
The Dielectric Response of Spherical Live Cells in Suspension:
An Analytic Solution

Emil Prodan,* Camelia Prodan,y and John H. Miller, Jr.z

*Physics Department, Yeshiva University, New York, New York; yPhysics Department, New Jersey Institute of Technology, Newark, New
Jersey; and zPhysics Department and Texas Center for Superconductivity, University of Houston, University of Houston, Houston, Texas

ABSTRACT We develop a theoretical framework to describe the dielectric response of live cells in suspensions when placed in
low external electric fields. The treatment takes into account the presence of the cell’s membrane and of the charge movement
at the membrane’s surfaces. For spherical cells suspended in aqueous solutions, we give an analytic solution for the dielectric
function, which is shown to account for the a- and b-plateaus seen in many experimental data. The effect of different physical
parameters on the dielectric curves is methodically analyzed.

INTRODUCTION

Dielectric spectroscopy has been successfully used in the past

to characterize biological matter (1–8). These types of mea-

surements probe the collective dielectric response of many

live cells in suspensions or in tissues, but by using more or

less elaborated models, useful information about the state of

the individual cell can be also extracted (9). The main ad-

vantage of this technique is that it is noninvasive, thus the state

of the individual cells can be monitored without disrupting

their natural cycle. Sensing methods have been developed

based on the difference in dielectric response between live and

dead cells of Escherichia coli (10). Dielectric spectroscopy

has been used to monitor the biomass concentration of

Bacillus thuringiensis (11) and that of Lactobacillus casei
(12) as well.

The dielectric response of live cells is fundamentally dif-

ferent from that of dead cells (10,13,14). From the dielectric

point of view, the main difference between the two cases is

the existence of the membrane potential in live cells. The

effect of the membrane potential is an accumulation of mo-

bile electric charge carriers at the membrane surfaces. When

the live cells are placed in time-oscillating electric fields,

these charges move on the surface of the membrane, giving

rise to extremely high polarizations. Since the mobility of

these surface charges is relatively small, this effect appears

only at low frequencies, typically ,10 kHz. In this range, the

relative dielectric permittivity of live cell suspensions can be

as high as 106 (15–17). This phenomenon is known as the

a-relaxation effect. At higher frequencies, the a-effect dis-

appears and a second interesting dielectric spectroscopic re-

gion appears, which is the b-relaxation. In this region, the

dielectric function of a cell suspension is tremendously en-

hanced by the presence of cell’s membrane alone.

In a previous article (18), we proposed a model for di-

electric response of live cells in suspension, which could

account for both a- and b-effects. Our focus in that work was

to give a semianalytic expression for the dielectric function

of suspended live cells of arbitrary shape. Because of the

complexity of that problem, we adopted the powerful, but

somewhat complicated, spectral method introduced by

Bergman (19). In this article, we work out a fully analytic

solution of the model proposed in Prodan and Prodan (18),

for the case of spherically shaped cells. We hope that this

analytic solution will provide a new useful tool for the sci-

entific community working in this field.

The independent input parameters for our model are: the

outer and inner radius of the cell’s membrane, r1 and r2; the

dielectric constant and conductivity of the medium (e0,s0), of

the membrane (e1,s1) and of the inner cell region (e2, s2); the

diffusion constants of surface charges accumulated at the

outer and inner surfaces of the membrane, D1 and D2; and

the membrane potential DV. Excepting e2 and D2, all these

parameters have a very specific effect on the dielectric dis-

persion curves of live cells in suspension, leading us to con-

clude that a fitting of an experimental dispersion curve with

the present model could provide extremely accurate values

for all these parameters.

There is a tremendous amount of theoretical work on

a-relaxation in colloids. Schwan et al. (20) is one of the

earliest works that pointed out that the macroscopic dielectric

function of colloidal suspensions is highly dependent, in the

low frequency range, on the electrical phenomena taking

place near the surface of colloidal particles. Schwarz (21)

gave a first semiquantitative treatment of these effects.

O’Brien and White (22) and DeLacey and White (23) de-

veloped the theoretical foundations for the second-layer po-

larization effect, and the work in the field culminated with

Mangelsdorf and White (24), which gave what was thought

to be a complete theory of electrophoretic mobility of charged

colloidal particles. This theory computes the net drag force

on charged colloidal particles in electrolytes and takes into
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account the deformation of the screening cloud via linearized

hydrodynamic equations. However, from early comparisons

with the experiment (25), it was soon realized that, besides

the electrophoretic effect, there is another effect, the a-re-

laxation, which dwarfs the first one in most of the cases. The

early theory of electrophoretic mobility considered a rigid

Stern layer. A complete theory will have to relax this as-

sumption. Notable efforts in this direction are contained in a

string of articles (26–29), which resulted in a fairly compli-

cated theory of the polarization of the second layer. A dis-

cussion of latest developments in the field can be found in

Delgado et al. (30), Shilov et al. (31), Carrique et al. (32), and

Grozze and Shilov (33).

Our model complements these works and we could argue

that it gives an effective picture of the a-polarization of the

second layer. The dielectric behavior of live cells in sus-

pension at low frequencies and low applied electric fields is

predominantly determined by the a-relaxation. The theoret-

ical model presented here specifically targets the a-relaxation

process, thus allowing us to keep the complexity and number

of input parameters to a minimum. Other theoretical works

specifically addressing the dielectric response of live cells

suspensions are contained in Vranceanu and Gheorghiu (34),

Asami et al. (35), and Gheorghiu (36,37)—notably, a simple

theory of a- and b-effects for spherically symmetric cells

(37), and an early attempt for quantifying the b-effect for

arbitrary geometry (34). Some later works (38,39) give al-

ternative approaches to the b-effect.

MEMBRANE POTENTIAL AND a-RELAXATION

Live cells contain a large number of negatively charged mol-

ecules. The inside negative charge attracts positive charges

from the outside, mainly potassium and sodium positive ions.

The cells allow most of the potassium ions to enter inside, still

maintaining an overall negative charge, while keeping most of

the sodium ions outside. This gives rise to a sharp potential

difference across the membrane, called the resting membrane

potential. Its value can be anywhere in a range from 60 mV

to a few tens over 100 mV. The electric field due to such

potential differences is enormous. For example, 100 mV over a

membrane of 10 nm gives an electric field of 10,000,000 V/m.

The charge distribution near the cell’s membrane is sche-

matically represented in Fig. 1 a. As discussed above, we

have a positive ion distribution outside the membrane and a

negative ion distribution inside the membrane. The exact

radial profile of the charge distribution can be computed by

solving the coupled equations describing the electrostatics

and diffusion of ions near the membrane. However, the exact

profile is not relevant for this study. What is important is that

the distribution is confined to within a few nanometers from

the surface of the membrane.

When an electric field is applied, the charge distribution is

deformed as schematically shown in Fig. 1 b. This redistri-

bution generates a large dipole moment, which is at the origin

of the a-relaxation process (40–42). If the field is time-

oscillating, the ions will try to follow the electric field and

dynamically redistribute themselves. As we shall see, there is

a sharp frequency above which the ions can no longer follow

the electric field. Above this frequency, the polarizability of

the cells drastically decreases and the a-effect disappears.

THE MODEL

Our goal is to propose and then solve analytically a model for

the dielectric response of live cells in suspensions in the

frequency range from 1 Hz to 100 MHz. In this range, the

electromagnetic field cannot distinguish the very fine struc-

ture of the cell, but it rather sees an effective image of it. It is

now generally accepted (40) that this effective image is well

described by a composite dielectric body made of a dielectric

shell representing the cell membrane (described here by

(e1,s1)) and a homogeneous dielectric core (described here

by (e2,s2)). Of course, the inside of a cell is very nonhomo-

geneous, but this is irrelevant since the field penetrates very

little inside the cell at low frequencies. This simple picture

of the cell is the starting point for most of the theoretical

work in the field. The early work by Maxwell and Wagner

(43), who studied the dielectric behavior of spherical di-

electric particles in suspensions, is probably the most widely

used theory to describe the dielectric response of cell sus-

pensions (40).

On top of this static picture, our model assumes that the

charge distributions near a cell’s membrane can be described

by effective superficial charge distributions r1 and r2 at the

outer and inner faces of the membrane. These superficial dis-

tributions of charges are described by the following properties:

1. The values of r1,2 are constrained to the faces S1,2 of the

membrane, so that they cannot leave these surfaces at any

time.

2. The charges are free to move on the faces S1,2 of the mem-

brane. The movement, which is generated by gradients in

the electric potential and in charge density, gives rise to

singular electric currents

FIGURE 1 (a) Schematic representation of the ion charge accumulated

around the membrane. (b) Schematic representation of the polarization of

this charge when a driving electric field E is applied.
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j~sing ¼ �gi
~=Si

F� Di
~=Si

ri; i ¼ 1; 2; (1)

where gi and Di are the electrical conductivities and

diffusion coefficients of the bound charges, respectively.

3. The external electric fields are considered small, so that

the conductivities gi are given with good approximation

by the charge distributions r0i in the absence of any

external fields,

gi ¼ uir0i; i ¼ 1; 2; (2)

where ui is the mobility of the bound charges on the two

membrane’s faces.

From now on, our study focuses on shelled particles with the

properties described above, which are suspended in an

electrolyte with dielectric constant e0 and conductivity s0.

We will use the symbol e* to denote the complex dielectric

function defined as e* ¼ e 1 s/jv. We are interested in the

response of such suspensions when placed between the

metallic plates of capacitors like in Fig. 2. In the linear

regime of small electric fields, the complex system will

behave like a dielectric material, whose dielectric function at

given pulsation v can be computed using Lorenz theory (44),

e
�ðvÞ ¼ e0 1� paðvÞ

1� paðvÞ=3

� �
; (3)

where p is volume fraction occupied by the cells in solution

and a(v) is the frequency-dependent polarizability:

a ¼ 1

E2

0V

Z
V

dv
e
� � e

�
0

e
�
0

E~0 � ÆE~æ: (4)

Here, E~ is the total electric field when a single cell is placed

in the external, homogeneous, time-oscillating electric field

E0eivt and V is the volume of one single cell. The Æ. . .æ
indicates the average over all possible orientations of the cell.

For spherically shaped cells, this average has no effect.

MATHEMATICAL EQUATIONS OF THE MODEL

We write the equations of the model for arbitrarily shaped

cells. If we focus on the polarizability a(v), we need to

consider the problem of a single cell placed in the external

field E~0ejvt.

The equations governing our model include the Laplace

equation for the electric potential, ~=2F ¼ 0; the continuity

equations for the constrained charges, ~=Si
j~sing1@ri=@t ¼ 0;

together with the boundary conditions at the membrane

surfaces. The usual boundary conditions at low frequency

have to be modified due to the presence of ri at the interfaces.

Their new form can be derived from the conservation of

charges. Indeed, let S be an interface, with a charge distri-

bution r constrained on it (see Fig. 3) and assume that S

separates two dielectric media D6. The electrical current

flowing near the interface is composed by a volume 1, given

by the usual expression j~6
vol ¼ s6E~; and a singular compo-

nent, j~sing flowing on the interface. Now, note that, whenever

two joined media with different dielectric properties are

placed in a time-oscillating electric field, free charges accu-

mulate at the interface between them. This is because the

amplitudes and the phases of the oscillations of the volumic

charge carriers are different in the two sides of the inter-

face. A typical example of such charge accumulation is the

screening charge appearing at the interface between a metal

and an insulator in the presence of an electric field. This

means that on top of the constrained charge distribution r,

additional free charges will accumulate on our dielectric in-

terface, precisely because of the different conductivities s6.

These additional charges behave differently from r, because

they are free to leave the surface and they do not give rise to

singular currents at the interface. Denoting by t the net su-

perficial charge distribution, the charge conservation for a

domain V centered on the surface as shown in Fig. 3 gives

FIGURE 2 In dielectric spectroscopy experiments, a suspension of live cells

is placed between the plates of a capacitor that is subjected to an AC signal, as

shown in the left panel. The right panel shows our model for live cells.

FIGURE 3 The interface S separates two electrolytes of different dielec-

tric characteristics. A superficial charge distribution r is constrained at the

interface S. Movement of these charges generates the singular current

distribution j~sing. The diagram also shows the usual volume current j~vol in

electrolytes and the volume V and its boundary @V used in the text.
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�d

dt

Z
V

tdv ¼ F
@V

j~voldS~1 F
G

j~singd~G; (5)

where G is the contour on the interface given by the inter-

section G ¼ @V \ S. Using the Maxwell equation, t ¼ ~=D~

and the divergence theorem, it follows

F
@V

sE~1
@

@t
D~

� �
� dS~¼ � F

G

j~singd
~G: (6)

Noticing that the singular current is the only cause of the time

variation of the superficial distribution,

�d

dt

Z
V\S

rdS ¼ F
G

j~singd~G; (7)

we arrive at the integral form of the boundary conditions,

F
@V

sE~1
@

@t
D~

� �
� dS~¼ d

dt

Z
V\S

rdS: (8)

In the differential form, the boundary condition takes the form

n~ s
1

E~
1

1
@

@t
D~

1

� �
� n~ s

�
E~
�

1
@

@t
D~
�

� �
¼ @r

@t
; (9)

where n~represents the normal at the interface (see Fig. 3). We

can now write the complete set of equations for our model:

~=
2
F ¼ 0; ~=Si

j~sing 1 @ri=@t ¼ 0:

n~ðsi�1E~
1

i 1
@

@t
D~

1

i Þ � n~ðsiE~
�
i 1

@

@t
D~
�
i Þ ¼

@ri

@t
:

E~/E~0expðjv0tÞ as jr~j/N:

8>><
>>: (10)

In the frequency domain:

~=
2
F ¼ 0; ~=Si

j~sing 1 jvri ¼ 0:

e
�
i�1@n~F

1

i � e
�
i @n~F

�
i ¼ �ri:

~=F/E~0 as jr~j/N:

8><
>: (11)

THE EQUILIBRIUM CONFIGURATION

In the absence of external electric fields, we can set all time

derivatives in Eq. 10 to zero and obtain

~=
2
F ¼ 0; ~=Si

j~sing ¼ 0:

si�1@n~F
1

i � si@n~F
�
i ¼ 0:

F/0 as jr~j/N:

8<
: (12)

The above equations must be complemented by the conditionZ
Si

r0i ¼ 6Q (13)

for i ¼ 1, 2, respectively. Here, Q is the total charge accumu-

lated at the membrane surfaces and we introduced the ad-

ditional index 0 for the surface constrained mobile charges r to

specify that we are now discussing the distribution in the

absence of any driving electric field.

This system of equations can be easily solved when the

membrane’s conductivity is set to zero, which we will do in

the rest of the article. Indeed, the second row of Eq. 12 be-

comes

s0@n~F
1

1 ¼ 0 and s2@n~F
�
2 ¼ 0; (14)

which actually represent trivial Neumann boundary condi-

tions for the Laplace equation on the outside and inside

regions of the cell. Consequently, at equilibrium, the potential

is constant inside these regions. Now the equation~=Si
j~sing¼ 0

becomes

~=Si
giE~tangent � Di

~=r0i

h i
¼ �Di

~=
2
r0i ¼ 0 (15)

with a unique solution r0i ¼ constant,

r0i ¼ 6
Q

AreaSi

; i ¼ 1; 2: (16)

Notice that, unlike r0i, the total superficial charge ti at the

interfaces is not uniformly distributed. Finally, the total

charge 6Q ¼
R

Si
tidS is related to the resting membrane

potential by

Q ¼ CDV; (17)

where C is the membrane capacitance.

Since
R

Si
tidS ¼

R
S0i

ridS; we can state now the main

conclusion of the section: independent of the shape of the

cell, the conductivity of the superficial charges ri, given in

Eq. 2, is constant. This constant is controlled by the mem-

brane potential

gi ¼ ui

CDV

AreaSi

: (18)

We point out that the diffusion constant D and the conduc-

tivity g at the membrane surface are related through Einstein

relation (kB ¼ Boltzmann constant),

qD ¼ ukBT; (19)

which, together with Eqs. 2 and 18, gives

DV ¼ kBT

q

gi

Di

AreaSi

C
: (20)

Using the formula for thin, planar capacitors, C ¼ eS/d, at

room temperature T ¼ 24oC, we have

DV ¼ 3:00
gi

Di

d

e1=evac

; (21)

where d ¼ r1-r2 is measured in nanometers. The last relation

also shows that the ratios g1/D1 and g2/D2 must be the same.

We remind that the model cannot predict DV; instead, as

mentioned in the Introduction, DV is one of our input pa-

rameters. DV can be obtained either through direct (like

patch-clamping) or indirect (like using the Goldman-Hodgkin-

Katz theory on the ionic concentrations) experiments. We

should point out that the formula in Eq. 21 for the membrane

potential only shows the relation between DV and the con-

ductivity of the mobile charges. The mobility of charges also

appears in this relation, but we chose to work with the dif-
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fusion constant D instead of the mobility because people are

more familiar with the first one. Also, it is g and D that enter

directly in the equations of the model.

THE ANALYTIC SOLUTION FOR
SPHERICAL CELLS

We use the single-layer expression for the electrostatic po-

tential

Fðr~Þ ¼ �zE0 1
1

4p

Z
S1

m1ðr~9Þ
jr~� r~j dSr9 1

1

4p

Z
S2

m2ðr~9Þ
jr~� r~9j dSr9;

(22)

where we took the z axis along E~0. Our goal is to solve for the

charge distributions m1 and m2. They are determined by the

following equations:

gi
~=

2

Si
F 1 Di

~=
2

Si
ri ¼ jvri:

e
�
i�1@n~F

1

i � e
�
i @n~F

�
i ¼ ri:

(
(23)

On the sphere, we have the expression

~=
2

Si
¼ 1

R
2

i sinu

@

@u
sinu

@

@u

� �
1

1

R
2

i sin
2
u

@
2

@f
2; (24)

where u and f are the usual spherical coordinates.

The distributions mi can be expanded in the spherical

harmonic functions Ylm(u, f). Since the external field is ho-

mogeneous, only the l ¼ 1 and m ¼ 0 terms will be actually

present:

m1ðr~Þ ¼ p1Y10ðuÞ; m2ðr~Þ ¼ p2Y10ðuÞ: (25)

Using

1

jr~� r~9j ¼ 4p +
lm

vlðr; r9ÞYlmðu;fÞY�lmðu9;f9Þ (26)

with

vlðr; r9Þ ¼ 1

2l 1 1

r
l

,

r
l11

.

(27)

and the ortho-normalization of the spherical harmonics, we

obtain

Fðr~Þ ¼ �rẼ0 1 p1v1ðr; r1Þ1 p2v1ðr; r2Þ
� �

Y10ðuÞ

Ẽ0 ¼
ffiffiffiffiffiffi
4p

3

r
E0

 !
: (28)

Using similar arguments for the ri distributions, we write

r1ðr~Þ ¼ q1Y10ðuÞ; r2ðr~Þ ¼ q2Y10ðuÞ: (29)

Given that Y10 is an eigenfunction of the Laplace operator of

eigenvalue �2/R2, we obtain the following algebraic equa-

tions for p1, p2, q1, and q2:

�r1Ẽ0 1
p1

3r1

1
r2p2

3r
2

1

� �
2g1

r
2

1

1 D1

2q1

r
2

1

¼ �jvq1

�r2Ẽ0 1
r2p1

3r
2

1

1
p2

3r2

� �
2g2

r
2

2

1 D2

2q2

r
2

2

¼ �jvq2

ðe�1 � e
�
0ÞẼ0 �

e
�
1 1 2e

�
0

3r
2

1

p1 1
2ðe�1 � e

�
0Þr2

3r
3

1

p2 ¼ �q1

ðe�2 � e
�
1ÞẼ0 1

e
�
1 � e

�
2

3r
2

1

p1 �
e
�
2 1 2e

�
1

3r
2

2

p2 ¼ �q2: (30)

The solution is

p1 ¼
C� B

AC� B
3r

2

1Ẽ0;

p2 ¼
A� 1

AC� B
3r2

1Ẽ0; (31)

where

A ¼ 2r1g1 1 ð2D1 1 jvr
2

1Þðe
�
1 1 2e

�
0Þ

2r1g1 1 ð2D1 1 jvr
2

1Þðe
�
1 � e

�
0Þ

B ¼ 2r2g1 � 2ð2D1 1 jvr
2

1Þðe
�
1 � e

�
0Þr2=r1

2r1g1 1 ð2D1 1 jvr
2

1Þðe
�
1 � e

�
0Þ

C ¼ r
2

1

r
2

2

2r2g2 1 ð2D2 1 jvr
2

2Þðe
�
2 1 2e

�
1Þ

2r2g2 1 ð2D2 1 jvr
2

2Þðe
�
2 � e

�
1Þ
: (32)

The polarizability of the cells can be computed directly

from Eq. 4, using E~ ¼ �~=F and the explicit expression of

the electrostatic potential given in Eq. 28:

a ¼ e
�
1 � e

�
0

e
�
0

1� p1

3r
2

1

� �
1� r2

r1

� �3
" #

1
e
�
2 � e

�
0

e
�
0

1� p1

3r
2

1

� p2

3r
2

2

� �
r2

r1

� �3

: (33)

Equation 3 together with Eqs. 31–33 represent our analytic

solution.

ANALYSIS

In Fig. 4, we report a dielectric dispersion curve of the di-

electric permittivity generated with the present model. The

geometrical and dielectric input parameters were chosen

similar to those used in Stoneman et al. (9) to fit experimental

dielectric curves of live yeast cells in a buffer solution (see

Fig. 3 of this reference). We chose the volume concentration

to be p ¼ 0.1. The b-dispersion in our theoretical graph

matches very closely the experimental findings. Unfortu-

nately, Stoneman et al. (9) was not able to resolve the

a-dispersion. In our theoretical graph, one can clearly dis-

tinguish the a-dispersions at ;103 Hz. The shape of the

entire dispersion curve for the dielectric function resembles

quite well the experimentally measured curves of Bordi et al.

(13) for erythrocytes or of Raicu et al. (17) for mammalian

cells. Both references report data in the a-relaxation fre-
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quency region. In these experimental works, the plateau be-

tween a- and b-dispersions was found to be at a dielectric

permittivity of 103 for erythrocytes (13), and at much higher

values (between 104 and 105) for liver cells of rats (17). These

are quite high values when compared with the value of ;500

for yeast cells. As we will show below, this plateau moves up

quite sharply as the radius of the cell is increased and, since

the mammalian cells are much larger than the yeast cells, this

could explain the difference. The experimental works re-

ported a value of ;106 for the plateau before the a-relaxa-

tion. In Fig. 4, we also show the dispersion curve of the

conductivity, which indicate an almost flat behavior of s with

the frequency.

In the following, we analyze the effect of variations in the

different parameters of the model. We start by pointing out

that D2, g2, and e2 have very little influence on the dielectric

properties of the suspension. This confirms the assumption

made in Prodan and Prodan (18) that the charge distribution

r2 on the inner surface of the membrane plays little role in the

a-relaxation. This is understandable because the electric field

penetrates little inside the cell.

The conductivities of the outer and inner regions of the cell,

s0 and s2, on the other hand, have very specific and similar

effects in the b-region. From Figs. 5 and 6, one can see that s0

and s2 control the frequency of the b-dispersion: the larger the

s0 or s2 value, the larger the frequency of the b-dispersion.

For example, by varying s2 from 0.001 to 0.1, which is an

appropriate range for s inside the cell, we observe a shift of

the b-dispersion from ;103 to 105. We want to mention that,

since the potassium ions are taken in by the cells, s2 can be

modified by changing the potassium concentration of the

solution. The value s0 can be modified by, for example,

modifying the sodium concentration of the solution.

The thickness of the membrane also has a very specific

effect on the plateau between the a- and b-dispersions. From

Fig. 7, one can see that the membrane thickness controls the

height of this plateau: the smaller the thickness the higher

the plateau. Note that the height of the plateau before the

a-dispersion also changes in Fig. 7. However, these changes

are exactly equal to the changes in the plateau before the

b-dispersion, suggesting that the membrane thickness does

not affect the a-response of the cells.

We now focus on Fig. 8, where we fixed d ¼ 3 nm and let

g1/D1 ¼ g2/D2 take the values 0.01, 0.05, and 0.1. This im-

plies the following values for the membrane potential DV: 9,

45, and 90 mV, respectively. We point out that the membrane

potential DV of live cells in suspension can be modified by

FIGURE 4 Dispersion curves of e(v) for r1 ¼ 2.5 mm; r2 ¼ 2.4975 mm

(membrane thickness of 2.5 nm); s0 ¼ 0.28; s1 ¼ 0; s2 ¼ 0.275; e0 ¼ 78;

e1 ¼ 1.6; e2 ¼ 125; D1 ¼ 10�8; D2 ¼ 10�8; g1/D1 ¼ 0.1; and g2/D2 ¼ 0.1.

The inset shows the dispersion of the conductivity s. The numbers represent

SI units.

FIGURE 5 Dispersion curve of e(v) for r1¼ 10 mm; r2¼ 9.997 mm; s0¼
0.001 (light shaded); 0.01 (dark shaded); 0.1 (solid); s1 ¼ 0; s2 ¼ 0.01;

e0¼ 78; e1¼ 10; e2¼ 80; D1¼ 10�8; D2¼ 10�8; g1/D1¼ 0.1; and g2/D2¼
0.1. The numbers represent SI units.

FIGURE 6 Dispersion curves of e(v) for r1 ¼ 10 mm; r2 ¼ 9.997 mm;

s0 ¼ 0.01; s1 ¼ 0; s2 ¼ 0.001 (light shaded); 0.01 (dark shaded); 0.1

(solid); e0 ¼ 78; e1 ¼ 10; e2 ¼ 80; D1 ¼ 10�8; D2 ¼ 10�8; g1/D1 ¼ 0.1; and

g2/D2 ¼ 0.1. The numbers represent SI units.
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changing the potassium ion concentration (45) or by actively

blocking or activating the ion channels (3,2). As one can see

in Fig. 8, changes in the membrane potential have very

specific and dramatic effects in the a-region: the larger the

membrane potential, the stronger the a-dispersion. For the

variations in the membrane potential mentioned above,

the model predicts variations of the plateau before the

a-dispersion of ;8 3 103. We want to point out that such

variations were seen experimentally in measurements on

skeletal muscle cells (46,47). The experimental results, re-

ported in these two works, show clear and dramatic change

in the plateau before the a-dispersion when the muscle cells

were depolarized during oxygen depravation (ischemia).

At last, we discuss the effect of the mobility of surface

charges, which is shown in Fig. 9. Changes in the mobility of

the surface charges also have a very specific and dramatic

effect in the a-region, namely, the a-dispersion moves to

right as the mobility is increased.

CONCLUSIONS

The first goal of our article was to propose a model that can

account in a unified way for the dielectric response of live

cells in suspensions in both a- and b-regions. The second

goal of the article was to give an analytic solution to the

model for the simple spherical geometry, a solution that

could be useful for many people working in the field.

Based on this model, we have analyzed the effect of dif-

ferent physical parameters on the dielectric dispersion curves

of live cells in suspension. We found that the conductivities

of the medium and of the intracellular fluid control the

length of the b-plateau, while the membrane thickness con-

trols the height of the b-plateau. In the a-region, we found

that the membrane potential controls the height of the

a-plateau while the mobility of the surface charges accu-

mulated at the cell’s membrane controls the length of the

a-plateau. All the parameters of the model have distinct in-

fluences on the dispersion curves, a fact that lead us to con-

clude that all the parameters can be accurately obtained by

fitting experimental data with our model. Thus, the combi-

nation of experimental dielectroscopy data and our model

could lead to a methodology for live cell monitoring.

Our results show that, for a given cell concentration and

geometry, the low-frequency a-dielectric response correlates

with the magnitude of the cellular membrane potential. This

is potentially very important because it enables dielectric

spectroscopy to become perhaps the only method for moni-

toring membrane potential that is both label free and nonin-

vasive. For example, the use of voltage-sensitive dyes is

problematic if one wishes to monitor, simultaneously, other

FIGURE 7 Dispersion curves of e(v) for r1¼ 10 mm; r2¼ 9.99 mm (light

shaded); 9.995 mm (dark shaded); 9.997 mm (solid); s0 ¼ 0.01; s1 ¼ 0;

s2¼ 0.01; e0¼ 78; e1¼ 10; e2¼ 80; D1¼ 10�8; D2¼ 10�8; g1/D1¼ 0.01;

and g2/D2 ¼ 0.01. The numbers represent SI units.

FIGURE 8 Dispersion curves of e(v) for r1 ¼ 10 mm; r2 ¼ 9.997 mm;

s0 ¼ 0.01; s1 ¼ 0; s2 ¼ 0.01; e0 ¼ 78; e1 ¼ 10; e2 ¼ 80; D1 ¼ 10�8; D2 ¼
10�8; g1/D1 ¼ 0.1; g2/D2 ¼ 0.1 (light shaded); 0.05 (dark shaded); and 0.1

(solid). The numbers represent SI units.

FIGURE 9 Dispersion curves of e(v) for r1 ¼ 10 mm; r2 ¼ 9.997 mm;

s0 ¼ 0.01; s1 ¼ 0; s2 ¼ 0.01; e0 ¼ 78; e1 ¼ 10; e2 ¼ 80; D1 ¼ 10�9 (light

shaded); 10�8 (dark shaded); 10�7 (solid); D2 ¼ 10�8; g1/D1 ¼ 0.1; and

g2/D2 ¼ 0.1. The numbers represent SI units.
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physiological processes such as ATP/ADP ratio, which re-

quire different fluorescent assays. As a result, if one wishes to

study the effects of membrane potential on other parameters

with conventional methods, it is often necessary to use fluo-

rescent assays on two separate cell populations and then to

correlate the results with the hope that the two populations are

identical. A major advantage of dielectric spectroscopy, if

further developed, is that one could use dielectric response to

monitor membrane potential while using a fluorescent assay

to monitor, simultaneously, another parameter on the same

cell population. Moreover, dielectric response appears well

suited to flow-cytometry and can be readily scaled into

multielectrode (plate reader) systems and large-scale micro-

fluidic devices. Therefore, we believe the method has po-

tential for numerous applications, including fundamental

research in cell biology and biochemistry, pharmaceutical

development, and diagnostic methods in medicine.
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