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A GaAs/AlxGa1�xAs semiconductor structure is proposed, which is predicted to
superconduct at Tc� 2K. Formation of an alternating sequence of electron- and
hole-populated quantum wells (an electron–hole superlattice) in a modulation-
doped GaAs/AlxGa1�xAs superlattice is considered. This superlattice may be
analogous to the layered electronic structure of high-Tc superconductors. In the
structures of interest, the mean spacing between nearest electron (or hole) wells is
the same as the mean distance between the electrons (or holes) in any given well.
This geometrical relationship mimics a prominent property of optimally doped
high-Tc superconductors. Band bending by built-in electric fields from ionized
donors and acceptors induces electron and heavy-hole bound states in alternate
GaAs quantum wells. A proposed superlattice structure meeting this criterion
for superconductivity is studied by self-consistent numerical simulation.

1. Introduction

The stoichiometry and quasi two-dimensional layered geometry of high-Tc super-
conducting materials can be optimized both for Tc and for the bulk Meissner
fraction, as first noted by Harshman and Mills [1]. The superconductivity was also
shown to be electronic in origin, since Tc scales with the Fermi energy in two
dimensions, rather than with the Debye phonon energy as in conventional
superconductivity. Furthermore, these optimal Tc and Meissner fraction materials
obey certain criteria relating the geometry to the electronic properties. Of particular
relevance to the present study is the parameter, �¼Nd 2, that characterizes the sheet
hole density, N, and the layer spacing, d. For optimized high-Tc superconductors,
� approaches unity, a criterion that specifies that the average spacing between
superconducting carriers tends to be equal to the spacing between superconducting
layers. These authors also suggested that high-Tc-like superconductivity occurs in
GaAs/AlxGa1�xAs heterostructures composed of multiple quantum wells of either

*Corresponding author. Email: drh@physikon.net

Philosophical Magazine

ISSN 1478–6435 print/ISSN 1478–6443 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/14786430600677694

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
r
o
o
k
h
a
v
e
n
 
N
a
t
i
o
n
a
l
 
L
a
b
]
 
A
t
:
 
2
1
:
2
9
 
1
9
 
M
a
y
 
2
0
1
0



electrons or holes (one type of carrier, not both). To properly synthesize the
electronic structure of high-Tc superconductors, one of the authors of this paper
(DRH) more recently proposed that both electron and hole layers need to be
included. This has led us to develop a superconductor model with alternating layers
of electrons and holes (an electron–hole superlattice). In this communication,
we propose an electron–hole superlattice in a GaAs/AlxGa1�xAs superlattice
structure that meets the criterion of Nd 2

� 1 (�� 1). Its properties have been
determined by self-consistent numerical simulation.

Superconducting transition temperatures are estimated from the expression [2]:

kTc ¼ 0:25 �h�½expð2=�Þ � 1��1=2
ð1Þ

with �h� being the Fermi energy in two dimensions. Equation (1) is a generalization
to strong coupling (�� 2–3) of the theoretical analysis presented in [1] and is
consistent with experiments on high-Tc superconductors [3].

The electron–hole superlattice proposed in this study has equal sheet concen-
trations of mobile electrons and holes, Ne¼N and Nh¼N, respectively, that occupy
separate and alternating GaAs quantum well layers and are repeated with spatial
periodicity d (see figure 1) [4, 5].

Electrostatic fields created by fixed ionized donor and acceptor layers induce
band bending and bound states of energies (quasi-Fermi energies) for electrons and
holes of Ee and Eh, respectively. The ionized impurity layers, which produce an

Figure 1. Schematic of a superlattice period of width d. GaAs quantum wells (W) contain
electrons (e) or holes (h). AlxGa1�xAs layers are donor doped (D), acceptor doped (A),
or undoped spacers (S).
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electrostatic energy per superlattice period comparable to twice the band gap of
GaAs, correspond to the ionic background in high-Tc crystals. The energy relevant
to superconductivity, in analogy to the high-Tc case, involves only the mobile charges
in the quantum wells. This is modelled using equation (1) in terms of the bound states
in one superlattice period, for which �h�¼EeþEh.

Coulomb interactions among the mobile charges in multiple quantum well
systems are characterized by two dimensionless parameters, rs¼ (a�B)

�1 (�N)�1/2,
where a�B is the Bohr radius of either electrons or holes, and �¼ 2rsa

�
B/d.

The parameter rs is determined by the ratio of the Coulomb interaction energy
to the kinetic energy within a quantum well. The parameter � is determined by
the ratio of intrawell and interwell Coulomb energies, and can be written as
�¼ 2(�Nd2)�1/2

¼ 2(��)�1/2. Since the idea of synthesizing a high-Tc superconductor
in a semiconductor is tested here, one has �¼ 1 or � ¼ 1.13. The regime of high-Tc

superconductivity, therefore, corresponds to moderate interlayer coupling
(defined as �� 1).

The application being simulated is the expitaxial growth of the superlattice on the
(311)A plane of GaAs [6] for which the electron and heavy-hole effective masses are
m�

e ¼ 0.067m0 and m�
h ¼ 0.15m0 [7], respectively, where m0 is the electron rest mass.

Tunneling splitting of the electron and hole sub-bands is so small in the proposed
structure that it may be neglected. Charge transport is not of the same magnitude in
the negatively and positively charged GaAs quantum wells owing to the different
effective masses and mobilities of electrons and holes. This asymmetry between
electrons and holes provides a mechanism for superconductivity mediated by
Coulomb interactions as given by equation (1). The energies Ee and Eh and the
parameter � are determined by self-consistent numerical solutions of the Schrödinger
and Poisson equations at �¼ 1 and for the structure of figure 1. Sensitivities to
modulation doping, barrier heights, quantum well structure and temperature, as well
as issues of feasibility, are examined in the following sections.

2. Electron–hole superlattices in GaAs/AlxGa1�xAs

The proposed superlattice structure comprises multiple repeating undoped GaAs and
doped or undoped AlxGa1�xAs layers described for one period in table 1 and
illustrated schematically in figure 1. Charge transfer and band bending to form
equilibrium electron–hole superlattices in such structures have been determined by
numerical analysis.

2.1. Design considerations

The superlattice has multiple GaAs quantum well layers (W ) each of thickness dW.
On either side of each GaAs well are AlxGa1�xAs layers of thickness d� that are
alternately doped with donors (D) to form electron wells (e) or with acceptors (A) to
form hole wells (h). The volume densities of donors and acceptors are denoted by nD
and nA, respectively, and the corresponding calculated sheet densities of the dopants
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are ND¼ d�nD and NA¼ d�nA, respectively. Charge neutrality in a finite superlattice

requires equal total numbers of donors and acceptors. The doped layers and

quantum wells are adjacent to one another in the simulated structure. However,

undoped AlxGa1�xAs spacers between the doped layers and the quantum wells can

be introduced to reduce scattering by ionized dopants and to boost mobilities, thus

ensuring metallic conduction at low temperature [8]. Undoped AlxGa1�xAs spacer

layers (S) of thickness dS separate the donor- and acceptor-doped AlxGa1�xAs

layers.
The objective of the numerical simulation is to find structures in which the GaAs

quantum wells are alternately occupied in thermal equilibrium by electrons and holes

of sheet carrier densities, Ne and Nh, respectively. The layers must also satisfy the

�� 1 criterion, expressed as Ne¼Nh� d�2. The length d is the superlattice period,

which is given in terms of the layer thicknesses (see table 1) as:

d ¼ 2ðdW þ dS þ 2d�Þ ð2Þ

In equilibrium, electrons are transferred from the donors to the acceptors, creating

a modulated built-in electric field, F( y), where y is the coordinate in the direction

normal to the layers. The field is produced in most part by ionization of donors and

acceptors in the d�-AlxGa1�xAs layers of sheet concentrations, Nþ
D and N�

A,

respectively (Nþ
D � ND and N�

A � NA). Contributions to F( y) from charges in the

quantum wells are a comparatively small perturbation, since simulation shows

that Ne � Nþ
D and Nh � N�

A for �� 1. At full ionization (low temperatures), the

magnitude of F(y) attains a maximum in the undoped spacer layers, given by

F0 ¼ 4�eND="x ¼ 4�eNA="x ð3Þ

where "x is the dielectric constant of AlxGa1�xAs. At low temperatures and for small

impurity concentrations ND and NA, charge is transferred from the donors to the

acceptors, but the Fermi level lies within the GaAs gap and the quantum wells

remain unoccupied. At a threshold impurity concentration, Nth, the build-in electric

Table 1. Layer structure of one period in a GaAs/AlxGa1�xAs superlattice of alternating
electron and hole GaAs quantum wells produced by modulation doping. The width of a
superlattice period is d¼ 2(dWþ dSþ 2d�), where dW, dS and d� symbolize thickness of

quantum wells, spacers and doped layers, respectively. Layer type designations are D for
donor, A for acceptor, W for quantum well and S for spacer. ND and NA denote donor and
acceptor impurity sheet densities, respectively; Ne and Nh denote electron and hole carrier

sheet densities in the quantum wells, respectively.

Layer Type Composition Description Thickness

1 D AlxGa1�xAs Donor doped, ND d�
2 W GaAs Electron well, Ne dW
3 D AlxGa1�xAs Donor doped, ND d�
4 S AlxGa1�xAs Undoped spacer dS
5 A AlxGa1�xAs Acceptor doped, NA d�
6 W GaAs Hole well, Nh dW
7 A AlxGa1�xAs Acceptor doped, NA d�
8 S AlxGa1�xAs Undoped spacer dS
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field is sufficient to move the Fermi level into the conduction and valence bands of
alternate GaAs wells, and bound states are formed. At threshold, the maximum
built-in electric field approximates Eg/edS, where Eg is the band gap of GaAs, and
this leads to

F0 � Eg=edS: ð4Þ

The threshold doping concentration is, thus, estimated as,

Nth � "xEg=4�edS: ð5Þ

For doping concentrations exceeding Nth, excess free charge spills over into the
GaAs quantum wells, which become populated by two-dimensional electron or hole
gases of sheet densities Ne and Nh, and energy eigenvalues of Ee¼��h2Ne/m

��
e and

Eh¼��h2Nh/m
��
h , respectively. Here, the effective masses, m��

e and m��
h , are the

electron and hole effective masses of GaAs, modified by the quantum confinement
and the wave function extension into the AlxGa1�xAs barriers. Numerical

simulation is used to determine Nth, Ne, Nh, Ee and Eh self-consistently in multiple
quantum wells.

Since Tc scales with Fermi energy, which is proportional to N in two dimensions,

maximizing Tc implies selecting the largest possible sheet carrier densities of electrons
and holes that is consistent with also satisfying the criteria Nd 2

¼ 1. Thus, Tc scales
with d�2 and maximizing Tc corresponds with minimizing d. Materials properties,
primarily the internal dielectric strength of the undoped AlxGa1�xAs spacer layer,
impose a practical upper limit on the built-in electric field, which is denoted as
Fmax. Thus, the constraint F0�Fmax, becomes equivalent to a constraint on the
spacer width, expressed as dS�Eg/eFmax. A minimum spacer width in turn imposes a
minimum allowable length for the superlattice period, expressed as d4dmin, where

dmin ¼ 2ðEg=eFmax þ dw þ 2d�Þ: ð6Þ

Approaches for minimizing dmin in electron–hole superlattices are discussed in the
next section for the design of a superlattice test structure.

2.2. Superlattice structure

The proposed composition of superlattices in GaAs/AlxGa1�xAs is based on the

eight-layer sequence in one superlattice period as listed in table 1. The sequence of
layers in one period is written with the notation, (D,W,D, S,A,W,A, S), where
symbols denote the four layer types: donor, D; quantum well, W; spacer, S; and
acceptor, A. This entire layer sequence is denoted by shorthand symbol, P. Multiply
repeating the sequence, (P, P, . . . , P), produces a structure that begins as n-type and
ends as p-type. To make the structure centro-symmetric with zero net dipole
moment, we insert fractional-period layers at the ends. At the beginning, we insert
a quarter period that is n-type, (S,W,D), a spacer layer, S, and a half period that is
p-type, (A,W,A, S); and, at the end, a quarter period that is n-type, (D,W, S). The
superlattice structure is enclosed by undoped AlxGa1�xAs substrate and capping
layers, which are simulated by layers of thickness dC and denoted by the symbol, C.
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Thus, the layer sequence in the simulated structure (retaining the parentheses for
illustration) is,

ðCÞ, ðS,W,DÞ, S, ðA,W,A, SÞ, ðP, P, . . . , PÞ, ðD,W, SÞ, ðCÞ ð7Þ

The prescription for the layer sequence given in expression (7) produces a finite
superlattice structure with the quantum well sequence e–h– 	 	 	 –h–e (e: electron well;
h: hole well) that is mirror symmetric with respect to the midpoint. The quarter
periods at the ends provide smooth transitions for terminating the superlattice at
the capping layers. For an N-period superlattice, this method produces carrier
concentrations, Ne and Nh, for the N� 3 electron and hole wells in the middle
portion of the superlattice that are insensitive to boundary effects (This was verified
by varying the number of periods by a factor of three and varying the thickness
of the capping layers by a factor of two).

The construction of an h–e– 	 	 	 –e–h superlattice is as in expression (7), except
that D and A are interchanged (dopant types interchanged). Simulations of
superlattices of types e–h– 	 	 	 –h–e and h–e– 	 	 	 –e–h yield results for Ne and Nh that
are the same to within 0.1%.

Optimal selections of the layer thicknesses, which are given symbolically in
table 1, are based on the goal of making the minimum superlattice period given
in equation (6), dmin, as small as possible so that N and, thus, Tc, can be as large
as possible. For a given Eg/eFmax, superlattices with all layers spacings equal,
i.e. d�¼ dW¼ dS, require a larger dmin than a non-uniform scheme where dS is
maximized at the expense of smaller d� and dW. The width of the doping layers, d�,
can be minimized to effectively a monolayer in epitaxial film growth (i.e. delta
doping) [6, 9]. However, the width of the quantum wells, dW, cannot be made
arbitrarily narrow, because it is necessary that occupied electron and hole eigenstates
form at low temperature (Ee4kBTc, Eh4kBTc). Increasing the Al concentration
in AlxGa1�xAs helps to reduce dW by increasing the barrier height for quantum
confinement. We considered an Al alloy composition maximum of x� 0.4 to avoid
band crossover near x� 0.45 in AlxGa1�xAs that complicates the analysis. In testing
the structure of expression (7), we assume that a maximum built-in field of
Fmax¼ 5
 105V/cm can be realized in semi-insulating AlxGa1�xAs dielectrics [10].
While this value is about five times larger than typically employed in bilayer
studies [11], the electron–hole superlattice proposed in this study should be stable
against dielectric breakdown because the field lines terminate inside the structure and
the surface charge density can be zero.

2.3. Numerical simulation

Solutions for the carrier densities and eigenstates in the quantum wells at various
temperatures were obtained by self-consistent numerical simulations using the
one-dimensional Schrödinger–Poisson solver developed by Snider [12]. Simulations
are needed to determine doping levels, owing to tunneling between wells through the
AlxGa1�xAs barriers. Finite temperature also influences dopant ionization and
effective barrier heights. Our procedure calculates mobile charge concentrations
using Boltzmann statistics. Fermi levels are obtained by inversion of integrals over

3586 K. P. Walsh et al.
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Fermi–Dirac functions [12]. In the simulation, the bending of the conduction
and valence bands, electron and hole concentrations, internal field distributions,
and quantum well wavefunctions are calculated as a function of the depth
coordinate, y.

Superlattices were modelled with a finite element numerical method [13] using
a discrete mesh in the depth coordinate, dy, that was varied from 0.01 to 0.1 nm to
examine sensitivity of results to the magnitude of dy. Energy eigenvalues were found
for bound quantum well states that form two-dimensional electron or hole gases. The
thickness of the capping layers is taken to be sufficiently large that the amplitudes of
the bound-state wavefunctions at the surface and substrate are negligibly small,
which is possible because our proposed symmetric device structure has zero bias and
zero net charge. Capping layers dC¼ 10 nm are found to be of sufficient thickness
to allow one to impose zero wavefunction slope as the boundary condition.

Simulations were performed for various thicknesses of the layers in the
structure, and for various dy, doping concentrations, ND and NA (ND¼NA), and
temperatures, T. In keeping the layer thicknesses fixed and varying the doping
concentration, there is a threshold doping concentration for the onset of well
population. Holes are found to be formed first, owing to m�

h > m�
e , and they populate

the GaAs wells surrounded by acceptor-doped AlxGa1�xAs. The formation of
electrons flowing into the GaAs wells surrounded by donor-doped AlxGa1�xAs
occurs at a slightly larger doping level. The electron clouds surrounding these GaAs
wells screen the positive charge of the holes, which facilitates the formation of
alternating electron and hole layers.

2.4. Electron–hole superlattice results

In testing superlattice structures by simulations, we studied models with both
uniform and non-uniform layer spacings. We present here the results for Ne and Nh

that were obtained with non-uniform spacings, as these can be optimized for the
smallest allowable superlattice period, subject to the constraint on the built-in field,
F0� Fmax. Quantum well widths, dW, from 5 to 20 nm were studied. The built-in field
is an increasing function of dW (while keeping the superlattice period fixed), whereas
the efficiency of charge transfer, �, defined as the fraction of charge transferred from
the dopants to the quantum wells, is a decreasing function of dW. We find that
dW¼ 10 nm is suitable for simultaneously satisfying the conditions of low F0 and
high �. Doped layer thicknesses, d�, in the range of 0.5 to 10 nm were studied.
Equation (2) shows that, for a given superlattice period d, reducing d� allows one to
increase spacer thickness dS and, as expected from equation (4), to reduce the peak
internal fields. A superlattice period of d¼ 80 nm was thus determined from dmin

using equation (6), where Fmax¼ 5
 105V/cm, dW¼ 10 nm and d�� 0.5 nm.
Results for sheet carrier concentrations, Ne and Nh, were obtained in a range of

alloy concentrations 0.15� x� 0.45. The doping concentration needed to produce
a given carrier concentration decreases by 2.5% per 0.1 incremental increase in x.
Varying x simultaneously with the doping concentration so as to yield a given carrier
concentration was found to produce superlattices with otherwise almost identical
properties. The results for Ne and Nh that were obtained at zero temperature for
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x¼ 0.4 are presented in table 2, corresponding to which the simulation procedure
readily finds the bound-state wavefunctions.

The �¼ 1 criterion applied to a superlattice of periodicity d¼ 80 nm requires that
the electron and hole concentrations each be 1.56
 1010 cm�2. This carrier density
substantially exceeds the minimum requirement (N� 3
 109 cm�2) for metallic
behaviour in GaAs quantum wells [8], which is a pre-requisite for superconductivity.
Simulations yield results for the electron and hole concentrations that are within 1%
of this value for donor and acceptor concentrations of ND¼NA¼ 3.68
 1012 cm�2,
and thus �¼ 1.13 is derived self-consistently. Figures 2–4 present some of the results
obtained at T¼ 0.

Figure 2 shows the modulation of the conduction and valence band edges, EC

and EV, for a superlattice of periodicity d¼ 80 nm as functions of the depth
coordinate, y. The zero of energy is the Fermi level, which is constant. The solid
curve corresponds to the monolayer doping approximation, d�¼ 0.5 nm, and the
dotted points correspond to d�¼ 3.0 nm. The effect of varying d� over this range is
noticed mainly as slight changes in the undoped regions near the quantum wells. For
this simulation, the Fermi level lies at 51meV above the conduction band edge in the
electron quantum wells and at 23meV below the valence band edge in the hole
quantum wells. Band edges within the quantum wells vary by �0.19 and �0.18meV
for electrons and holes, respectively, owing to band bending by bound-state charges.
The mean conduction band edge in the electron wells decreases by 0.28meV per
1010 cm�2 incremental increase in ND, and the mean valence band edge in the hole
wells increases by 0.13meV per 1010 cm�2 incremental increase in NA.

The energy eigenvalues of the bound electron and hole states are Ee¼ 0.56meV
and Eh¼ 0.25meV. This yields �h�¼ 0.81meV and from equation (1) with �� 2–3,
Tc� 1.8–2.4K. The results for Ee and Eh correspond to quantum-confined effective
masses (m**) that are only about 1% less than bulk GaAs effective masses (m*).

Figure 3 shows the built-in electric field F( y) as a function of depth coordinate y
for the same simulation results that are presented in figure 2. The magnitude of the
field is maximum and nearly constant in the spacer layers, and is of amplitude F0

as estimated in equation (4). The built-in field is smallest, F0� 500 kV/cm, for
simulated monolayer doping (d�¼ 0.5 nm) where the undoped spacers can be the
widest (dS¼ 290 nm) as determined from equation (2) for well thickness dW¼ 10 nm
and periodicity d¼ 80 nm.

Table 2. Layer thickness and doping specifications for a modulation doped GaAs/
Al0.4Ga0.6As superlattice of electrons and holes at zero temperature (�¼Ned

2
¼Nhd

2
¼ 1).

Description Symbol Value

Superlattice period d 80.0 nm
Quantum wells width dW 10.0 nm
Doped layer width d� 3.0 nm
Undoped spacer width dS 24.0 nm
Volume doping concentration nD, nA 1.23
 1019 cm�3

Sheet doping concentration ND, NA 3.68
 1012 cm�2

Sheet electron, hole concentration Ne, Nh 1.56
 1010 cm�2

Geometric parameter � 1

3588 K. P. Walsh et al.
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The variations of electron and hole concentrations Ne and Nh with ND¼NA are
shown in figure 4. Extrapolations of Ne and Nh to zero give the threshold doping
level, Nth¼ 3.67
 1010 cm�2, which is about 10% less than the estimate obtained
from equation (5). The results in figure 4 can be expressed as the functions,
Ne¼ �e(ND�ND,th) and Nh¼ �h(NA�NA,th) for the electron and hole densities,
respectively. The intercepts for donor doping, ND,th�Nth, and acceptor doping,
NA,th�Nth, are nearly the same (see figure 4). The slopes are also approximately
equal �e� � and �h� �, where �¼ 1.3 defines sensitivity of changes in carrier con-
centration to changes in doping concentration. Sensitivity coefficients � are found to
be nearly independent of x. The efficiency of charge transfer to the quantum wells,
calculated as � ¼ Ne=N

þ
D for the electrons or Nh=N

�
A for the holes, is about �¼ 0.43%

for superlattices satisfying the criterion �¼ 1. We find that � increases with x,
increasing by 8% over the range x¼ 0.15–0.45, owing to increased barrier heights
at the GaAs/AlxGa1�xAs interfaces.

Figure 5 shows the variation of sheet carrier concentration, Ne�Nh, with
temperature for a superlattice with doping layers of thickness d�¼ 3 nm. There is
a small variation in carrier concentration in the region T52K, owing to thermal
effects in ionization and charge transfer. The simulations, thus, show that the
equilibrium carrier concentrations can be taken as nearly independent of tem-
perature in the region where the superconductive condensate is expected to exist,
for Tc� 2K.

Figure 2. Edges of conduction, Ec, and valence, Ev, bands for modulation doped
electron–hole GaAs/Al0.4Ga0.6As superlattices (80 nm period) as functions of depth, y.
Widths of doped layers (d�) are 0.5 nm (solid curves) and 3.0 nm (dotted curves). Zero of
energy is the Fermi level. Quantum wells of width dW¼ 10 nm are occupied by electrons where
Ec50 and by holes where Ev40.
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Figure 3. Variation of the built-in electric fields, F( y), of modulation doped electron–hole
GaAs/Al0.4Ga0.6As superlattices as functions of depth, y. Widths of doped layers (d�) are
0.5 nm (thick curves) and 3.0 nm (thin curves). Maximum field strength occurs in the undoped
Al0.4Ga0.6As spacer layers.

Figure 4. Variation of sheet electron and hole densities, Ne and Nh, respectively, with sheet
concentration of dopants (ND¼NA) in modulation doped layers (of thickness d�¼ 3 nm) of
a GaAs/Al0.4Ga0.6As superlattice with GaAs quantum wells of thickness dw¼ 10 nm and
periodicity d¼ 80 nm.
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3. Discussion

The above results illustrate that producing a superlattice of electrons and holes in
GaAs/AlxGa1�xAs heterostructures is feasible and specific results were obtained for
an assumed built-in electric field of Fmax¼ 5
 105V/cm. While the fabrication of
such a superlattice may be technically challenging, we assume that any given layer’s
width can be controlled to an accuracy of 0.5 nm and that doping concentrations can
be controlled to an accuracy of 0.1%. Variations during growth of the superlattice,
such as fluctuations in the spacing of any layer, will lead to 2% variations in
superlattice period. The fluctuations in the sheet concentration of the dopants will
be 0.14%. Variations in carrier concentrations N will be larger than variations
in dopant concentrations ND or NA by a factor �/�� 300, which is the ratio of
sensitivity parameter � and the efficiency coefficient �, so that the variation in N due
to doping fluctuations is estimated to be 30%. This shows that fluctuations in
�¼Nd 2 are expected to be dominated by fluctuations in doping, since fluctuations
in d 2 are comparatively smaller at 4%. Taking into account the variation of Tc

in high-Tc superconductors at optimal doping [1], the superconducting transition
is expected to be inhomogeneously broadened by 2% for such growth fluctuations.

Simulations were also performed to determine the consequences of growing
a superlattice with either defective doping or a defective width in one of the layers.
These were examined by changing the thickness or doping concentration of a doped
layer in the simulated superlattice. The perturbations produced by such defects are

Figure 5. Temperature dependence of sheet electron (circles) and hole (triangles) densities
calculated for a modulation doped (impurity concentration: 3.68
 1012 cm�2; doped layer
thickness: 3 nm) GaAs/Al0.4Ga0.6As superlattice with GaAs quantum wells of thickness 10 nm
and periodicity 80 nm. (Dashed curves are guides to the eye).
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changes in Ne or Nh that are localized in the quantum well closest to the defective
layer.

Semiconductor systems with large dielectric constants and band gaps (e.g. such
as structures based on GaN) can tolerate larger internal fields before breaking down.
Choosing a semiconductor material with dielectric strength higher than that of
AlGaAs and GaAs would theoretically increase the dopant concentration N,
decrease d and increase Tc, since the built-in electric field can be higher.

4. Conclusions

The feasibility of forming superconducting electron–hole superlattices in
modulation-doped GaAs/AlxGa1�xAs heterostructures was examined by a self-
consistent numerical solution of the Schrödinger and Poisson equations. These
superlattices emulate the electronic structure of high-Tc superconductors, Nd 2

� 1,
where N is the sheet carrier density in the layers and d is the superlattice period.
Results are based on a maximum built-in electrostatic field of 500 kV/cm, which
dictates a minimum superlattice period of d¼ 80 nm. The corresponding sheet carrier
density of electrons and holes is N¼ 1.56
 1010 cm�2. Based on a strong-coupling
electronic model of superconductivity, we believe that a superconductor with
a transition temperature of 2K will result from such an electron–hole superlattice.
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