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Time-dependent distributions in self-quenching nucleation
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Diffusion- and interface-limited Becker-Döring (BD) -type nucleation is considered in a closed system,
where supersaturation is depleted by growing nuclei. Special focus is on nonadiabatic effects, which become
increasingly pronounced for barriers lower than 20–25kBT , and which lead to nucleation rates deviating from
their quasi-steady-state (QSS) values. Several essential modifications of the QSS distribution are observed. For
example, the front is continuous rather than sharp and has a double-exponential shape, which is in agreement
with the earlier matched asymptotic solution obtained in neglect of depletion. The total number of nuclei is larger
than predicted by the QSS approximation. The obtained distributions are compared with numerical solutions of
the BD equations and can serve as initial conditions for further transition to the Ostwald Ripening stage.
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I. INTRODUCTION

The term “nucleation” is usually associated with the initial
stage of a phase transformation in a sufficiently pure metastable
system, when nuclei of a new phase are formed due to thermal
fluctuations. The number and the diversity of applications
is enormous [1]. The earliest, classical theory of nucleation
[2–5] (see Sec. II) has a somewhat simplified view of the
associated thermodynamics and kinetics but compensates for
that by its potential to cope with very disparate time scales
that appear in the problem. For a full self-contained picture
of a phase transition, nucleation should be complemented
by the effects of growing nuclei on the metastable phase,
where one can identify two mainstream situations. First,
the volume of the metastable phase can be diminished by
growing and possibly overlapping nuclei, while the original
level of metastability (supersaturation) remains unchanged.
This corresponds to the Kolmogorov-Avrami scenario [6,7]
with a huge number of metallurgical [8] and other applications.
Second, the supersaturation can be exhausted by the growing
nuclei, as in the Lifshits-Slyozov-Wagner (LSW) [9,10]
description of Ostwald Ripening in supersaturated solutions
(which has a direct analog in condensing vapors, etc.). Some
formal similarities between the two type of effects can be
established at small times since in this limit both linearly
depend on the transformed mass; moreover, a different time
scale notwithstanding, the Kolmogorov-type exp(−tα) time
dependence of the nucleation rate remarkably appears as the
first iteration in the depletion problem as well. The latter will be
considered in the present study, leading to initial conditions for
the LSW regime. The postnucleation transition to that regime
requires much larger time scales and still remains an open
problem [11].

Of main interest will be the distributions of growing nuclei
over their sizes, which follow from the time-dependent Becker-
Döring (BD) equation with a mass conservation law. Tradition-
ally, such problems were solved using the quasi-steady-state
(QSS) approximation, as described in the next section. Already
in this approximation depletion of the metastable phase
generally leads to a nonlinear integral equation, without a clear
large parameter to enable a closed analytical solution. Iterative
[12] and numerical [13] approaches were described for the
interface- and the diffusion-limited growth, respectively, and in

appropriate limits the time and size can be rescaled to make the
equation parameter free [13]. The QSS approximation leads
to a convenient scaling and will serve as a reference point in
the forthcoming analysis. At the same time, justification of the
QSS approximation requires very high values of the nucleation
barrier. This is not always true in real experiments, and almost
never true in computer simulations, where barriers notably
less than 20kBT are a common practice. Thus, the focus of the
study will be the non-QSS effects.

There are two aspects of such effects: those due to
dependence of the nucleation flux on dimensionless rate N
of the barrier change [14,15] and those of transient nucleation
following the “switch on” of nucleation at a given instant [15];
numerical studies are also available here—see, e.g., Ref. [1]
and references therein. In neglect of depletion, both types of
effects can be described using matched asymptotic (singular
perturbation) technique and can be combined [16]. Depletion,
however, adds nonlinearity to the problem, which enormously
complicates asymptotic analysis, and further complications are
added by the impossibility of integrating the growth equation
analytically in the case of a time-dependent critical size.
Nevertheless, the situation is not hopeless because of very
large time scales associated with depletion. In particular, for
a closed system N remains small throughout most of the
nucleation stage and can be neglected, while the changes of
the critical size during that stage are minor, which allows
an approximate analytical description of growth. A unified
expression for the distribution function, which combines
short-time transient and long-time depletion effects can then
be constructed, as will be discussed below. Numerics will be
used to assess the accuracy of the proposed approximations.
It is possible to further increase the accuracy by combining
analytical description of non-QSS nucleation with numerical
description of growth. That would also allow us to broaden
the picture of a phase transition beyond the nucleation stage,
when the time dependence of the critical size becomes crucial.
A separate discussion of a combined approach of that kind will
be presented elsewhere.

The present paper has the following structure. In Sec. II
the standard continuous nucleation equation and associated
growth rates are introduced; basic assumptions regarding the
two large parameters of the problem, the dimensionless barrier
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B and the critical cluster number n∗ , are discussed. Next,
closing of the nucleation equation by the depletion condition
is considered, and the iterative approach within the QSS
approximation is described in some detail. Earlier relevant
results on transient nucleation are also specified in this section.

Section III contains the main analytical results and their
comparison with numerical solutions both for diffusion- and
interface-limited nucleation and for growth. Appendix A gives
explicitly the second iteration for the QSS approximation.
While not used explicitly, except for the figures, this iteration
helps us to understand the limits of accuracy of the treatment.
Numerics is described in Appendix B. It is based on a
generalization of the Turnbull-Fisher version of the discrete
BD equation, which is expected to be very close to continuous
approximation for a sufficiently large critical number.

II. BACKGROUND

A. The nucleation equation

The classical thermodynamics of nucleation was developed
by Gibbs, who showed that the minimal work W (R) required to
form a nucleus of radius R in a supersaturated medium passes
through a maximum W∗ ≡ W (R∗) at the critical radius R∗ , the
same as introduced by Kelvin. The value W∗ determines the
dimensionless nucleation barrier B = W∗/kBT and, according
to Volmer and Weber [2], determines the exponential part
of the nucleation rate J ∝ e−B (see, e.g., Ref. [17] for a
textbook description of nucleation thermodynamics). Kinetics
of nucleation was further considered by Farkas [3], Becker
and Döring [4] (BD), and Zeldovich [5], who treated it
as a random walk in the n-space, n being the number of
monomers in a nucleus (for simplicity of notation, n = R3 with
dimensionless R will be used). The corresponding discrete
Master Equation for the distribution of nuclei fn(t) is known
as the “BD equation”; see Appendix B. In the case of small
supersaturations a continuous Fokker-Plank equation can be
written:

∂f

∂t
= − ∂j

∂R
, j = −β

∂f

∂R
+ Ṙ f (1)

with f (R,t) = fn(t) dn/dR. The deterministic growth rate
Ṙ follows from macroscopic (hydrodynamic) description of
kinetics of a single nucleus, while the diffusivity β(R) is
determined by an “Einstein relation” in the R space [5]:

β = − kBT Ṙ

dW/dR
. (2)

Boundary conditions (BCs) are selected as follows. At
small R � R∗ a quasi-equilibrium distribution f eq(R) ∝
exp[−W (R)/kBT ] dn/dR is expected; at large R nuclei just
grow, implying either a drift flux j → Ṙf or a vanishing
reduced distribution f/f eq → 0. Such BCs allow a steady-
state solution with an R-independent flux, given for W∗ �
kBT by [5]

J = �

2τ
√

π
f eq(R∗), �−2 = − 1

2kBT

d2W

dR2

∣∣∣∣
R=R∗

,

(3)

τ−1 = dṘ

dR

∣∣∣∣
R=R∗

.

This will be further used as QSS or “Zeldovich” nucleation
rate.

A related textbook [18] introduces nucleation kinetics
specifically for diffusion-limited growth, which will be con-
sidered in the present study. In this case one has

Ṙ = Rθ+1
∗

Rθτ

(
1 − R∗

R

)
, (4)

where θ = 1 and the time scale τ is related to diffusion
coefficient in the medium. Similarly, the other mainstream
model considers free molecular (“ballistic”) interface-limited
growth and for small supersaturations corresponds to θ = 0
in the above expression. In that case τ is related to molecular
collision frequency, as studied by Hertz and Knudsen.

For work W a standard expression, often known as the
“droplet model,” will be used:

W (R) = R2σ − �μn, (5)

where σ is “interfacial tension” (properly scaled to account
for dimensionless R = n1/3), while �μ > 0 is the difference
of chemical potentials. In the vapor-to-liquid transition

�μ = kBT ln S, (6)

where S > 1 is supersaturation, and the ideal gas equation
of state is used for vapor. For small S close to 1, which are
implied in the present study, a similar expression holds for
supersaturated solutions. With these specifications one has

R∗ = 2

3

σ

kBT ln S
, W∗ = 4

27

σ 3

(kBT ln S)2
. (7)

Apart from the time scale τ , Eqs. (1) and (4) with
β ∝ 1/Rθ+2 are thus fully specified by two independent
dimensionless parameters σ/kBT and ln S. Equivalently, one
can use another dimensionless pair B = W∗/kBT and n∗ = R3

∗
with

σ/kBT = 3B/n2/3
∗ , ln S = 2B/n∗

and with expected

n∗ � B � 1. (8)

In the above, the condition B � 1 is needed for singular
perturbation analysis of Eq. (1) at small times, in the transient
regime [15]. The large n∗ � B is required to justify the
continuous approximation and occasionally will be used for
linearization of ln S 	 S − 1 . (Otherwise, unlike the former
condition B � 1, the requirement of a large critical number
is nonessential for the BD picture, as long as one uses
its discrete version with correspondingly adjusted Ṙ and
postulates the validity of the droplet model at the smallest
sizes. The stationary Zeldovich formula remains reasonably
accurate even for n∗ of several units [19]; the aforementioned
transient solution in a general form is valid for n∗ � B, while
the strong inequality n∗ � B leads to the simplest growth
rate (4) with an elementary expression for the “incubation
time”; see Sec. II D.) No special hierarchy between B

and n
2/3
∗ is expected in the present study, although large

values of dimensionless interfacial tension σ/kBT reduce the
contributions of small clusters (see below) and help to justify
the ideal gas approximation in the equation of state. It is also
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assumed that while B and n∗ change in time together with the
supersaturation, the ratio B/n

2/3
∗ remains fixed together with

T and σ . Additional restrictions on the relation between B and
n∗ will be introduced in connection with depletion effects.

B. Depletion of monomers

It is more convenient to start with the discrete BD equation.
One could formally write conservation of mass [20]

f1 +
∞∑

n=2

nfn = const (9)

and use this to determine the number of monomers f1(t), which
in turn determines the supersaturation. In particular, with this
closure the BD equation predicts [20] the emergence of the
LSW asymptotic regime [9,10] in the limit t → ∞ when the
sum is dominated by very large n. At smaller, nucleation time
scales, however, one notes the potential contribution of small
clusters: dimers, trimers, etc. At those sizes the macroscopic
droplet model used to evaluate W (R) breaks down, as already
noted by Farkas [3]. It is also unclear that it is consistent to
include contributions of such clusters in the conservation law,
at the same time ignoring them in the ideal-gas-type equation
of state used to evaluate �μ.

In order to avoid the above difficulties, one can replace
the lower summation limit by some “mesoscopic” cluster
size n0 . This highlights the asymptotic nature of the problem
associated with consumption of monomers by large droplets
with n � 1 and allows one to avoid a discussion of the delicate
questions associated with properties of the metastable phase
on the microscopic level. The procedure is consistent as long as
the actual selection of n0 does not matter, which can be verified
operationally. Once the smallest n are excluded, the sum can
be replaced by an integral. In R variables with R0 = n

1/3
0 one

has


3(t) =
∫ ∞

R0

R3f (r,t) dR (10)

for the total “mass” contained in droplets. If f is normalized
per monomer of the metastable phase one can write

S(t) = S0[1 − 
3(t)]. (11)

The above relation will be used in both numerical and
analytical parts of the study. In the former, the value of R0

is selected in the growth region, somewhat above the initial
critical size R0

∗ , and insensitivity of the results to the actual
value of the selection is verified. Analytically, only terms that
formally unboundedly grow at large t , and that are explicitly
insensitive to the lower limit of integration in Eq. (10), will be
considered.

Once the time dependence of the supersaturation is estab-
lished, it can be used to relate the barrier and the critical cluster
number to their initial values:

B(t) = B0

(
ln S0

ln S

)2

, n∗(t) = n0
∗

(
ln S0

ln S

)3

. (12)

Note that as long as 
3(t) remains small, one can use the so-
called nucleation theorem (or, in our case simply the relation
dB/d ln S = n∗ ) to write for large n0

∗

J (t) 	 J0 exp[−n0
∗
3(t)]. (13)

This definition of the “nucleation curve” J (t) can be used in
both QSS and non-QSS cases, which differ in the way 
3(t)
is evaluated. In non-QSS situation, however, J (t) does not
directly correspond to a “nucleation rate.”

C. The QSS approximation

To further simplify notations, let us agree to understand
“t” in the following analytical part of the study as the
dimensionless “time”:∫ t

0
dt ′/τ (t ′) 	 t/τ0. (14)

The earlier rate J is then multiplied by τ , eliminating the latter
from the preexponential. A scaled radius r = R/R0

∗ also will
be used.

In the QSS approximation—indicated by a superscript q—it
is assumed that, in addition to QSS rate J , nuclei also have
negligible initial size r = 0 and that they evolve with a bulk
growth rate ṙq neglecting the curvature effects:

ṙq = 1

rθ

(
R∗(t)

R0∗

)θ+1

(15)

(all three assumptions are consistent with each other, and are
either satisfied or violated simultaneously [21]). Neglecting the
weak time dependence of the critical size during the nucleation
stage, one can integrate the growth equation to obtain

rq(t) 	 [(θ + 1)t]1/(θ+1), (16)

which gives



q

3(t) = n0
∗

∫ t

0
dt ′ J (t ′)rq(t − t ′)3 ≈ 1

θ + 4
J0n

0
∗r

q(t)θ+4.

(17)

In the above, the approximation indicates the first iteration.
Introducing a time scale

t̃ = 1

θ + 1

(
θ + 4

J0(n0∗)2

)(θ+1)/(θ+4)

, (18)

one has

J q(t) ≈ J0 exp[−(t/t̃)α], α = θ + 4

θ + 1
. (19)

This approximation is shown by a solid line in the left-hand
sides of Fig. 1 for θ = 1 and Fig. 2 for θ = 0, respectively. The
area under such lines is given by ω

q

0 = �[(2θ + 5)/(θ + 4)],
which evaluates to ω

q

0 ≈ 0.887 for θ = 1 and to ω
q

0 ≈ 0.906
for θ = 0, in accord with Refs. [6,12]. The total number of
nuclei is then 
0 = J0 t̃ω0 .

Second iterations are given in the Appendix A. For θ = 1
this iteration is shown by a dashed line in the same left part
of Fig. 1 with ω

q

0 	 0.9316; this already provides sufficient
accuracy compared to the available numerical solution of the
corresponding integral equation [13] (a somewhat different
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FIG. 1. (Color online) The scaled Zeldovich rate y = J/J0 as
a function of “time” x = t/t̃ in diffusion limited case. Symbols:
numerical solutions of Becker-Döring equations with B0 = 25 and
n0

∗ = 216; solid line on right: Eqs. (13) and (29) with θ = 1. The
solid and dashed lines on left are the QSS approximation in the first
two iterations: exp(−x5/2) and Eq. (A1), respectively.

scaling used in the present work should be mentioned). For
θ = 0 changes introduced by the second iteration are minor
[12]. One has ω

q

0 	 0.910 , and the corresponding curve blends
in with the one representing the first iteration in the left part
of Fig. 2 with the difference less than 0.01.

Note that in the absence of a large parameter, the con-
vergence rate of the iterative approach is determined by the
power index α in Eq. (19). For large α the corresponding
rate approaches J0(t̃ − t), and already the first iteration is
rather accurate, as for interface-limited growth with α = 4. In
the diffusion-limited case a smaller value of α = 5/2 leads
to a more substantial contribution of the second iteration.
Nevertheless, the resulting deviation is still minor, and the
much more compact first iteration will serve as a starting point
for the forthcoming study of non-QSS effects. Obviously, the
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FIG. 2. (Color online) Same as in Fig. 1, but for the ballistic model
with θ = 0. Symbols: numerical solutions of BD equations with B0 =
25 (right) and B0 = 30 (left); the two lines on right: Eqs. (13) and
(29) for the same parameters. The solid line on left is exp(−x4) , the
first iteration in the QSS approximation; the second QSS iteration
(dashed) gives a visually indistinguishable result.

latter must exceed the aforementioned deviation in order for
the treatment to make sense.

Within the QSS approximation accuracy can be somewhat
improved by an account for variable parameters τ and R∗
when evaluating the dimensionless time and rq(t), and by
using a more accurate approximation in the exponential of
Eq. (13) for smaller n0

∗ . In addition, for θ = 0 an “exact”
(in the QSS sense) system of ordinary differential equations
for the four lower moments 
0 − 
3 [22] can be integrated
numerically. However, for the parameters considered there are
no visible changes in the nucleation curve. In particular, the
area ω

q

0 changes from 0.904 for B0 = 20 to 0.907 for B0 =
40. In practice, corrections to the Kolmogorov’s exp(−t4)
law become detectable at much smaller B0 , when the QSS
approximation itself is not justified.

Evaluation of the QSS distribution is straightforward.
Introducing the growth time

tqgr (r) 	 1

θ + 1
rθ+1, (20)

one relates the distribution at any time to the nucleation curve
J q(t) as

f q(r,t) = 1

ṙq
J q

[
t − tqgr (r)

]


[
t − tqgr (r)

]
. (21)

Typical examples are shown by right-most dashed lines in
Figs. 3 and 4 and appear in agreement with similar curves
presented, e.g., in Ref. [13].

Using n∗/
√

B as an estimation of the preexponential of the
dimensionless nucleation rate, one can now complement the
chain of inequalities (8) by the condition

B + 1
2 ln B − 3 ln n∗ � 1,

which appears in connection with depletion. This condition
ensures that nucleation is not too fast, so that the lifetime
of the metastable state t̃ is sufficiently long. A very strong
inequality here would justify the QSS approximation with

2 4 6 8 10 12 14
r

2

4

6

8

10

12

14
f

FIG. 3. (Color online) Scaled distributions f (r,t)/J0 for r > 1 at
different times t (diffusion). From left to right, according to the front
position: t = 5000, 10 000, 20 000, 30 000, and 40 000 (in original
time units with τ0 	 466.6 and t̃ 	 18680). Solid lines: Eq. (32);
symbols: from Becker-Döring equations (numerics). Dashed line:
the QSS approximation at t = 40 000.
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FIG. 4. (Color online) Scaled distributions f (r,t)/J0 for r > 1 at
different times t (ballistic). From left to right, according to the front
position: t = 500, 1000, 1500, 2000, 2500 (in original time units with
τ0 	 77.8 and t̃ 	 1138). Solid lines: Eq. (32); symbols: from BD
equations (numerics). Dashed line: the QSS approximation at t =
2500.

nuclei significantly exceeding the critical size contributing
to depletion. Conversely, a strong violation of this inequality
would imply an almost immediate termination of nucleation
due to consumption of monomers by smaller clusters, without
a clear separation of the nucleation and the growth regions. It
is assumed in the following discussion that while the condition
B − 3 ln n∗ � 1 holds and average nuclei depleting the system
are well in excess of the critical size, the inequality is not strong
enough to neglect the non-QSS effects.

D. Transient distributions in neglect of depletion

The singular perturbation solution to the BD equation was
obtained in Ref. [15] using a combination of matched asymp-
totic and Laplace transformation techniques. The transient
nucleation flux—the “nucleation rate”—was shown to have
a universal double-exponential shape, but with parameters
sensitive to the deterministic rate ṙ associated with a selected
form of the BD equation. In Ref. [23] the general solution
was extended toward arbitrary large sizes in the growth
region (in neglect of depletion) and was specified for several
mainstream nucleation models, including the diffusion- and
interface-limited cases, which are of interest in the present
study. One has in present notations [15]

j (r,t) = J0 exp{− exp[ti(r) − t]} (22)

with the “incubation times” ti(r) expressed in terms of decay
and growth integrals ± ∫

dr/ṙ [23]. In case of small supersat-
urations with ṙ = (1 − 1/r)r−θ the integrals are elementary
for θ = 1 and 0, and the incubation time is given by

tDif
i (r) = ln(6B0) + 1

2 (r − 1)2 + 2(r − 1) + ln(r − 1) − 3
2 ,

(23)

tBal
i (r) = ln(6B0) + r + ln(r − 1) − 2 (24)

[which are, respectively, Eqs. (11) and (12) in Ref. [23]].

The distributions in the growth region are related to fluxes
by

f (r,t) = 1

ṙ
j (r,t). (25)

For θ = 1 they are illustrated by the two left curves in Fig. 3
[the figure includes the depletion effects (see below), but at
the two smallest times those are negligible]. The distributions
are singular near r = 1 and develop a stationary minimum
near r = 2 at t � ln(6eB0) . In contrast, in the ballistic case
θ = 0 transient distributions are monotonic; see the three left
small-time curves in Fig. 4.

III. RESULTS

A. The nucleation curve

The above transient distributions are characterized by a
narrow front of double-exponential shape, which propagates
in the r space with a rate ṙ . For the location of the front ri(t)
we use the condition [24]

ti(ri) = t. (26)

Unlike the case of interface limited growth (see below), in the
diffusion-limited situation the above equation cannot be solved
exactly and will be treated numerically. Connection with the
QSS counterpart given by rq(t) follows from the large-time
asymptote

rDif
i (t) ∼ rq(t) − 1 − 1

2
√

2t

[
ln

(
72B2

0 t
) + 1

]
. (27)

In the ballistic case, on the other hand, one can write explicitly
[24]

rBal
i (t) = 1 + W

[
e1+t

6B0

]
∼ rq(t) − ln

6B0t

e2
, (28)

where W[z] is the so-called Lambert W function, defined as
the root of z = WeW.

Obviously, there is a certain flexibility in the precise
definition of the “front” within the finite transition layer, and,
alternatively, one could define it from the “time lag” ti + γ

[with γ = 0.5772 . . . being the Euler constant [23]], i.e., from
an equation

ti(ri) + γ = t.

This would somewhat increase the accuracy when estimating
the transformed mass due to a correct account for the shape
of the transition layer (see also Ref. [25] for a similar issue in
the Kolmogorov-Avrami problem). However, at least for the
parameters considered no overall improvement of accuracy
was observed, and the slightly simpler definition of ri(t) given
by Eq. (26) will be used.

At large times, analogously to the first iteration in the QSS
approximation, one can write


3(t) ≈ 1

θ + 4
J0n

0
∗ri(t)

θ+4. (29)

This determines the nucleation curve via Eq. (13), as shown in
Figs. 1 and 2 by solid lines on right. Results are in agreement
with numerical solutions of the BD equation, represented
by symbols. The deviation from corresponding QSS curves
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FIG. 5. (Color online) The scaled number of nuclei ω0 = 
0/J0 t̃

as a function of dimensionless initial barrier B = B0 (ballistic
model). Note the excess over the QSS “Kolmogorov” value ω

q

0 	 0.9.
Line: from Eq. (30), with ω0 − ω

q

0 ≈ ω
q

0 ln(B0 t̃)/t̃ at large B0 .
Symbols: from BD equations (numerics).

decreases with the increase of the barrier, and for B0 	 40
(not shown) would practically disappear.

The total number of nuclei can be evaluated as


0 	
∫ ∞

0
dt J (t) − γ J0. (30)

The last term describes the reduction of the number of nuclei
due to transient nucleation at small t . That contribution,
however, is minor compared to the broadening of the nucle-
ation curve J (t) versus J q(t). Thus, somewhat unexpectedly
the numbers of nuclei are increased compared to the QSS
approximation, as further emphasized in Fig. 5.

To estimate the effect, note that in both QSS and non-
QSS approximations the Zeldovich rate J departs from its
original value J0 at comparable values of 
3. Thus, if tq � t̃ is
the characteristic time when the QSS nucleation curve is still
flat, the non-QSS counterpart of this time, t, is determined
by the condition rq(tq) ≈ ri(t), where large-time asymptotic
approximation for ri(t) can be used. The extra number of
nuclei is then estimated as δ
0 ≈ J0(t − tq), which should be
compared to 


q

0 = ω
q

0J0 t̃ . In both models ω
q

0 is not far from 1,
so that one obtains δ
0/


q

0 ∼ [
√

2t̃ + (1/2) ln(72eB2
0 t̃)]/t̃ in

the diffusion-limited case and ∼ ln(B0 t̃)/t̃ in the ballistic case,
respectively. Neglecting the weak logarithmic dependence on
the barrier, one expects that for each of the two models the
non-QSS effects scale with t̃ , which in turn is a power of
J0(n0

∗)2. Using J0 	 (1/2)
√

3/(πB0) n0
∗ exp(−B0), one thus

expects approximately similar values of t̃ for different initial
conditions if the parameter

B0 − 3 ln n0
∗

is held fixed. While the non-QSS corrections to 
0 are
generally not too large, for a moderate barrier (or large critical
size) they can nevertheless significantly exceed the minor
difference between the first and second QSS iterations, which
justifies using the former in the non-QSS case.

B. The distribution function

Consider some small value of r0 > 1 as “initial size for
growth” and treat the flux j (r0 , t) as the “nucleation rate.”
Using a distinct separation of the transient and depletion time
scales, one can approximate this flux as

j (r0 , t) ≈ J (t) exp{− exp[ti(r0) − t]}. (31)

Strictly speaking, this flux is also affected by the rate of the
change of the barrier [14–16], but this rate is small during most
of the nucleation process due to large t̃ and will be ignored.

As long as the time dependence of R∗ can be neglected,
the distribution f (r,t) at size r is determined by the flux
j (r0 , t ′) evaluated at the “retarded” time t ′ = t − tgr (r,r0)
with tgr (r,r0) = ∫ r

r0
dr /ṙ . Shifting of ti(r0) by tgr (r,r0) just

turns the former into ti(r) for any selection of r0 . However,
by selecting r0 sufficiently close to 1 one also can require
tgr (r,r0) = ti(r), which is possible to achieve due to insen-
sitivity of J (t) to changes of the argument, which are small
compared to t̃ . Within a reasonable range, other selections of
r0 can be discussed, but the suggested choice leads to the most
compact expression for the distribution

f (r,t) ≈ rθ+1

r − 1
J [t − ti(r)] exp{− exp[ti(r) − t]}. (32)

The nucleation curve J (t) is determined by Eqs. (13) and (29)
for t � 0 and is defined as J (t) ≡ J0 for t < 0. The incubation
time ti(r) for the diffusion (θ = 1) and the ballistic (θ = 0)
models is given by Eqs. (23) and (24), respectively.

Equation (32) is the main result of the present work; Figs. 3
and 4 give typical illustrations together with numerical data.
The largest time considered was about 2t̃ . The proposed
analytical approximation is reasonably accurate during most
of the nucleation period; the accuracy is somewhat less than
the one observed for the nucleation curves due to additional
simplifying assumptions when describing growth to large
sizes. In particular, minor retardation of the front due to larger
values of the critical size by the end of nucleation is ignored in
this approximation, which becomes visible at the later times.
Note that in the diffusion case the “neck” of the distribution
at r 	 2 thins out with depletion, and its disappearance can be
associated with the end of nucleation. In the ballistic case the
“neck” is absent on the early transient stage but appears later
due to depletion and associated reduction of the nucleation rate.

The QSS distributions (dashed line in Figs. 3 and 4), on
the other hand, are too narrow and have a sharp rather than a
continuous front, which is moving too fast. At earlier times (not
shown in the figure) the QSS approximation does not reveal
the subtleties of the distribution at small sizes. Otherwise, one
notes that the QSS shape is reasonable and that associated
numerical errors would diminish with an increasing initial
barrier.

One also can access the asymptotic shape of the distribution
after the nucleation is over, but before changes in R∗ become
essential. Introducing the dimensionless distance from the
front [24] as ti(r) − t 	 [r − ri(t)]/ṙ = ρ, one can write

f (ρ) ≈ J (−ρ) exp(−eρ) (33)

with further simplification ρ ≈ (r − ri)rθ
i . In the ρ variables

the shape of asymptotic distributions is thus given by mirror-
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reflected nucleation curves from Figs. 1 and 2, stretched by a
large dimensionless t̃ , and with the sharp cutoff smoothed by
the double exponential, so that the front has a width of about
1. The asymptotic shape is not expected to be approached too
closely, however, since for the moderate barriers considered
the condition R∗ 	 const is not satisfied far enough beyond
the nucleation stage, especially for θ = 0.

IV. DISCUSSION

In the present study an approximate expression for time-
dependent distributions of nuclei was constructed, based on
distinct separation of the time scales associated with the tran-
sient nucleation and with the depletion stages. Corresponding
distributions are shown in Figs. 3 and 4 for the diffusion- and
ballistic-limited nucleation and growth, respectively. Those
results provide a notably improved match with numerical
data as compared with the traditional QSS approach, which
also does not describe properly the early-time near-singular
behavior of the distributions at small sizes, as well as the finite
width and the double-exponential shape of the font.

The proposed non-QSS approximation is still less rigorous
and slightly less accurate than the known matched asymptotic
solution of the transient problem in neglect of depletion (which
corresponds to early-time curves in Figs. 3 and 4), but this is
justified by nonlinearity introduced by depletion. Accuracy
is increased with a larger dimensionless barrier B0 ; the errors
introduced by the QSS approximation will also diminish in the
limit B0 → ∞, when the two approaches eventually converge.
For finite B0 the difference between the QSS and the non-
QSS descriptions is mainly determined by a dimensionless
parameter χ = B0 − 3 ln n0

∗ .
In experimental situations with a not-too-large barrier the

parameter χ will have only a moderate value, and non-QSS
corrections will be important. This is also true for Monte Carlo
and, especially for molecular dynamics computer simulations,
where rather small barriers B0 ∼ 101 are often considered.
The proposed solution is not expected to be too accurate for low
barriers, where one could prefer numerics, but there emerges a
more fundamental issue of separating the “transformed region”
since for such barriers the results will be sensitive to selection
of the cutoff R0 . Formally, one could use the conservation law
(9), i.e., R0 = 21/3, as discussed in Sec. II B, but in that case
small clusters will noticeably contribute to depletion starting
from the early transient stage, and other nonconventional
nucleation features can be expected.

For higher barriers, when major assumptions of the current
treatment are satisfied, accuracy can be further improved by
using the analytical approximation only for the nucleation flux,
and treating subsequent growth numerically. That would allow
to relax the condition of near-constant R∗ , which is required
for analytical integration of the growth equation. While this
condition is justified for most of the nucleation stage, it is even-
tually violated, reducing the overall accuracy at large times and
preventing transition to the Ostwald Ripening (OR) stage.

In a recent [11], based on a combination of analytical and
numerical technique, it was shown that if the QSS nucleation
description is used as initial conditions for OR, one does
not observe the expected smooth, bell-shaped asymptotic
distribution of LSW type [9,10]. As a possible explanation, this

was associated with the sharp front of the QSS distribution,
similar to the one in Eq. (21). Smooth QSS initial distributions
can be achieved by adding an external source during the
nucleation stage, temporarily violating mass conservation for
the system [26], which is not exactly the conventional OR
situation. In that sense, the non-QSS nucleation distributions
with a smooth (though narrow) front, obtained in the present
study for a closed system, could provide significantly improved
initial conditions for the standard OR problem, and eventually
could help to resolve the issues of how fast and how closely the
LSW distribution is approached. Potential importance of the
nucleation transience in subsequent establishment of the LSW
asymptotic regime also partly motivated the early singular
perturbation solutions of the nucleation equations [14,15].
The actual description of the transition to OR stage starting
from non-QSS initial conditions most likely will involve heavy
numerics and will require an independent study.

Finally, one should mention limitations of the Becker-
Döring approach that was used in the analysis. For example,
more general coagulation-fragmentation equations can be
considered [27]. In view of the above discussion, one notes
that despite qualitative similarities of some of the resulting
distributions, direct interactions between clusters broaden the
front as compared with the BD predictions. Thus, coagulation
effects too can facilitate transition to asymptotic OR (as
originally suggested in Ref. [9]). Comparison with the effects
of transient nucleation, however, will depend on the concrete
physical system and is beyond the present work.

APPENDIX A: SECOND ITERATION FOR THE QSS
APPROXIMATION

The second iteration can be written as

J q(t) 	 J0 exp[−ψ(x)], x = t/t̃ , (A1)

where the function ψ requires evaluation of the integral in the
first part of Eq. (17) with J q(t) obtained from the previous
step, Eq. (19). This involves∫ x

0
dz exp(−zα)(x − z)α−1,

which for integer θ [recall, α = (θ + 4)/(θ + 1)] can be
expressed in terms of a generalized hypergeometric function
[28]. In the diffusion limited case θ = 1 one has

ψ(x) = x5/2
5F6
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(A2)

Equation (A1) is then represented by a dashed line in
Fig. 1, which after rescaling appears quite similar to the
corresponding numerical curve of Ref. [13]. The asymptotes
of ψ(x) are given by

ψ(x) ∼ x5/2 − 15π

512
x5 , x → 0,

(A3)

ψ(x) ∼ 5

2
x3/2�

(
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)
− 3

2
�

(
4

5

)
x1/2 , x → ∞,
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respectively. The leading x5/2 small-time asymptote corre-
sponds to the first iteration, where 


q

3 [of which ψ(x) is
a dimensionless version] is evaluated under the assumption
of a constant nucleation rate, neglecting depletion. The x3/2

large-time asymptote indicates termination of nucleation and
growth of a fixed number of particles (still, under the QSS
assumption of a negligible critical size).

For θ = 0 the situation is somewhat simpler:

ψ(x) = 3E5/4(x4)

4
+ 3E7/4(x4)

4
− 3e−x4 +

√
2πx3

�
(

3
4

)

+ 4t�

(
7

4

)
− 1 − 3

√
πx2erf(x2), (A4)

where En(z) are exponential integrals. The asymptotes are
given by

ψ(x) ∼ x4 − x8/70 , x → 0,
(A5)

ψ(x) ∼ 4�(5/4)x3 − 3
√

πx2 , x → ∞.

The minor value of the small-time correction to the t4 law [6]
should be noted.

APPENDIX B: NUMERICS

The Turnbull-Fisher version of the general BD equation
[29–33], modified for arbitrary type of growth was considered:

dfn

dt
= jn − jn+1, jn = βn−1fn−1 − αnfn,

(B1)

βn = n(2−θ)/3 exp

(
Wn − Wn+1

2kBT

)
.

The loss αn = βn−1 exp[(Wn − Wn−1)/kBT ] follows from
detailed balance. For the work function Wn a discrete version
of W (R) was used:

1

kBT
Wn = B[3(n/n∗)2/3 − 2n/n∗]. (B2)

The initial values B0 = B(0) and n0
∗ = n∗(0) served as two

independent input parameters, which fully specify the prob-
lem. The lower boundary condition was selected as f1 = 1,
ignoring in both the analytical and the numerical parts the
minor effect of depletion. The upper boundary condition was
taken as fn = 0 at n = nmax + 1, with nmax = 400 in most
runs.

The deterministic growth rate Ṙ associated with this model
is given by the generalization of the one in Ref. [29]:

Ṙ = 2R∗
aτ

(
R∗
R

)θ

sinh

[
a

2

(
1 − R∗

R

)]
, a = 2B

n∗
= ln S.

(B3)

For small a the difference between this rate and its continuous
counterpart, Eq. (4), which was used to describe growth, is
minor. This justifies the selection of a Turnbull-Fisher-type
model over the original BD equations, which do not have
the exponential term in the definition of βn , and where the
difference from the continuous case is much larger [34]. (The
effect of discreteness on the location and width of the front
is discussed, albeit without depletion, in Ref. [35], which also
has earlier references.) With the above selection of βn , the
time scale τ is given by

τ = 3

2B
n(θ+4)/3

∗ � 1. (B4)

The size R0 in Eq. (10) was selected as 3801/3. This
determined the depletion of monomers and the resulting
increase in B and n∗ , as described in the main part of the
present paper. Changing R0 to 4801/3 (with corresponding
increase of the number of BD equations to 500) did not result
in visible changes of the results. The numerical solution was
realized in Mathematica 7 and, except for added depletion was
quite similar to the one of Ref. [16]. The time step was selected
between 1 for the faster ballistic model and 5 for the slower
diffusion model, respectively. Solution of the BD equations
makes sense as long as the critical size is well below the upper
bound. For that reason, nucleation description was terminated
once R∗ reached the selected R0 . Some undercounting of
the number of transformed nuclei 
0 can be expected upon
such termination and could partly explain deviations from the
analytical curve at smaller barriers in Fig. 5.

In most cases, the initial barrier and critical size were
selected, respectively, as B0 = 25 and n0

∗ = 63 = 216. The
approximate scaling of non-QSS effects was verified for the
ballistic model by selecting a larger n0

∗ = 73 and simultaneous
increase of B0 in order to keep the difference B0 − 3 ln n0

∗ fixed.
The resulting shift of the nucleation curve was indeed minor,
though visible. The main computational challenge came from
attempts to reproduce the QSS approximation, which requires
a very large barrier, leading to an increase in the number of
steps needed to span the lifetime of the metastable state. For
B0 = 40 and the original n0

∗ = 216 the results indeed closely
approach the QSS limit, as in Fig. 5.
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