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Microtubules (MTs) are self-assembled hollow protein tubes playing important functions in live cells.

Their building block is a protein called tubulin, which self-assembles in a particulate 2 dimensional lattice.

We study the vibrational modes of this lattice and find Dirac points in the phonon spectrum. We discuss a

splitting of the Dirac points that leads to phonon bands with nonzero Chern numbers, signaling the

existence of topological vibrational modes localized at MTs edges, which we indeed observe after explicit

calculations. Since these modes are robust against the large changes occurring at the edges during the

dynamic cycle of the MTs, we can build a simple mechanical model to illustrate how they would

participate in this phenomenon.
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Microtubules (MTs) exist in every eukaryotic cell, being
part of the cellular cytoskeleton and playing important
roles in cell division and intracellular transport. MTs are
made of�-� tubulin protein dimers forming long protofila-
ments, which self-assemble into hollow tubes [1]. Under
constant chemical conditions, the tubes switch randomly
between growing and shrinking modes [2]. This dynamic
instability (DI) is essential to the functioning of the MTs.

In Ref. [3], the MT’s total energy was considered as
function of the transversal and longitudinal curvatures of
the tubulin sheet near the edge. It was proposed that the
energy landscape has two minima separated by an energy
barrier, one favoring a cylindrical and the other a trumpet
shape. Ref. [3] proposed that, during growth, the MTs
reside near the first minimum, but somehow they start
climbing until they overcome the energy barrier when
they start sliding towards the second minimum, forcing
the ends to open and the tubes to depolymerize.

Figure 1(a) shows a device with a similar energy land-
scape. It is a bow made of two elastic roads held together
by two connectors and a rubber band stretched between
them, so that it can slide freely between the two roads. The
energy of the bow, as function of x [Fig. 1(a)], has two
minima. We can switch between the minima by pushing
hard on the free end, or by using a succession of low energy
actions. Indeed, let us attach a spring and a weight at the
free end and aim small beads at the weight [Fig. 1(b)]. The
energy of the falling beads is stored in the harmonic motion
of the weight, whose oscillation amplitude grows, forcing
the bow at some point to climb the energy barrier and
switch its configuration [4].

The springþ weight can represent a vibrational mode
localized at the MT’s edge and the beads a sequence of
synchronized GTP hydrolyses. In ordinary lattices, the
edge modes can easily disappear if changes occur at the
edge. The edge mode mentioned above must be resilient, of
special nature, because the properties of the edge vary

wildly during DI. Switching for a moment from phonons
to electrons, we point out that an entirely new class of
materials, called topological insulators, has been discov-
ered recently [5–7], with the remarkable property that
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FIG. 1 (color online). The system can be switched between
two equilibrium configurations by: (a) delivering a large amount
of energy at once or (b) by attaching a springþ weight and
releasing the beads one by one. (c) The 2D lattice of dimers of
primitive vectors b1 and b2. At equilibrium, the dimers are all
parallel and orientated along an arbitrary direction. The xy
coordinate system indicates the plane of motion. The y axis is
along the dimer but the x axis is arbitrary. (d) The interaction
between the tubulin dimers is modeled by a network of springs.
There are 7 distinct springs and corresponding ê unit vectors. We
also indicate second order neighbors whose harmonic interaction
is also considered. (e) The degrees of freedom for the xy planar
motion. (f) Stretched configuration of a spring with the ends
displaced by r1;2.
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electronic states appear near any edge that is cut into such
material. This is a consequence of the unusual bulk prop-
erties of the materials. For this reason, the electronic edge
states cannot be destroyed by any chemical, mechanical,
etc., treatment of the edge [8,9].

Using a realistic model, we demonstrate that the bulk
phonon spectrum of the tubulin sheet can display the same
unusual properties seen in the topological insulators. Based
on a well established connection between the bulk and the
edge properties [8], we conclude that topological phonon
states can appear at the MT’s edges, which we indeed
observe after explicit calculations. We advance the hy-
pothesis that these topological edge modes play a role in
the MT’s DI, similar to that of the springþ weight in the
mechanical model of Figs. 1(a) and 1(b).

We model the tubulin sheet as a 2D lattice of rigid
dimers [Fig. 1(c)] with harmonic interactions [Fig. 1(d)].
The system can support a variety of complex motions, but
here we want to single out a particular motion that displays
the interesting features mentioned above. Therefore, we
restrict this study to propagating oscillatory motions that
involve displacements and rotations of the dimers in the
arbitrarily chosen, but fixed xy local planes [Fig. 1(c)],
with the 2 degrees of freedom explained in Fig. 1(e).

The elastic energy of a spring whose ends are displaced
as in Fig. 1(f) is 1

2K½êðr1 � r2Þ�2 [ê ¼ e=jej], if we retain
only the quadratic terms. Therefore, the elastic energy for
small oscillations stored in the network of springs is:

V¼1

2

X

R

fK1½ê1ðr0Rþb1
�rRÞ�2þK2½ê2ðr0Rþb1þb2

�rRÞ�2

þK3½ê3ðrRþb2
�rRÞ�2þK4½ê4ðr0Rþb2

�rRÞ�2
þK5½ê5ðrRþb2

�r0RÞ�2þK6½ê6ðr0Rþb2
�r0RÞ�2

þK7½ê7ðrRþb2�b1
�r0RÞ�2g:

The displacements r (r0) of the red [medium gray] (blue
[dark gray]) beads can be written in terms of �1 and ’
shown in Fig. 1(c): r ¼ ð�1 þ �2Þi and r0 ¼ ð�1 � �2Þi,
where �2 ¼ d’. Since the dimers’ moment of inertia is

I ¼ 2dM, the kinetic energy is: T ¼ P
RMfð _�1

RÞ2 þ
ð _�2

RÞ2g.
The equations of motion for the Lagrangian L ¼ T � V,

together with the ansatz: �1;2
R ¼ 1

2�Re
R
eik�n�i!t�1;2

k dk,

where n ¼ ðn1; n2Þ denotes a dimer’s place in the lattice,
lead to the following equation for the normal modes:

�1ðkÞ �M!2 wðkÞ
�wðkÞ �2ðkÞ �M!2

� �
�1
k

�2
k

� �
¼ 0; (1)

where k is in the Brillouin torus ½0; 2�� � ½0; 2��. �1;2ðkÞ
are given in Table I and [ ~K ¼ Kðê � iÞ2]:
wðkÞ¼ ð ~K3� ~K6Þ½1�cosk2�þ ið ~K4� ~K5Þsink2

þ i ~K1 sink1þ i ~K2 sinðk1þk2Þþ i ~K7 sinðk1�k2Þ:
Equation (1) has solutions only if the determinant of the
matrix is null and this happens only if ! takes the values:

!2�ðkÞ ¼
1

M
½�ðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j��ðkÞj2 þ jwðkÞj2

q
�: (2)

Here, �ðkÞ and ��ðkÞ ¼ 1
2 ½�1ðkÞ � �2ðkÞ�, respectively.

Degeneracies !�ðkÞ ¼ !þðkÞ occur whenever ��ðkÞ
and wðkÞ are simultaneously zero. Because of the symme-
tries of the lattice, it is likely that ~K3 ¼ ~K6, in which case
wðkÞ becomes purely imaginary. With this choice, we can
view ��ðkÞ ¼ 0 and wðkÞ ¼ 0 as the equations of two
closed loops on the Brillouin torus. There is a high proba-
bility for the two loops to intersect and, when it happens,
degeneracies appears and the two phonon bands touch each
other at isolated points (see Fig. 2). These special points
are called Dirac points and their presence is a strong
indication that our model has topological properties.
If we allow a small difference between ~K3 and ~K6 or

include additional terms in the Lagrangian, the Dirac
points split and the bands separate. In this case, one can
define the Berry curvature:

F�ðkÞ ¼ ð2�iÞ�1Trfp̂�ðkÞ½@k1 p̂�ðkÞ; @k2 p̂�ðkÞ�g; (3)

where p̂mn� ðkÞ ¼ �m
k ��n

k are the projectors onto the normal
modes and ½; � denotes the usual commutator. The integrals
C� ¼ R

F�ðkÞd2k over the Brillouin torus are always

integer numbers, called Chern numbers, which remain
invariant under continuous deformations of the
Lagrangian, unless the phonon bands touch.
When C� � 0, the system acquires special topological

properties [10]. We show that this is possible in our model.
As long as the Lagrangian is symmetric under the time

TABLE I. �1;2ðkÞ � �0 are linear combinations of the first row,
with coefficients specified in the next rows (�j ¼ 1, except for

j ¼ 3 and 6 when j ¼ �1, and �0 ¼
P

7
j¼1

~Kj).

cosk1 cosk2 cosðk1 þ k2Þ cosðk1 � k2Þ
�1ðkÞ � �0 � ~K1 �P6

j¼3
~Kj � ~K2 � ~K7

�2ðkÞ � �0 ~K1

P
6
j¼3 �j

~Kj
~K2

~K7

FIG. 2 (color online). (a) The k values where ��ðkÞ ¼ 0 (red
[medium gray]) wðkÞ ¼ 0 (blue [dark gray]). (b) Plot of the
phonon frequencies !�ðkÞ. ~K1�7 were fixed at: 1.1, 0.7, 0.27,
0.75, 0.325, 0.27, 0.75, and M ¼ 1.
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reversal operation, C� ¼ 0. However, general quadratic
Lagrangians should also contain terms that involve prod-
ucts between velocity and displacement. Such terms break
the symmetry mentioned above, thus allowing for C� � 0.
They can appear because of some weak magnetic proper-
ties of the tubulin proteins or because of the medium
surrounding the lattice. The general form of such terms is:

V 0 ¼ 1

2

X

R

X

m¼1;2

X

j¼1;2

�m;jf _�m
R�

m
Rþbj

� �m
R
_�m
Rþbj

g: (4)

We expect the strength of V0 to be small relative to the
terms already included in the Lagrangian. The second
neighbors interactions indicated in Fig. 1(d),

V 00 ¼ 1

2

X

R

X

#

K#
8½ê8 � ðr#R�b1

� r#RÞ�2; (5)

where # means primed or unprimed, could have similar
strength and it should be considered at this point.

After including V 0 and V 00 into the Lagrangian, the equa-
tion of the normal modes takes the same form Eq. (1), but
we must add [m ¼ 1, 2]

ð ~K8 þ ~K0
8Þ½1� cosk1� þ !

!0

X

j¼1;2

�m;j sinkj (6)

to �1;2, respectively, and ð ~K8 � ~K0
8Þ½1� cosk1� to w. Here,

!0 is a characteristic frequency that will be specified
shortly. We now search for those values of the parameters
that give nonzero Chern numbers. We consider the parame-
ters used to generate Fig. 2, except that now we allow a
small mismatch ~K3 ¼ 0:27 and ~K6 ¼ 0:18. In addition, we
take ~K1

8 ¼ 0:018 and ~K2
8 ¼ 0:1 and �1;1 ¼ ��2;1 ¼

��1;2 ¼ �2;2 ¼ �. In contradistinction to the electronic

topological insulators, the Dirac points cannot be split only
by the time reversal breaking term V 0, because w (�ðkÞ)
remains purely imaginary (real). One should also be aware
that the equation for the normal frequencies is also more
complicated since now we have terms proportional to !2

and !. Therefore, the observation of a parameter range
where the Chern numbers are nonzero represents one of the
important findings of our work.

Let us set � to zero first. The Lagrangian is symmetric
under time reversal, consequently, C� ¼ 0. We now in-
crease �, gradually introducing the term that breaks the
time reversal symmetry. Even if we do so, C� remain
unchanged, unless the phonon bands touch and then sepa-
rate again. We show that this is exactly what happens.
Indeed, let us, for a moment, fix ! in Eq. (6) to !0, in
which case the frequencies !�ðkÞ are given by same
Eq. (2). The bands touch if simultaneously: ��ðkÞ ¼ 0,
Re½wðkÞ� ¼ 0 and Im½wðkÞ� ¼ 0. In Fig. 3(a) we plot the
solutions for these equations, which are closed loops on the
Brillouin torus. We color code them with red (medium
gray), green (light gray), and blue (dark gray), respectively.
When � is increased from 0 to 0.5, the blue (dark gray) and

green (light gray) loops remain unchanged but the red
(medium gray) loop moves in the directions indicated by
the arrows, brushing over the intersection point k0 of the
green (light gray) and blue (dark gray) loops. Therefore
there is a � (¼�0) for which !�ðk0Þ ¼ !þðk0Þ. We now
unfreeze! in Eq. (6) and take!0 ¼ !�ðk0Þ. This does not
change the normal modes equation at k0; therefore, the
bands will still touch when � ¼ �0. In Figs. 3(b) and 3(c)
we plot the actual phonon bands for three values of �,
showing how the bands touch and then separate as � is
increased. We have also verified directly that C� switch
their values from 0 to �1 when � is about 0.45.
Whenever C� � 0, vibrational modes appear near any

edge cut into the 2D lattice [8]. We can now perform a
routine phonon band calculation to observe these modes
[� ¼ 0:6 in these calculations]. We considered a tubulin
ribbon along b2 and computed the phonon spectrum as
function of kk using periodic and open boundary conditions
[see Figs. 3(e) and 3(f)]. Only in the last case, one can see
two distinct phonon bands separating from the bulk spec-
trum. The two bands are localized on the two edges of the
ribbon and connect the lower and upper parts of the bulk

FIG. 3 (color online). (a) The k values where ��ðkÞ ¼ 0 (red
[medium gray]), Re½wðkÞ� ¼ 0 (blue [dark gray]) and
Im½wðkÞ� ¼ 0 (green [light gray]). The full/dashed lines are
for � ¼ 0=0:5. (b)–(d) The phonon spectrum for � ¼ 0, 0.45
and 0.6. The last row shows the phonon spectrum of a ribbon as
function of kk for (e) periodic and (f) open boundary conditions.
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spectrum; therefore, no matter how one distorts the ribbon,
the bands will always cross the direct band gap.

At this point we established the existence of robust pho-
non edge modes and now we return to the mechanism of
DI. According to the cap theory [1], which we adopt here,
the bulk of the microtubules is made of predominantly
GDP-tubulin, while the edge displays a cap of a few
rows of GTP-tubulin. The GTP and GDP bound tubulin
prefer parallel and tilted orientations relative to the tube’s
axis, respectively. During polymerization, GTP-tubulins
from solution attach to the edges and, at almost the same
rate, GTP-tubulins from the back rows of the cap turn into
GDP-tubulins. The newly formed GDP-tubulins would
prefer a tilted orientation, but they are locked inside the
lattice and therefore the tilt cannot occur and instead
mechanical strain develops. One established view is that
this strain energy is held securely by the cap.

All DI models are sketchy about how the MT opens its
cap. The cap could be forced open or simply shed off. In
either case, the MT’s edge must cross an energy barrier as
described in Ref. [3]. The only energy available during DI
are quanta of 12 kT released by GTP hydrolysis. The
energy barrier discussed in Ref. [3] was never measured,
but a rough yet fair estimate will place it around 50 kT. It is
then evident that the MTmust accumulate part of the 12 kT
energy and concentrate it near the edge.

In our view, the sudden strain due to GTP hydrolysis
gives a kick [11] to the edge mode, which can enhance or
reduce the amplitude of the mode. There is also dissipation
from the edge mode into the bulk and surrounding me-
dium; therefore, we cannot expect a slow, steady energy
buildup at the edge. Instead, the MT needs a small number
of lucky strikes, synchronized well enough to push the
edge mode over the energy barrier. Assuming a 50 kT
barrier and a 12 kTenergy transfer to the edge mode during
the lucky strikes, the MT needs about 5 consecutive lucky
strikes to open the cap. The time till such strikes occur is
random, which can explain the stochastic behavior of the
catastrophe events.

The existing calculations put the MT’s vibrational
modes in the frequency range from 1 MHz to few GHz
and the ratio between their relaxation times and the period
was estimated to be as high as 104 [12]. The average time
between consecutive tubulin dockings can be derived from
the polymerization speed [2] and is about �av ¼ 0:02 s.
The kicks, however, come from random GTP hydrolysis at
the back of the cap and involve tubulins already attached to
the edge [13]. The average time between consecutive
hydrolyses is comparable to �av, but the processes them-
selves happen much faster and they are also much simpler
than the docking of the tubulins. Therefore, the well syn-
chronized kicks can occur within time intervals smaller
than �av and comparable to the phonon relaxation times.

Anticancer drugs can modify DI. Taxol increases the
growth period without strengthening the cap, stiffening the
bulk of the MT [14] or changing the growth rate [15]. The
effect is present even when there is one bound taxol per
several hundred dimers. This means the energy flow from
GTP hydrolysis during the growth period remains un-
changed. It seems that the MTs’ edges are less efficient
at harvesting energy in the presence of taxol.
In our view, taxol modifies the bulk properties of the

MTs, leading to a delocalization of the edge mode. The
localization near the edge of the topological mode is strong
when the bulk phonon bands are widely separated and
becomes weaker as the bands come towards each other
[8]. In the mechanical model of Fig. 1, delocalization is
like attaching the weight away from the free end of the
bow. But the further we attach them the harder it is to
switch the bow’s configuration and a larger number of
lucky strikes is needed. Thus, in our picture, the duration
of the MT’s growth depends on the localization of the edge
mode, which is controlled by the MT’s bulk properties.
To conclude, using an explicit lattice model, we demon-

strated the existence of topologically robust edge phonon
modes and we advanced the hypothesis that the MT uses
them to concentrate energy near the edge in order to open
the cap. The bulk lattice model can be extended to include
an anharmonic lattice model of the cap, with a double-well
energy landscape, allowing us to simulate and observe the
opening of the cap explicitly.
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