(kr)Pl(k̂ · r̂)d�r + c.c. (4)

Here, Sl(kr) is a spherical representation of the scattering
factor between electrons and photons. Considering a near field
effect, Sl(kr) is written as

Sl(kr) = (−i)l(2l + 1)jl(kr)

[−i

kr
+ 1

(kr)2
+ 1

]

+ (−i)l
l(l − 1)

2l − 1
jl−2(kr)

[−3i

kr
+ 3

(kr)2
− 1

]

− (−i)l
[
(l + 1)2

2l + 3
+ l2

2l−1

]
jl(kr)

[−3i

kr
+ 3

(kr)2
− 1

]

+ (−i)l
(l + 1)(l + 2)

2l + 3
jl+2(kr)

[−3i

kr
+ 3

(kr)2
− 1

]
.

(5)
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Also considering Pl(k̂ · r̂) = 4π
2l+1

∑l
m=−l Ylm(θk,ϕk)Y ∗

lm

(θr ,ϕr ), the spherical-harmonic expansion of the hologram is
given by

χ =
∞∑
l=0

l∑
m=−l

Ylm(θk,ϕk)alm + c.c., (6)

where alm is calculated as

alm = 4πre

2l + 1

∫∫∫
ρ(�r)

eikr

r
Sl(kr)Y ∗

lm(θr ,ϕr )d�r. (7)

The integral in Eq. (7) extends over the entire volume of
a single crystal. The finite crystal size can be represented
by a periodical ρ(�r) in infinite 3D space multiplied with
an envelope size distribution function μ(r). By using the
translation symmetry of the crystal, the electron density can
be written as ρ(�r) = ∑

ρ(�h) exp(i �h · �r)μ(r), where ρ(�h) is
related to the atomic structure factor F (�h) by ρ(�h) = F (�h)/V

(V = unit cell volume). A simple form of μ(r) is a unit step
function μ = η(r − r0), where r0 is the average crystal size.

Then, Eq. (7) can be rewritten as

alm = (4π )2

2l + 1
(i)l

∑
h

[Y ∗
lm(θh,ϕh)

×
∫

jl(hr)eikrμ(r)Sl(kr)rdr]ρ(�h). (8)

Now we consider the complex conjugate of Eq. (6), and add it
to the expression of hologram as a real function:

χ =
∞∑
l=0

l∑
m=−l

Ylm(θk,ϕk)[alm + (−1)ma∗
l−m]

=
∞∑
l=0

l∑
m=−l

Ylm(θk,ϕk)clm. (9)

The clm’s are the coefficients of spherical harmonics that can
be calculated directly from the experimental hologram data.
Since the hologram χ is a real function, there are only l + 1
independent spherical-harmonic coefficients for each l. The
clm coefficients provide a series of linear equations related to
the structure factors:

clm =
∑

h

[
8π2il

2l+1
Y ∗

lm(θh,ϕh)
∫

jl(hr)eikrSl(kr)μ(r)rdr

]
ρ(�h)

+
∑

h

[
8π2il

2l + 1
Y ∗

lm(θh,ϕh)
∫

jl(hr)e−ikr

× S∗
l (kr)μ(r)rdr

]
ρ(

−→−h)∗. (10)

Neglecting the anomalous scattering factors by assuming

ρ(�h) = ρ(
−→−h)∗ [or equivalently, assuming a real electron

density function in Eq. (7)], the spherical-harmonic expansion
coefficient of the hologram can be given as

clm =
∑

h

{
16π2il

2l + 1
Y ∗

lm(θh,ϕh)
∫

jl(hr)Re[eikr

× Sl(kr)]μ(r)rdr

}
ρ(�h). (11)

FIG. 1. (Color online) Matrix calculation as a function of h for
k = 5.55 Å−1.

The structure factors ρ(�h) can be extracted from the
coefficients of the spherical harmonics by solving the linear
equations (10) or (11). To calculate the matrix elements,
we need to know the values of h, θh, and ϕh. These are
constants related to the lattice parameters, and can be obtained
with routine x-ray diffraction measurements or Kossel line
measurements on single crystals.17 We also need to estimate
the crystal size from the line broadening of the x-ray diffraction
to construct the size distribution function μ(r).

The integral function in Eq. (11),

SJl(h,k) =
∫

jl(hr)Re[eikrSl(kr)]μ(r)rdr, (12)

is a structure-independent function of h, with a given wave
vector k and a size distribution function μ(r). For odd l’s and
large even l’s, SJl(h,k) abruptly approaches zero at h = 2k.
This is the consequence of the diffraction limit imposed by the
equation k̂ · ĥ = h/2k.

Figure 1 shows an example of the numerical calculation
of SJl(h,k) for l ∈ (0,55). Integration is performed with μ =
η(r − 200 Å). For low even l’s, the function extends beyond
h = 2k, but quickly decays to negligible values. We attribute
this to the tails of the Kossel lines with h values nearest to 2k

from above.
Even though the diffraction limit reduces the number of

structure factors that can be derived from the XFH data, it helps
in defining a finite set of unknowns to be solved in the linear
equations (10) and (11). All structure factors with h < 2k must
be included to resolve the ρ(�h)’s with high accuracy, while it is
safe to ignore the structure factors with h > 2k using selected
spherical harmonics.

The fine structure of the experimental XFH data depends
on crystal size, the angular resolution of the x-ray beam,
and other factors that may distort high-frequency signals in
the hologram. For a structure to be reliably solved from the
hologram, signals more susceptible to experimental conditions
must be separated from those strongly determined by the
structure factors. The method of spherical-harmonic expan-
sion separates hologram signals according to their angular
frequency, thus allowing unreliable high-frequency signals to
be discarded. In practice, low- and mid-frequency signals are
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weakly influenced by the crystal size and the angular resolution
of the x-ray beam.

The number of structure factors to be resolved in this
method only depends on the energy of the probing x-ray wave.
Therefore, the higher order spherical harmonics generated
by sharp Kossel lines due to a large crystal size can be
excluded from the structure solving matrix without losing the
structural information. This acts effectively as a low-pass filter
for suppressing the nonholographic components, namely, the
object-object terms18 and the secondary yield caused by an
extinction effect19 in XFH data.

The samples most suitable to XFH measurement are
crystals close to the ideally imperfect condition, as defined
by Warren,14 so that both the object-object term and the
extinction effect can be ignored. In practice, usually the
crystals under study are imperfect but not ideally imperfect,
and have distributions in size and orientation of their mosaic
blocks. The large crystal component and the mosaic clusters
with a closely coincided orientation are the origins of the
nonholographic contaminations. Both of these two kinds
of nonholographic terms manifest their effects as abrupt
intensity changes in a very narrow angular region in the
center of the Kossel lines, and therefore contribute mostly
to the higher order harmonics. It has been demonstrated in
previous studies19 that the scattering from large crystals will
also contribute to lower order harmonics. The nonholographic
terms in these scattering contributions are negligible as they
are mostly from the wide angular regions away from Kossel
lines. The experimental techniques that have been widely used
to minimize the nonholographic terms before data analysis,
such as measuring the integrated intensity with a finite angular
resolution or averaging afterward by applying a low-pass
filter,18 and taking the holograms with multiple x-ray energies,
are compatible and can be used with the spherical-harmonic
analysis method.

To demonstrate the structure-resolving power of the spher-
ical harmonic analysis method on XFH data, we applied
it to a hexagonal HoMnO3 structure (space group P 63cm,
a = 6.1413 Å, c = 11.4122 Å).20 HoMnO3 is an important
multiferroic structure.21 We choose this system as an example
because this noncentrosymmetric system has a complex struc-
ture factor and has heavy holmium atoms in its unit cell, which
makes it difficult to accurately determine the oxygen positions
using the regular XRD method. Calculating the spontaneous
polarization of the system based on its structure requires
accurate determination of the positions of the oxygen in the
unit cell. The manganese in the structure is the fluorescence
emitter with 8 keV x rays used as the probing wave. A
depolarized indirect hologram is simulated with the equation

χ (�k) =
∑

i

fg(�k,�ri)
re exp(ikri − i�k · �ri)

ri

μ(ri) + c.c., (13)

where fg(�k,�r) is a generalized atomic scattering factor that
includes the near field effect,22 the anomalous scattering
correction, and the polarization factor. We assigned only one of
the six Mn atoms in the HoMnO3 unit cell as the fluorescence
emitter in our simulation so that we could compare the
reconstructed electron density map directly to that of the

model structure. With an x-ray energy of 8 keV, there are
3334 structure factors satisfying h < 2k. The hologram was
simulated with 0.5◦ resolution in both θ and ϕ, resulting in
361 × 720 data points. We employed FORTRAN codes adapted
from SPHEREPACK 3.0 (Ref. 23) to calculate the coefficients
clm of spherical-harmonic expansion from these data points.
A complementary error function μ = erfc[(r − 150 Å)/50 Å]
was used to define the crystalline size in the hologram
simulation and in the matrix calculation. The clm’s with
l ∈ (21,99) and m ∈ (0,l) were used to construct 4740 complex
linear equations (11). The matrix is directly invertible with a
moderate condition number 434.5. We used the matrix division
function of MATLAB to solve this overdetermined linear system.

The 3344 structure factors we extracted had a standard
deviation of approximately 1.8% with respect to the model
values. We then constructed an electron density map in the
(100) plane of HoMnO3 with these structure factors [Fig. 2(a)].
In Fig. 2(b) we depict the real space images obtained using the
Barton transform, from five holograms acquired with equally
spaced energies from 8.0 to 9.6 keV [Fig. 2(b)], and a single
energy hologram at 8 keV [Fig. 2(c)], on the same contrast
scale.

Note that the atomic images by the Barton transform look
particularly distorted because of the presence of heavy Ho
atoms in the HoMnO3 structure and the low symmetry of

FIG. 2. (Color online) (a) Reconstructed electron density in (100)
plane from the solved structural factors of HoMnO3, (b) structure
image from Barton’s method with five energies, and (c) from Barton’s
method with one energy.
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the P 63cm space group. The intensity of the interference
ripples is proportional to that of the heaviest elements in the
structure. The ripples caused by Ho (atomic number 67) are
more intense than the image intensity of Mn(25) and O(8)
atoms, thus the signal from the Ho dominates the pattern.
Because of the low symmetry of the system, the center
atom Mn has different distances to the four neighboring Ho
atoms in the (100) plane, causing a difference in their image
intensities.

Comparing the result of the spherical-harmonic analysis
and the Barton transform clearly reveals that our method
greatly improved the structure-resolving capability of the
XFH method. It also demonstrates that the essential structural
information is already contained in a single energy hologram.
The electron density map displays precise atomic positions
and proper intensity ratios between the Ho, Mn, and O atoms,
thus providing adequate information to resolve the structure
without a priori knowledge of the atomic constituents of
the unit cell. Importantly, the position and shape of the
oxygen atoms are shown clearly, despite the presence of heavy
holmium atoms in the unit cell. Hence, XFH undoubtedly is an
effective tool to probe systems with high variations in electron
density. Further, the spherical-harmonic analysis on XFH data
affords us a method to study the nonspherical distributions
of the electron density without resorting to model building
or phase refinement. This application of XFH may become
a unique tool for x-ray crystallography studies of electron
density.

The ambiguity caused by the multiple symmetry distinct
fluorescence centers is an intrinsic limit of the XFH method
and can be resolved by making use of space group symmetry

and bond length constraints. Spherical-harmonic analysis, as
well as the Barton transform method, require a hologram data
set in a full 4π solid angle. Currently, most XFH measurements
are taken from a flat surface of large single crystals, and hence
it is difficult to directly measure the hologram in a full 4π solid
angle in this geometry. Therefore, the point group symmetry
of the crystal is employed to extend the data set to its full
range. With the advancements in techniques of synchrotron
radiation, XFH can be measured from small crystals in the
transmission mode using a highly focused beam. XFH in a
transmission mode will make it possible to directly measure
the full range hologram, to measure the holograms in two
polarization geometries with the same diffractometer setup (to
depolarize the direct XFH data), and to extend the application
of XFH to other fields of crystallography, such as structural
biology.

Our reconstruction algorithm based on spherical-harmonic
analysis provides an efficient method that is readily automated
to directly extract structural information from single energy
x-ray fluorescence holograms. This method makes XFH a
quantitative method that is highly applicable to fields of
material characterization. Since the method does not rely on the
isolated-atom approximation, it can be used to retrieve electron
density from high resolution XFH data, and thus provides
a benchmark for quantum-chemical calculations based on
density functional theory.

This work is supported in part by NSF instrumentation
Grant No. DMR MRI-0722730. The authors acknowledge
helpful discussions with Yangang Liu on general inverse
problems and Weiguo Yin on density functional theory.
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