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Spectral density functionals for electronic structure calculations
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We introduce a spectral density-functional theory which can be used to compute energetics and spectra of
real strongly correlated materials using methods, algorithms, and computer programs of the electronic structure
theory of solids. The approach considers the total free energy of a system as a functional of a local electronic
Green function which is probed in the region of interest. Since we have a variety of notions of locality in our
formulation, our method is manifestly basis-set dependent. However, it produces the exact total energy and
local excitational spectrum provided that the exact functional is extremized. The self-energy of the theory
appears as an auxiliary mass operator similar to the introduction of the ground-state Kohn-Sham potential in
density-functional theory. It is automatically short ranged in the same region of Hilbert space which defines the
local Green function. We exploit this property to find good approximations to the functional. For example, if
electronic self-energy is known to be local in some portion of Hilbert space, a good approximation to the
functional is provided by the corresponding local dynamical mean-field theory. A simplified implementation of
the theory is described based on the linear muffin-tin orbital method widely used in electronic structure
calculations. We demonstrate the power of the approach on the long standing problem of the anomalous
volume expansion of metallic plutonium.
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I. INTRODUCTION

Strongly correlated electron systems display remarka
interesting and puzzling phenomena, such as hi
temperature superconductivity, colossal magnetoresista
heavy fermion behavior, huge volume expansions, and
lapses to name a few. These properties need to be exp
with modern theoretical methods. Unfortunately, the stron
correlated systems are complex materials with electrons
cupying active 3d, 4f , or 5f orbitals, ~and sometimesp
orbitals as in many organic compounds and in Bucky-ba
based systems!. Here, the excitational spectra over a wi
range of temperatures and frequencies cannot be describ
terms of well-defined quasiparticles. Therefore, the desig
computational methods and algorithms for quantitative
scription of strongly correlated materials is a great intell
tual challenge, and an enormous amount of work has
dressed this problem in the past.1–12

At the heart of the strong-correlation problem is the co
petition between localization and delocalization, i.e., b
tween the kinetic energy and the electron-electron inte
tions. When the overlap of the electron orbitals amo
themselves is large, a wavelike description of the electro
natural and sufficient. Fermi-liquid theory explains why in
wide range of energies systems, such as alkali and n
metals, electrons behave as weakly interacting fermions,
they have a Fermi surface, linear specific heat and a cons
magnetic susceptibility. The one-electron spectra form q
siparticles and quasihole bands and the one-electron spe
functions showd functions like peaks corresponding to th
one-electron excitations. We have powerful quantitative te
niques such as the density-functional theory~DFT! in the
0163-1829/2004/69~24!/245101~24!/$22.50 69 2451
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local-density and generalized gradient approximation~LDA
and GGA!, for computing ground-state properties.1 These
techniques can be successfully used as starting points
perturbative computation of one-electron spectra, for
ample using the GW method.2 They have also been succes
fully used to compute the strength of the electron-phon
coupling and the resistivity of simple metals.13

When the electrons are very far apart, a real-space
scription becomes valid. A solid is viewed as a regular ar
of atoms where each element binds an integer numbe
electrons. These atoms carry spin and orbital quantum n
bers giving rise to a natural spin and orbital degenera
Transport occurs with the creation of vacancies and dou
occupied sites. Atomic physics calculations together w
perturbation theory around the atomic limit allow us to d
rive accurate spin-orbital Hamiltonians. The one-electr
spectrum of the Mott insulators is composed of atomic ex
tations which are broaden to form bands that have no sin
particle character. The one-electron Green functions sho
least two polelike features known as the Hubbard band14

and the wave functions have an atomiclike character,
hence require a many-body description.

The scientific frontier, one would like to explore, is
category of materials which falls in between the atomic a
band limits. These systems require both a real-space a
momentum-space description. To treat these systems
needs a many-body technique which is able to treat Ko
Sham bands and Hubbard bands on the same footing,
which is able to interpolate between well separated and w
overlapping atomic orbitals. The solutions of many-bo
equations have to be carried out on the level of the Gr
functions which contain necessary information about the
©2004 The American Physical Society01-1
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tal energy and the spectrum of the solid.
The development of such techniques has a long histor

condensed matter physics. Studies of strongly correlated
tems have traditionally focused on model Hamiltonians us
techniques such as diagrammatic methods,3 quantum Monte
Carlo simulations,4 exact diagonalizations for finite-siz
clusters,5 density-matrix renormalization group methods6

and so on. Model Hamiltonians are usually written for
given solid-state system based on physical grounds. In
electronic-structure community, the developments of LD
1U ~Ref. 7! and self-interaction corrected8 methods , many-
body perturbative approaches based on GW and
extensions,2 as well as time-dependent version of the dens
functional theory9 have been carried out. Some of these te
niques are already much more complicated and tim
consuming comparing to the standard LDA based al
rithms, and the real exploration of materials is frequen
performed by its simplified versions by utilizing such, e.
approximations as plasmon–pole form for the dielec
function,15 omitting self–consistency within GW2 or assum-
ing locality of the GW self-energy.16

In general, diagrammatic methods are most accurat
there is a small parameter in the calculation, say, the rati
the on-site Coulomb interactionU to the band widthW. This
does not permit the exploration of real strongly correla
situations, i.e., whenU/W;1. Systems near Mott transitio
is one of such examples, where strongly renormalized qu
particles and atomiclike excitations exist simultaneously.
these situations, self-consistent methods based on the
namical mean–field based theory~DMFT!,10 and its cluster
generalizations such as dynamical cluster approximatio17

or cellular dynamical mean-field theory~C-DMFT!,18,19 are
the minimal many-body techniques which have to be e
ployed for exploring real materials.

Thus, a combination of the DMFT based methods w
the electronic-structure techniques is promising, becaus
realistic material-specific description where the strength
correlation effects is not knowna priori can be achieved
This work is in its beginning stages of development b
seems to have a success. The development was started20 by
introducing so-called LDA1DMFT method and applying it
to the photoemission spectrum of La12xSrxTiO3. Near Mott
transition, this system shows a number of features incom
ible with the one-electron description.21 The LDA11
method22 has been discussed, and the electronic structur
Fe has been shown to be in better agreement with experim
than the one based on LDA. The photoemission spect
near the Mott transition in V2O3 has been studied,23 as well
as issues connected to the finite-temperature magnetis
Fe and Ni were explored.24 LDA1DMFT was recently gen-
eralized to allow computations of optical properties
strongly correlated materials.25 Further combinations of the
DMFT and GW methods have been proposed12,26,27 and a
simplified implementation to Ni has been carried out.27

Sometimes the LDA1DMFT method11 omits full self-
consistency. In this case the approach consists in derivin
model Hamiltonian with parameters such as the hopping
tegrals and the Coulomb interaction matrix elements
tracted from a LDA calculation. Tight-binding fits to th
24510
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LDA energy bands or angular momentum resolved LDA de
sities of states for the electrons which are believed to
correlated are performed. Constrained density-functio
theory28 is used to find the screened on-site CoulombU and
exchange parameterJ. This information is used in the down
folded model Hamiltonian with only active degrees of fre
dom to explore the consequences of correlations. Such t
nique is useful, since it allows us to study real materi
already at the present stage of development. A more am
tious goal is to build a general method which treats all ba
and all electrons on the same footing, determines both h
pings and interactions internally using a fully self-consiste
procedure, and accesses both energetics and spectra o
related materials.

Several ideas to provide a theoretical underpinning
these efforts have been proposed. The effective action
proach to strongly correlated systems has been used to
realistic DMFT an exact functional formulation.29 Approxi-
mations to the exact functional by performing truncations
the Baym-Kadanoff functional have been discussed.30 Simul-
taneous treatment of the density and the local Green func
in the functional formulation has been proposed.12 Total-
energy calculations using LDA1DMFT have recently ap-
peared in the literature.31–34 DMFT corrections have been
calculated and added to the LDA total energy in order
explain the isostructural volume collapse transition in Ce31

Fully self-consistent calculations of charge density, exc
tion spectrum and total energy of thed phase of metallic
Plutonium have been carried out to address the problem
its anomalous volume expansion.32 The extensions of the
method to compute phonon spectra of correlated syst
with the applications to Mott insulators33 and high-
temperature phases of Pu34 have been also recently deve
oped.

In this paper we discuss the details of this unified a
proach which computes both total energies and spectr
materials with strong correlations and present our appl
tions for Pu. We utilize the effective action free-energy a
proach to strongly correlated systems29,30and write down the
functional of the local Green function. Thus, a spect
density-functional theory~SDFT! is obtained. It can be use
to explore strongly correlated materials fromab inito
grounds provided useful approximations exist to the spec
density functional. One of such approximations is describ
here, which we refer to as a local dynamical mean-field
proximation. It is based on extended35 and cluster17–19 ver-
sions of the dynamical mean-field theory introduced in co
nection with the model-Hamiltonian approach.10

Implementation of the theory can be carried out on
basis of the energy-dependent analog for the one-par
wave functions. These are useful for practical calculations
the same way as Kohn–Sham particles are used in den
functional based calculations. The spectral density-functio
theory in its local dynamical mean-field approximation, r
quires a self-consistent solution of the Dyson equatio
coupled to the solution of the Anderson impurity mode36

either on a single site10 or on a cluster.17,18 Since it is the
most time consuming part of all DMFT algorithms, we a
carrying out a simplified implementation of it based on
1-2
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SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC . . . PHYSICAL REVIEW B69, 245101 ~2004!
slave boson Gutzwiller37–39and Hubbard I14,40methods. This
is described in detail in a separate publication.41 We illustrate
the applicability of the method addressing the problem od
2Pu. Various aspects of the present work have appe
already.12,32

Our paper is organized as follows. In Sec. II we descr
the spectral density-functional theory and discuss local
namical mean-field approximation which summarizes
ideas of cluster and extended35 versions of the DMFT. We
show that such techniques as LDA1DMFT,11 LDA1U,7

and local GW~Refs. 12 and 16! methods are naturally see
within the present method. Sec. III describes our implem
tation of the theory based on the energy-resolved one-par
description20 and linear–muffin–tin orbital method42–44 for
electronic-structure calculation. Sec. IV discusses applica
of the method to the volume expansion of Pu. Sec. V is
conclusion.

II. SPECTRAL DENSITY-FUNCTIONAL THEORY

Here we discuss the basic postulates and approximat
of spectral density-functional theory. The central quantity
our formulation is a local Green functionGloc(r ,r 8,z), i.e., a
part of the exact electronic Green function which we a
interested to compute. This is by itself arbitrary since we c
probe the Green function in a portion of a certain space su
e.g., as reciprocal space or real space. These are the
transparent forms where the local Green function can be
fined. We can also probe the Green function in a portion
the Hilbert space. If a function can be expanded in so
basis set$xj%

F~r ,r 8,z!5(
jj8

xj~r !Fjj8~z!xj8
* ~r 8! ~1!

our interest can, e.g., be associated with diagonal elemen
the matrixFjj8(z).

As we see, the locality is a basis set dependent prop
Nevertheless, it is a very useful property because a m
economical description of the function can be achieved. T
is true when the basis set which leads to such descriptio
the function is known. The choice of the appropriate Hilb
space is therefore crucial if we would like to find an optim
description of the system with the accuracy proportiona
the computational cost. In spectral density-functional the
that has a meaning of finding good approximations to
functional. Therefore we always rely on a physical intuiti
when choosing a particular representation which should
tailored to a specific physical problem.

At the beginning we formulate spectral density-function
theory in completely real space but keep in mind that s
formulation is not unique. Thus, we are interested in find
a part of the electronic Green function restricted within
certain cluster area. Due to translational invariance of
Green function on the original lattice given by primitiv
translations$R‰, i.e.,G(r1R,r 81R,z)5G(r ,r 8,z), it is al-
ways sufficient to considerr lying within a primitive unit
cell Vc positioned atR50. Thus, r 8 travels within some
areaV loc centered atR50. We set the local Green functio
24510
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to be the exact Green functionG(r ,r 8,z) within a given
clusterV loc and zero outside. In other words,

Gloc~r ,r 8,z!5G~r ,r 8,z!u loc~r ,r 8!, ~2!

where theu function is a unity when vectorrPVc ,r 8
PV loc and zero otherwise. It is schematically illustrated
Fig. 1. This construction can be translationally continu
onto entire lattice by enforcing the propertyu loc(r1R,r 8
1R)5u loc(r ,r 8).

We will now discuss the free energy of a system as
functional of the local Green function.

A. Functional of local Green function

We consider full many-body Hamiltonian describing th
electrons moving in the periodic ionic potentialVext(x)
5Vext(r )d(t) and interacting among themselves accord
to the Coulomb law:vC(x2x8)5e2/ur2r 8ud(t2t8) @we
use imaginary time-frequency formalism, wherex5(r ,t)].
This is the formal starting point of our all-electron firs
principles calculation. So, the theory of everything is su
marized in the actionS:

S5E dxc1~x!@]t2¹21Vext~x!#c~x!

1
1

2E dxdx8c1~x!c1~x8!vC~x2x8!c~x!c~x8!

~3!

~atomic Rydberg units,\51, me51/2, are used throughout!.
We will ignore relativistic effects in this action for simplicity
but considering our applications to Pu, these effects will
included later in the implementation. In addition, the effe
of electron-phonon interaction will not be considered.

We will take the effective action functional approach
describe our correlated system.30 The approach allows us to

FIG. 1. Illustration of the area in real space where the lo
Green functionGloc is defined. Note thatr is restricted by the unit
cell at the origin whiler 8 and r 9 travel within the crystal.
1-3
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S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 ~2004!
obtain the free energy of the solid from a functionalG evalu-
ated at its stationary point. The main question is the choic
the variable of the functional which is to be extremized. T
question is highly nontrivial because the exact form of
functional is unknown and the usefulness of the approa
depends on our ability to construct good approximations
it, which in turn depends on the choice of variables. T
Baym-Kadanoff~BK! Green function theory45 considers ex-
act Green functionG(x,x8)52^Ttc(x)c1(x8)& as a vari-
able, i.e.,GBK@G#. Density-functional theory considers de
sity r(r )5G(r ,r ,t50) of the solid as a variable, i.e
GDFT@r#. Spectral density-functional theory will consider lo
cal Green functionGloc(x,x8)5G(x,x8)u loc(r ,r 8) as a vari-
able, i.e.,GSDF@Gloc#.

Note on the variety of choices we can make, in particu
in the functionalGSDF@Gloc# since the definition of the lo-
cality is up to us. The usefulness of a given choice is dicta
by the existence of good approximations to the function
as, for example, the usefulness of the DFT is the result of
existence of the LDA or GGA, which are excellent appro
mations for weakly correlated systems. Here we will arg
that the usefulness of SDFT is the existence of the lo
dynamical mean-field approximations.

Any of the discussed functionals can be obtained b
Legendre transform of the effective action. The electro
Green function of a system can be obtained by probing
system by a source field and monitoring the response
obtain GBK@G# we probe the system with time-depende
two-variable source fieldJ(x,x8) or its imaginary frequency
transformJ(r ,r 8,iv) defined in all space. If we restrict ou
consideration to saddle point solutions periodic on the or
nal lattice, we can assume that the field obeys the period
criterion J(r1R,r 81R,iv)5J(r ,r 8,iv). This restricts the
electronic Green function to be invariant under lattice tra
lations. In order to obtain a theory based on the density
physical variable, we probe the system with a static perio
cal field J(r )d(t). This delivers46–48 the density-functional
theory GDFT@r#. In order to obtainGSDF@Gloc# we will
probe the system with a local fieldJloc(x,x8)5Jloc(r ,r 8,t
2t8) restricted byu loc(r ,r 8).

Introduction of the time-dependent local sour
Jloc(x,x8) modifies the action of the system~3! as follows

S8@Jloc#5S1E dxdx8Jloc~x, x8!c~x8!c1~x!. ~4!

Due to translational invariance, the integral overr variable
here is the same for any unit-cellVc and the integral overr 8
should be restricted by the area whereJlocÞ0, i.e., by the
cluster areaV loc . The average of the operatorc(x)c1(x8)
probes the local Green function which is precisely defined
expression~2!. The partition functionZ, or equivalently the
free energy of the systemF, becomes a functional of th
auxiliary source field

Z@Jloc#5exp~2F@Jloc# !5E D@c1c#e2S8[Jloc] . ~5!
24510
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The effective action for the local Green function, i.e., spe
tral density functional, is obtained as the Legendre transfo
of F with respect to the local Green functionGloc(x,x8), i.e.,

GSDF@Gloc#5F@Jloc#2TrJlocGloc , ~6!

where we use the compact notation TrJlocGloc for the inte-
grals

TrJlocGloc5E dxdx8Jloc~x,x8!Gloc~x8,x!

5(
iv

E drdr 8Jloc~r ,r 8,iv!Gloc~r 8,r ,iv!.

~7!

Using the condition:Jloc52dGSDF /dGloc to eliminateJloc
in Eq. ~6! in favor of the local Green function we finally
obtain the functional of the local Green function alone.

The source field sets the degree of locality of the objec
interest. Considering its definition by expanding the clus
till entire solid, we obtain the Baym–Kadanoff function
which determines the Green function in all space. Shrink
its definition to a singe pointr and assuming its frequenc
~time! independence, i.e.,J(r )d(r2r 8)d(t2t8), we obtain
density-functional theory. In its extremum, all functionals a
ways reach the total free energy of the system regardless
choice of the variable. This situation is similar47 to classical
thermodynamics where the thermodynamic potential is eit
the Helmholtz free energy, or the Gibs free energy or
enthalpy depending on which variables, temperature, p
sure, volume are used. Note also that due to assumed
dependence of the source field, away from the extremum
Green function functionals cannot be interpreted as energ

The existence of all functionals,GBK@G#, GDFT@r# as
well as GSDF@Gloc# assumes a nondegenerate equilibriu
state. Then, within the effective action formulation of th
problem the proof of the analog of the Hohenberg–Ko
theorem is reduced to the invertibility of the equation th
definesG ~or r,Gloc) as a functional of the sourceJ. If this
is possible, the Legendre transformation fromF@J# to G@G#
can be done and henceGBK@G#, GDFT@r#, or GSDF@Gloc#
exist. In the quantum field theory46 the above inversion pro
cess forGBK@G# has been extensively studied within pertu
bation theory in powers of the electron repulsion using d
grammatic methods.45,46,49 For the case ofGDFT@r# the
introduction of the auxiliary field corresponding to the de
sity operator by Hubbard–Stratonovich transformation
particularly convenient.46 This has proved the existence o
density functional in the language of effective action. R
cently, diagrammatic expansions have been discussed in
29 for the case of local Green function as a variable. The
fore, the existence of these functionals, is established wi
perturbation theory, but no nonperturbative proof is availa
in either case.

Having repeated formal arguments on the existence of
functionalsGSDF@Gloc# as well as ofGBK@G# andGDFT@r#
we now come to the problem of writing separately vario
contributions to it. This development parallels the we
known decomposition of the total energy into kinetic ener
1-4
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of a noninteracting system, potential energy, Hartree ene
and exchange-correlation energy. The strategy consist
performing an expansion of the functional in powers of t
charge of the electron.29,46,48,50,51The lowest order term is the
kinetic part of the action, and the energy associated with
external potentialVext . In the Baym Kadanoff Green func
tion theory this term has the form~3!:

KBK@G#5Tr ln G2Tr@G0
212G21#G. ~8!

TheG0(r ,r 8,iv) is the noninteracting Green function, whic
is given by

G0
21~r ,r 8,iv!5d~r2r 8!@ iv1m1¹22Vext~r !#, ~9!

d~r2r 8!5E dr 9G0
21~r ,r 9,iv!G0~r 9,r 8,iv!, ~10!

wherem is a chemical potential. Note that since finite tem
perature formulation is adopted we did not obtain sim
KBK@G#5Tr(2¹21Vext)G but also have got all entrop
based contributions.

Let us now turn to the density-functional theory. In pri
ciple, it does not have a closed formula to describe fu
interacting kinetic energy as the density functional. Howev
it solves this problem by introducing a noninteracting part
the kinetic energy. It is described by its own Green funct
GKS(r ,r 8,iv), which is related to the Kohn–Sham~KS! rep-
resentation. An auxiliary set of noninteracting particles
introduced which is used to mimic the density of the syste
These particles move in some effective one-particle Ko
Sham potentialVe f f(r )5Vext(r )1Vint(r ). This potential is
chosen merely to reproduce the density and does not h
any other physical meaning at this point. The Kohn–Sh
Green function is defined in the entire space by the rela
GKS

21(r ,r 8,iv)5G0
21(r ,r 8,iv)2Vint(r )d(r2r 8), where

Vint(r ) is adjusted so that the density of the systemr(r ) can
be found fromGKS(r ,r 8,iv). Since the exact Green functio
G and the local Green functionGloc can be also used to fin
the density, we can write a general relationship:

r~r !5T(
iv

GKS~r ,r ,iv!eiv01

5T(
iv

G~r ,r ,iv!eiv01

5T(
iv

Gloc~r ,r ,iv!eiv01, ~11!

where the sum overiv assumes the summation on the Ma
subara axis at given temperatureT. With the introduction of
GKS the noninteracting kinetic portion of the action plus t
energy related toVext can be written in complete analog
with Eq. ~8! as follows

KDFT@GKS#5Tr ln GKS2Tr@G0
212GKS

21#GKS . ~12!

In order to describe the different contributions to the th
modynamical potential in the spectral density-function
theory, we introduce a notion of the energy-dependent an
24510
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of Kohn-Sham representation. These auxiliary particles
interacting so that they will describe not only the density b
also a local part of the Green function of the system, and w
feel a frequency dependent potential. The latter is a fi
described by some effective mass operatorMe f f(r ,r 8,iv)
5Vext(r )d(r2r 8)1Mint(r ,r 8,iv). We now introduce an
auxiliary Green functionG(r ,r 8,iv) connected to our new
‘‘interacting Kohn–Sham’’ particles so that it is defined
the entire space by the relationshipG 21(r ,r 8,iv)
5G0

21(r ,r 8,iv)2Mint(r ,r 8,iv). Thus,Mint(r ,r 8,iv) is a
function which has the same range as the source that
introduce: it is adjusted until the auxiliaryG(r ,r 8,iv) coin-
cides with the local Green function inside the area restric
by u loc(r ,r 8), i.e.,

Gloc~r ,r 8,iv!5G~r ,r 8,iv!u loc~r ,r 8!. ~13!

We illustrate the relationship between all introduced Gre
functions in Fig. 2. Note thatG(r ,r 8,iv) also delivers the
exact density of the system. With the help ofG the kinetic
term in the spectral density-functional theory can be rep
sented as follows

KSDF@G#5Tr ln G2Tr@G0
212G 21#G. ~14!

SinceGKS is a functional ofr, DFT considers the density
functional as the functional of Kohn-Sham wave function
i.e., as GDFT@GKS#. Similarly, sinceG is a functional of
Gloc , it is very useful to view the spectral density-function
GSDF as a functional ofG:

GSDF@G#5Tr ln G2Tr@G0
212G 21#G1FSDF@Gloc#,

~15!

where the unknown interaction part of the free ener
FSDF@Gloc# is the functional ofGloc . If the Hartree term is
explicitly extracted, this functional can be represented as

FSDF@Gloc#5EH@r#1FSDF
xc @Gloc#, ~16!

FIG. 2. Relationship between various Green functions in sp
tral density-functional theory: exact Green functionG, local Green
function Gloc and auxiliary Green functionG are the same in a
certain region of space of our interest. They are all different outs
this area, where the local Green function is zero by definiton.
1-5
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whereEH@r# is the Hartree energy depending only on t
density of the system, and whereFSDF

xc @Gloc# is the
exchange-correlation part of the free energy. Note that
density of the system can be obtained viaGloc or G, there-
fore the Hartree term can be also viewed as a functiona
Gloc or G. Notice also, that since the kinetic energies~8!,
~12!, ~14! are defined differently in all theories, the intera
tion energiesFSDF@Gloc#, FBK@G#, FDFT@r# are also dif-
ferent.

The stationarity of the spectral density functional can
examined with respect toG:

dGSDF

dG~r ,r 8,iv!
50, ~17!

similar to the stationarity conditions forGBK@G# and
GDFT@GKS#

dGBK

dG~r ,r 8,iv!
50, ~18!

dGDFT

dGKS~r ,r 8,iv!
50. ~19!

This leads to the equations for the corresponding Green fu
tions in all theories:

G 21~r ,r 8,iv!5G0
21~r ,r 8,iv!2Mint~r ,r 8,iv! ~20!

as well as

G21~r ,r 8,iv!5G0
21~r ,r 8,iv!2S int~r ,r 8,iv! ~21!

GKS
21~r ,r 8,iv!5G0

21~r ,r 8,iv!2Vint~r !d~r2r 8!. ~22!

By using Eq.~9! for G0
21 and by multiplying both parts by

the corresponding Green functions we obtain familiar Dys
equations

@2¹21Vext~r !2 iv2m#G~r ,r 8,iv!

1E dr 9Mint~r ,r 9,iv!G~r 9,r 8,iv!5d~r2r 8! ~23!

and

@2¹21Vext~r !2 iv2m#G~r ,r 8,iv!

1E dr 9S int~r ,r 9,iv!G~r 9,r 8,iv!5d~r2r 8!, ~24!

@2¹21Vext~r !2 iv2m#GKS~r ,r 8,iv!

1Vint~r !GKS~r ,r 8,iv!5d~r2r 8!. ~25!

The stationarity condition brings the definition of the aux
iary mass operatorMint(r ,r 8,iv) which is the variational
derivative of the interaction free energy with respect to
local Green function:
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Mint~r ,r 8,iv!5
dFSDF@Gloc#

dG~r 8,r ,iv!

5
dFSDF@Gloc#

dGloc~r 8,r ,iv!
u loc~r ,r 8!. ~26!

It plays the role of the effective self-energy which is sho
ranged~local! in the space. The corresponding expressio
hold for the interaction parts of the exact self-energy of
electron S int(r ,r 8,iv) and for the interaction part of the
Kohn-Sham potentialVint(r ).

S int~r ,r 8,iv!5
dFBK@G#

dG~r 8,r ,iv!
, ~27!

Vint~r !d~r2r 8!5
dFDFT@r#

dGKS~r 8,r ,iv!
5

dFDFT@r#

dr~r !
d~r2r 8!.

~28!

If the external potential is added to these quantities we ob
total effective self–energies/potentials of the SDF, BK, a
DF theories:Me f f(r ,r 8,iv), Se f f(r ,r 8,iv), Ve f f(r ), re-
spectively. If the Hartree potentialVH(r ) is separated we
obtain the exchange-correlation parts:Mxc(r ,r 8,iv),
Sxc(r ,r 8,iv), Vxc(r ).

Note that strictly speaking the substitution of variable
GKS vs r, in the density functional as well as the substituti
of variables,G vs Gloc , in the spectral density-functional i
only possible under the assumption of the so-calledV repre-
sentability~or M representability!, i.e., the existence of suc
effective potential~mass operator! which can be used to con
struct the exact density~local Green function! of the system
via the noninteracting Kohn-Sham particles of the DFT or
energy-dependent generalization in SDFT.

Note also that the effective mass operator of spec
density-functional theory is local by construction, i.e., it
nonzero only within the cluster areaV loc restricted by
u loc(r ,r 8). It is an auxiliary object which cannot be ident
fied with the exact self-energy of the electronSe f f(r ,r 8,iv).
This is similar to the observation that the Kohn-Sham pot
tial of the DFT cannot be associated with the exact s
energy as well. Nevertheless, the SDFT always delivers lo
Green function and the total free energy exactly~at least in
principle! as long as the exact functional is used. In the lim
when the exact self-energy of the electron is indeed locali
within V loc , the SDF becomes the Baym–Kadanoff fun
tional which delivers the full Green function of the system
i.e., we can immediately identifyMe f f(r ,r 8,iv) with
Se f f(r ,r 8,iv) and the poles ofG(r ,r 8,iv) with exact poles
of G(r ,r 8,iv) where the information about bothk and en-
ergy dependence as well as life time of the quasiparticle
contained. We thus see that, at least formally, increasing
size ofV loc in the SDF theory leads to a complete descr
tion of the many-body system, the situation quite differe
from the DFT which misses such scaling.

From a conceptual point of view, the spectral densi
functional approach constitutes a radical departure from
DFT philosophy. The saddle–point equation~23! is the equa-
1-6
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tion for a continuous distribution of spectral weight and t
obtained local spectral functionGloc can now be identified
with the observable local~roughly speaking,k integrated!
one-electron spectrum. This is very different from the Koh
Sham quasiparticles which are the poles ofGKS not identifi-
able rigorously with any one-electron excitations. While t
SDFT approach is computationally more demanding th
DFT, it is formulated in terms of observables and gives m
information than DFT.

On one side, spectral density functional can be viewed
approximation or truncation of the full Baym Kadano
theory whereFBK@G# is approximated byFSDF@Gloc# by
restrictingG to Gloc

30 and the kinetic functionalsKBK@G#
and KSDF@G# are thought to be the same. Such restrict
will automatically generate a short-ranged self-energy in
theory. This is similar to the interpretation of DFT a
approximation FBK@G#5FDFT@r#,KBK@G#5KSDF@GKS#
which would generate the DFT potential as the self-ene
However, SDFT can be thought as a separate theory wh
manifestly local self-energy is an auxiliary operator intr
duced to reproduce the local part of the Green function of
system, exactly as the Kohn-Sham ground state potenti
an auxiliary operator introduced to reproduce the density
the electrons in DFT.

Spectral density-functional theory contains the exchan
correlation functionalFSDF@Gloc#. An explicit expression
for it involving a coupling constantl5e2 integration can be
obtained in complete analogy with the Harris-Jon
formula52 of density functional theory.51 One considers
GSDF@G,l# at an arbitrary interactionl and expresses

GSDF@G,e2#5GSDF@G,0#1E
0

e2

dl
]GSDF@G,l#

]l
. ~29!

Here the first term is simply the kinetic partKSDF@G# as
given by Eq.~14! which does not depend onl. The second
part is thus the unknown functionalFSDF@Gloc#. The deriva-
tive with respect to the coupling constant in Eq.~3! is given
by the averagê c1(x)c1(x8)c(x)c(x8)&5Pl(x, x8,iv)
1^c1(x)c(x)&^c1(x8)c(x8)& where Pl(x, x8) is the
density-density correlation function at a given interacti
strengthl computed in the presence of a source which isl
dependent and chosen so that the local Greens functio
the system isG. Since^c1(x)c(x)&5r(r )d(t), we can ob-
tain:

FSDF@Gloc#5EH@r#1(
iv

E
0

e2

dl
Pl~r ,r 8,iv!

ur2r 8u
. ~30!

Establishing the diagrammatic rules for the function
FSDF@Gloc# while possible,29 is not as simple as for the
functional FBK@G#. The latter is formally represented as
sum of two-particle diagrams constructed withG andvC . It
is known that instead of expandingFBK@G# in powers of the
bare interactionvC and G, the functional form can be ob
tained by introducing the dynamically screened Coulomb
teractionW(r ,r 8,iv) as a variable.53 In the effective action
formalism30 this can be done by introducing an auxilia
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Bose variable coupled to the density, which transforms
original problem into a problem of electrons interacting w
the Bose field.W is the connected correlation function of th
Bose field.

Our effective action is now a functional ofG, W and of
the expectation value of the Bose field. Since the la
couples linearly to the density it can be eliminated exactly
step which generates the Hartree term. After this eliminati
the functional takes the form

GBK@G,W#5Tr ln G2Tr@G0
212G21#G1FBK@G,W#,

~31!

FBK@G,W#5EH@r#2
1

2
Tr ln W1

1

2
Tr@vC

212W21#W

1CBK@G,W#. ~32!

The entire theory is viewed as the functional of bothG and
W. Here,CBK@G,W# is the sum of all two-particle diagram
constructed withG andW with the exclusion of the Hartree
term, which is evaluated with the bare Coulomb interacti
An additional stationarity conditiondGBK /dW50 leads to
the equation for the screened Coulomb interactionW:

W21~r ,r 8,iv!5vC
21~r2r 8!2P~r ,r 8,iv!, ~33!

where the functionP(r ,r 8,iv)522dCBK /dW(r ,r 8,iv) is
the exact interacting susceptibility of the system, which
already discussed in connection with representation~30!.

A similar theory is developed for the local quantities30

and this generalization represents the ideas of extended
namical mean-field theory,35 now viewed as an exact theory
namely, one constructs an exact functional of the lo
Greens function and the local correlator of the Bose fi
coupled to the density which can be identified with the lo
part of the dynamically screened interaction. The real-sp
definition of it is the following:

Wloc~r ,r 8,iv!5W~r ,r 8,iv!u loc~r ,r 8!, ~34!

which is non-zero within a given clusterV loc . Note that
formally this cluster can be different from the one conside
to define the local Green function~2! but we will not distin-
guish between them for simplicity. An auxiliary interactio
W(r ,r 8,iv) is introduced which is the same as the local p
of the exact interaction within nonzero area ofu loc(r ,r 8)

Wloc~r ,r 8,iv!5W~r ,r 8,iv!u loc~r ,r 8!. ~35!

The interaction part of the spectral density functional is re
resented in the form similar to Eq.~32!,

FSDF@Gloc ,Wloc#5EH@r#2 1
2 Tr ln W1 1

2 Tr@vC
212W 21#W

1CSDF@Gloc ,Wloc# ~36!

and the spectral density functional is viewed as a functio
GSDF@Gloc ,Wloc# or alternatively as a functiona
GSDF@G,W#. CSDF@Gloc ,Wloc# is formally not a sum of
two-particle diagrams constructed withGloc and Wloc , but
in principle a more complicated diagrammatic express
can be derived. Alternatively, a more explicit expression
1-7
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volving a coupling constant integration can be given. Exa
ining stationaritydGSDF /dW50 yields a saddle-point equa
tion for W(r ,r 8,iv)

W 21~r ,r 8,iv!5vC
21~r2r 8!2P~r ,r 8,iv!, ~37!

where the effective susceptibility of the system is the va
tional derivative

P~r ,r 8,iv!5
22dCSDF

dW~r 8,r ,iv!
5

22dCSDF

dWloc~r 8,r ,iv!
u loc~r ,r 8!.

~38!

Note again a set of parallel observations forP as forMe f f ,
Eq. ~26!. The effective susceptibility of spectral densit
functional theory is local by construction, i.e., it is nonze
only within the cluster restricted byu loc(r ,r 8). Formally, it
is an auxiliary object and cannot be identified with the ex
susceptibility of the electronic systemP(r ,r 8,iv). However,
if the exact susceptibilityP(r ,r 8,iv) is sufficiently local-
ized, this identification becomes possible. If clusterV loc in-
cludes physical area of localization, we can immediat
identify P(r ,r 8,iv) with P(r ,r 8,iv) andW(r ,r 8,iv) with
W(r ,r 8,iv) in all space. However, bothW andW are always
the same withinV loc regardless its size, as it is seen fro
Eqs.~34! and ~35!.

At the stationarity point,GSDF@G,W# is the free energyF
of the system. If one inserts Eq.~20! into Eq. ~14! and Eq.
~37! into Eq. ~36! we obtain the following formula:

F5Tr ln G2TrMe f fG1TrVextG1EH2 1
2 Tr ln W1 1

2 TrPW
1CSDF . ~39!

Similar formulas hold for the Baym–Kadanoff and densi
functional theories,

F5Tr ln G2TrSe f fG1TrVextG1EH2 1
2 Tr ln W1 1

2 TrPW

1CBK , ~40!

F5Tr ln GKS2TrVe f fGKS1TrVextGKS1FDFT , ~41!

where the first two terms in all expressions~39!, ~40!, ~41!
are interpreted as corresponding kinetic energies, the t
term is the energy related to the external potentialVext which
is in fact TrVextr in all cases. The other terms represent
interaction parts of the free energy. Note that all entro
originated contributions are included in both kinetic and
teraction parts. If temperature goes to zero, the entropy
disappears and the total-energy formulas will be recove
For example, in spectral density-functional theory we obta

E52Tr¹2G1TrVextr1EH1Fxc . ~42!

We will also discuss this limit later in more details in Se
III.

The SDF approach is so far not very useful since a tr
table expression for the functional form ofFSDF@Gloc# or
CSDF@Gloc ,Wloc# has not been given yet. This is quite sim
lar to the unknown exchange-correlation functional of t
DFT. As we have learned from the developments of the
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namical mean-field methods, a very useful approximat
exists to access the functional. This is based on a full ma
body solution of a finite-size cluster problem treated as
impurity embedded into a bath subjected to a se
consistency condition. Such local dynamical mean-fi
theory will be discussed below.

B. Local dynamical mean-field approximation

The spectral density-functional theory, where an ex
functional of certain local quantities is constructed in t
spirit of Ref. 29 uses effective self-energies and susceptib
ties which are local by construction. This property can
exploited to find good approximations to the interaction e
ergy functional. For example, if it isa priori known that the
real electronic self-energy is local in a certain portion of t
Hilbert space, a good approximation is the correspond
local dynamical mean-field theory obtained for example b
restriction or truncation of the full Baym-Kadanoff func
tional or its generalization to useW and G as natural vari-
ables, to local quantities in the spirit of Ref. 30.

The local DMFT approximates the functionalFSDF@Gloc#
~or CSDF@Gloc ,Wloc#) by the sum of all two-particle dia-
grams evaluated withGloc and the bare Coulomb interactio
vC ~or screened local interactionWloc). In other words, the
functional dependence of the interaction partFBK@G# in the
Baym-Kadanoff functional for which the diagrammatic rul
exist is now restricted byGloc and is used as an approxima
tion to FSDF@Gloc#, i.e., FSDF@Gloc#5FBK@Gloc#. Obvi-
ously that the variational derivative of such restricted fun
tional will generate the self-energy confined in the same a
as the local Green function itself.

Remarkably, the summation over all local diagrams c
be performed exactly via introduction of an auxiliary qua
tum impurity model subjected to a self-consisten
condition.54,10 If this impurity is considered as a clusterC,
the cellular DMFT~C-DMFT! can be used which breaks th
translational invariance of the lattice to obtain accurate e
mates of the self energies. The C-DMFT approximation c
also be motivated using the cavity construction. The so
should be separated onto large cells which circumscribe
areasV loc . Considering the effective actionS, Eq. ~3!, the
integration volume is separated onto the cellular areaVC and
the rest bath areaV2VC5Vbath . The action is now repre-
sented as the action of the cluster cell,VC , plus the action of
the bath,Vbath , plus the interaction between those two. W
are interested in the local effective actionSC of the cluster
degrees of freedom only, which is obtained conceptually
integrating out the bath in the functional integral:

1

ZC
exp@2SC#5

1

ZEVbath

drdr 8exp@2S#, ~43!

where ZC and Z are the corresponding partition function
This integration is carried out approximately, keeping only
charge-charge interaction as quartic terms and neglectin
the higher-order terms generated in this process to arrive
cavity action of the form:18,26,30,35
1-8



e

re
to

ca

r-

-

n-
s

th
a

us
a

he
tr
t
ic
ra
a

el

th
sit
d
he
ce
of
m

-
tie

he
a

o-
lly

uch
ld

tion
nal

he

e.
ns

the

le-

ven

h-
his
n
-
ei-
e

Sec.
-

in
ar

ne-

ty-
n:

SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC . . . PHYSICAL REVIEW B69, 245101 ~2004!
SC52E dxc1~x!G 0
21~x,x8!c~x8!

1
1

2E dxdx8c1~x!c1~x8!V0~x,x8!c~x!c~x8!,

~44!

where the integration over the spatial variables is perform
over VC . Here G0(x,x8) or its Fourier transform
G0(r ,r 8,iv) is identified as the bath Green function appea
in the Dyson equation for the local mass opera
Mint(r ,r 8,iv) and for the local Green function
Gloc(r ,r 8,iv) of the cluster, andV0(r ,r 8,iv) is the ‘‘bath
interaction’’ appeared in the Dyson equation for the lo
susceptibility P(r ,r 8,iv) and local interaction
Wloc(r ,r 8,iv), i.e.,

G 0
21~r ,r 8,iv!5Gloc

21~r ,r 8,iv!1Mint~r ,r 8,iv!, ~45!

V 0
21~r ,r 8,iv!5Wloc

21~r ,r 8,iv!1P~r ,r 8,iv!. ~46!

Note that neitherG0 nor V0 can be associated with noninte
acting G0 and bare interactionvC , respectively. Note also
that bothr andr 8 indexes inG0(r ,r 8,iv) and inV0(r ,r 8,iv)
vary within the cellular areaVC . The same should be as
sumed for the local quantitiesGloc(r ,r 8,iv) and
Wloc(r ,r 8,iv). Since these functions are translationally i
variant on the original lattice, this property can be used to
up these functions withinVC .

An interesting observation can be made on the role of
impurity model which in the present context appeared as
approximate way to extract the self-energy of the lattice
ing input bath Green function and bath interaction. Altern
tively, the impurity problem can be thought itself as t
model which delivers exact mass operator of the spec
density functional.29 If the latter is known, there should exis
such bath Green function and such bath interaction wh
can be used to reproduce it. In this respect, the local inte
tion Wloc appeared in our formulation can be thought as
exact way to define the local Coulomb repulsion ‘‘U, ’’ i.e.
such interaction which delivers exact local self-energy.

To summarize, the effective action for the cluster c
~44!, the Dyson equations~45!, ~46! connecting local and
bath quantities as well as the original Dyson equations~20!,
~37! constitute a self-consistent set of equations as
saddle-point conditions extremizing the spectral den
functionalGSDF(G,W). They combine cellular and extende
versions of DMFT and represent our philosophy in t
ab initio simulation of a strongly correlated system. Sin
Mint and P are unknown at the beginning, the solution
these equations assumes self-consistency. First, assu
some initialMint , andP the original Dyson equations~20!,
~37! are used to find Green functionG and screened interac
tion W. Second, the Dyson equations for the local quanti
~45!, ~46! are used to findG0 , V0. Third, quantum impurity
model with the cluster actionSloc after Eq.~44! is solved by
available many-body technique to give new localMint and
P. The process is repeated till self–consistency is reac
This is schematically illustrated in Fig. 3. Note here th
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while single-site impurity problem has a well-defined alg
rithm to extract the lattice self-energy, this is not genera
true for the cluster impurity models.19 The latter provides the
self-energy of the cluster, and an additional prescription s
as implemented within cellular DMFT or using DCA shou
be given to construct the self-energy of the lattice.

Unfortunately, writing down the precise functional form
for FSDF@Gloc ,Wloc# or CSDF@Gloc ,Wloc# is still a problem
because the evaluation of the entropy requires the evalua
of the energy as a function of temperature and an additio
integration over it. In general, the free energyF5E2TS,
where E is the total energy andS is the entropy. Since
GSDF@G#5KSDF@G#1FSDF@Gloc#, both energy and entropy
terms exist in the kinetic and interaction functionals. T
energy part ofKSDF@G#5Tr(2¹21Vext)G and the energy
part of FSDF@Gloc ,Wloc# can be written explicitly as
1
2 TrMintGloc . The entropy correction is a more difficult on
In principle, it can be evaluated by performing calculatio
of the total energy ESDF@G#5Tr(2¹21Vext)G
1 1

2 TrMintGloc at several temperatures and then taking
integral:10

S~T!5S~`!2E
T

`

dT8
1

T8

dESDF

dT8
. ~47!

The infinite temperature limitS(`) for a well-defined model
Hamiltonian can be worked out. This program was imp
mented for the Hubbard model55 and for Ce.31

Two well separate problems are now seen. For a gi
material using the formulas~20!, ~37!, ~2!, ~34!, ~45!, ~46!
G,W,Gloc ,Wloc ,G0 ,V0 should be computed using the met
ods and algorithms of the electronic-structure theory. T
procedure will in part be described in Sec. III. With give
input G0 andV0, the solution of the impurity model consti
tutes a well separated problem which can be carried out
ther using the QMC method or other impurity solver. Som
of the techniques are discussed in Refs. 10 and 11. In
IV, while applying a simplified version of the theory to plu
tonium, we will briefly describe an impurity solver used
that calculation. A full description of this method will appe
elsewhere.41

The described algorithm is quite general, totallyab initio
and allows to determine all quantities, such as the o

FIG. 3. Illustration of self-consistent cycle in spectral densi
functional theory with local dynamical mean-field approximatio
both local Green functionGloc and local Coulomb interactionWloc

are iterated. The auxiliary quantitiesG andW are used to simplify
the construction of the functional.
1-9
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electron local Green functionsGloc and the dynamically
screened local interactionsWloc . Unfortunately, its full
implementation is a very challenging project which so
has only been carried out at the level of mod
Hamiltonians.26 There are several simplifications which ca
be made, however. The screened Coulomb interac
W(r ,r 8,iv) can be treated on different levels of approxim
tions. In many cases used in practical calculations with
LDA1DMFT method, this interactionW is assumed to be
static and parametrized by a set of some optimally scree
on-site parameters, such as HubbardU and exchangeJ.
These parameters can be fixed by constrained density f
tional calculations, extracted from atomic spectra data or
justed to fit the experiment. Since the described theory
perform a search in a constrained space with fixed interac
W, this justifies the use ofU andJ as input numbers. A more
refined approximation, can use a method such as GW
generate an energy-dependentW ~Ref. 56! which is then
treated using extended DMFT.26 Alternatively we can envi-
sion thatW is already so short ranged that we can ignore
EDMFT self-consistency condition, and we treatW as
Wf ix(x,x8). This leads to performing a partial sel
consistency with respect to the Green function only. The p
cedure is reduced to solving Dyson equations~20!, ~45! as
well as to findingMint via the solution of the impurity prob
lem. A full self-consistency can finally be restored by inclu
ing a second loop to relaxW.

A methodological comment should be made in order
make contact with the literature of cluster extensions
single site DMFT within model Hamiltonians. We adopted
less restrictive notion of locality by defining an effective a
tion of the one-particle Green function~and of the interac-
tion! whose arguments are in nearby unit cells. This ma
tains the full translation invariance of the lattice. At the lev
of the exact effective action , this is an exact constructi
and its extremization will lead to portions of the exa
Greens function which obeys causality. Note however tha
has been proved recently19 thatgenerating approximationsto
the exact functional by restricting the Baym–Kadanoff fun
tional to nonlocal Green’s functions leads to violations
causality. For this reason, we propose to use techniques
as CDMFT which are manifestly causal for the purpose
realizing approximations to the local Greens functions.

Our final general comment concerns the optimal choice
local representation or, precisely, the definition of the lo
Green function. This is because the local dynamical me
field approximation is likely to be accurate only if we kno
in which portion of the Hilbert space the real electronic se
energy is well localized. Unfortunately, this is not know
a priori, and in principle, only a full cluster DMFT calcula
tion is capable to provide us some hints in attempts to ans
this question. However, considerable empirical evidence
be used as a guide for choosing a basis for DMFT calc
tions, and we discuss these issues in the following sectio

C. Choice of local representation

We have already pointed out that spectral dens
functional theory is a basis set dependent theory sinc
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probes the Green function locally in a certain region det
mined by a choice of basis functions in the Hilbert spa
Provided the calculation is exact, the free energy of the s
tem and the local spectral density in that Hilbert space w
be recovered regardless the choice of it. We have develo
the theory assuming that the basis in the Hilbert space
indeed the real space which gives us the choice~2! for the
local Green function, i.e., the part of the real Green funct
restricted byu loc(r ,r 8). While this is most natural choice fo
the purpose of formulating locality inr andr 8 variables, it is
also very useful to discuss a more general choice, conne
to some space of orbitalsxj(r ) which can be used to repre
sent all the relevant quantities in our calculation. As we ha
in mind to utilize sophisticated basis sets of modern el
tronic structure calculations, we will sometimes waive t
orthogonality condition and will introduce the overlap matr
Ojj85^xjuxj8& especially in cases when we discuss a pr
tical implementation of the method.

We note that the spacexj(r ) can in principle be inter-
preted as the reciprocal space plane wave represent
xj(r )5ei (k1G)r,j5k1G with k being the Brillouin zone
vector andG being the reciprocal lattice vector. Thus th
Green function can be probed in the region of the recipro
space. It can be interpreted as the real space representat
xj(r )5d(j2r ) where the sums overj are interpreted as the
integrals over the volume, and the locality in this basis
precisely exploited in Eq.~2!. A tremendous transparency o
the theory will also arrive if we interpret the orbital spa
$xj% as a general nonorthogonal tight-binding basis set w
index j combines the angular momentum indexlm, and the
unit cell indexR, i.e., xj(r )5x lm(r2R)5xa(r2R). Note
that we can add additional degrees of freedom to the indea
such, for example, as multiplek basis sets of the linea
muffin-tin orbital based methods, Gaussian decay const
in the Gaussian orbital based methods, and so on. If m
than one atom per unit cell is considered, indexa should be
supplemented by the atomic basis position within the u
cell, which is currently omitted for simplicity. For spin un
restricted calculationsa accumulates the spin indexs and
the orbital space is extended to account for the eigenvec
of the Pauli matrix.

Let us now introduce the representation for the ex
Green function in the localized orbital representation

G~r ,r 8,iv!5(
ab

(
k

xa
k ~r !Gab~k,iv!xb

k* ~r 8!

5(
ab

(
RR8

xa~r2R!Gab~R2R8,iv!

3xb* ~r 82R8!. ~48!

Assuming the single-site impurity case, we can separate l
and nonlocal partsGloc(r ,r 8,iv)1Gnon2 loc(r ,r 8,iv) as fol-
lows

Gloc~r ,r 8,iv!5(
ab

Gloc,ab~ iv!(
R

xa~r2R!xb* ~r 82R!

5(
ab

Gloc,ab~ iv!(
k

xa
k ~r !xb

k* ~r 8!, ~49!
1-10
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SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC . . . PHYSICAL REVIEW B69, 245101 ~2004!
where we denoted the site-diagonal matrix eleme
dRR8Gab(R2R8,iv) as Gloc,ab( iv). Note that this defini-
tion is different from the real-space definition~2!. For ex-
ample, Eq.~2! contains the information about the density
the system. The formula~49! does not describe the densi
since RÞR8 elements of the matrixGab(R2R8,iv) are
thrown away. The locality of Eq.~49! is controlled exclu-
sively by the decay of the orbitalsxa(r ) as a function ofr ,
not by u loc(r ,r 8)

The local part of the Green function,Gloc(r ,r 8,iv),
which is just defined with respect to the Hilbert space$xa%
can be found by developing the corresponding spec
density-functional theory. Since the basis set is assume
be fixed, the matrix elementsGloc,ab( iv) appear only as
variables of the functional. As above, we introduce an a
iliary Green functionGab(k,iv) to deal with kinetic energy
counterpart. Stationarity yields the matrix equation:

G0,ab
21 ~k,iv!5G ab

21~k,iv!1Mint,ab~ iv!, ~50!

where the noninteracting Green function~9! is the matrix of
noninteracting one-electron Hamiltonian:

G0,ab
21 ~k,iv!5^xa

k u iv1m1¹22Vextuxb
k &. ~51!

The self-energy Mint,ab( iv) is the derivative
dFSDF@Gloc,ab( iv)#/dGloc,ab( iv) and takes automatically
the k independent form.

While formally exact, this theory would have at least o
undesired feature since, for example, the density of the
tem can no longer be found from the definition~49! of
Gloc(r ,r 8,iv). As a result, the Hartree energy cannot be s
ply recovered. If treated exactlyFSDF@Gloc,ab( iv)# should
contain the Hartree part. However, we see that the the
delivers k independentMint,ab( iv) including the Hartree
term. There seems to be a paradox since modern electr
structure methods calculate the matrix element of the Har
potential within a given basis exactly, i.e.,^xa

k uVHuxb
k &. The

k dependence is trivial here and is connected to the knowk
dependence of the basis functions used in the calcula
Therefore, while formulating the spectral density-function
theory for electronic structure calculation, we need to kee
mind that in many cases, thek dependence is factorizabl
and can be brought into the theory without a problem. T
warns us that the choice of the local Green function has to
done with care so that useful approximations to the fu
tional can be worked out. It also shows that in many ca
the k dependence is encoded into the orbitals. It is not t
nontrivial k dependence of the self-energy operator, which
connected to the fact thatMint(r ,r 8,iv) may be long-range
i.e., decay slowly whenr departs fromr 8. It may very well
be proportional tod(r2r 8) such as the LDA potential an
still deliver thek dependence.

It turn out that the desiredk dependence with the choic
of the Green function after Eq.~49! can be quickly reinstated
if we add the density of the system as another variable to
functional. This is clear since the density is a particular c
of the local Green function in Eq.~2! taken atr5r 8 and
summed overiv. Therefore combination of definition~49!
andr is another, third possibility of definingGloc . This will
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allow treatment of all local Hartree-like potentials without
problem. Moreover, as we discuss below, this may allow
design better approximations to the functional since the H
bert space treatment of locality is more powerful: it m
allow us to treat more long-ranged self-energies than
ones restricted byu loc(r ,r 8), and the basis sets can be op
mally adjusted to specific self-energies exactly as the b
sets used in electronic structure calculations are tailore
the LDA potential.

We have noted earlier that the mass opera
Mint(r ,r 8,iv) is an auxiliary object of the spectral densit
functional theory. It has the same meaning as the D
Kohn–Sham potential: it is local operator that needs to
added to the noninteracting Green function in order to rep
duce the local Green function of the system, as the D
potential is added to the noninteracting Green function
reproduce the density of the system. Roughly speak
SDFT provides the exact energy and exact one-electron
sity of states which is advantageous compared to the D
which provides the energy and the density only. Howev
we obtain the fullk dependent one-particle spectra as t
poles of auxiliary Green functionG(r ,r 8,z). Can these poles
be interpreted as the exactk dependent one-electron excita
tions? This question is similar to the question of the DF
can the Kohn-Sham spectra be interpreted as the phy
one-electron excitations? To answer both questions we n
to know something about exact self-energy of the electron
it is energy-independent, totally local, i.e., proportional
d(r2r 8) and well-approximated by the DFT potential, th
Kohn-Sham spectra represent real one-electron excitati
The exact SDFT waives most of the restrictions: if the r
self-energy is localized within the areaRloc , the exact SDFT
calculation with the clusterV loc including Rloc will find the
exact k dependent spectrum. If we pickV loc larger than
Rloc , the SDFT equations themselves will choose physi
localization area for the self-energy during our se
consistent calculation. However, these statements bec
approximate if we utilize the local dynamical mean-field a
proximation instead of extremizing the exact function
Even if the real self-energy of the electron is sufficien
short ranged, this approximation will introduce some error
the calculation, the situation similar to LDA within DFT
However, the local dynamical mean-field theory does
necessarily have to be formulated in real space. The assu
tion of localization for self-energy can be done in some p
tion of the Hilbert space. In that portion of the Hilbert spa
the cluster impurity model needs to be solved.

The choice of the appropriate Hilbert space, such, e.g.
atomiclike tight-binding basis set is crucial to obtain an ec
nomical solution of the impurity model. Let us for simplicit
discuss the problem of optimal basis in some orthogo
tight-binding~Wannier-like! representation for the electroni
self-energy

S~r ,r 8,iv!5(
ab

(
k

xa
k ~r !Sab~k,iv!xb

k* ~r 8!

5(
ab

(
RR8

xa~r2R!Sab~R2R8,iv!

3xb* ~r 82R8!. ~52!
1-11
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S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 ~2004!
We can separate our orbital space$xa% onto the subsets de
scribing light $xA% and heavy$xa% electrons. Assuming ei
ther off-diagonal terms between them are small or we w
with exact Wannier functions, the self-energyS(r ,r 8,iv)
can be separated onto contributions from the lig
SL(r ,r 8,iv), and from the heavy,SH(r ,r 8,iv), electrons.
Sab(k,iv) is expected to bek dependent but largelyv in-
dependent for the light block, i.e, SL(r ,r 8,iv)
5(AB(kxA

k (r )SAB(k)xB
k* (r 8). The k dependency here

should be well-described by LDA-like approximation
therefore we expectSL(r ,r 8,iv);Ve f f(r )d(r2r 8). A dif-
ferent situation is expected for the heavy block where
would rely on the result

SH~r ,r 8,iv!;Ve f f~r !d~r2r 8!1(
ab

xa~r !Sab8 ~ iv!xb* ~r 8!.

~53!

The first term here gives thek dependence coming from a
LDA-like potential. It describes the dispersion in the hea
band. The second term is the energy dependent correc
where site-diagonal approximationR5R8 is imposed. What
is the best choice of the basis to use in connection w
Sab8 ( iv) in Eq. ~53!? Here the decay of the orbitalsxa(r ) as
a function ofr is now entirely in charge of the self-energ
range. In light of the spectral density-functional theory, t
answer is the following: the local dynamical mean-field a
proximation would work best for such basisxa(r ) whose
range approximately corresponds to a self-energy local
tion Rloc of the real electron. Even thoughRloc is not known
a priori, something can be learned about its value based
substantial empirical evidence. It is, for example, known t
LDA energy bands when comparing to experiments at fi
place miss the energy dependentSab8 ( iv) like corrections.
This is the case for bandwidths in transition metals~and also
in simple metals!, the energy gaps of semiconductors, etc
is also known that many-body based theories work best
massively downfolded model Hamiltonians where only a
tive low-energy degrees of freedom at the region around
Fermi levelEF remain. The many-body Hamiltonian

Ĥ5(
ab

(
RR8

haRbR8
(0)

@caR
1 cbR81H.c.#

1 (
abgd

(
RR8R9R-

Vabgd
RR8R9R-caR

1 cbR8
1 cdR-cgR9 ~54!

with

Vabgd
RR8R9R-

5E drdr 8xaR* ~r !xbR8
* ~r 8!vC~r2r 8!xgR9~r !xdR-~r 8!

assumes the one-electron HamiltonianhaRbR8
(0) is obtained as

a fit to the bands nearEF . This can always be done b
long-ranged Wannier functions. It is also clear that the c
relation effects are important at first place for the partia
occupied bands since only these bring various configu
tional interactions in the many-body electronic wave fun
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tions. For example, the well-known one-band Hamiltoni
for CuO2 plane of high-Tc materials considers an antibond
ing combination of Cux22y2 and Ox,y orbitals which crosses
EF . Also, the calculations based on the LDA1DMFT
method usually obtain reliable results when treating only
bands crossing the Fermi level as the correlated one-elec
states. This is, for example, the case of Pu or our25 and
previous57 calculation for LaTiO3 where t2g three-band
Hamiltonian is considered. All this implies that the range f
Sab8 ( iv) term in Eq.~53! should correspond to the proper
constructed Wannier orbitals, which is fairly long range
What happen if we instead utilize mostly localized repres
tation which, for example, can be achieved by tight bindi
fits to the energy bands at higher energy scale? For the
of CuO2 this would correspond to a three-band Hamiltoni
with Cux22y2 and Ox,y orbitals treated separately. For LaTiO3
system this is a Hamiltonian derived from Tit2g and Op or-
bitals. The answer here can be given as a practical matte
most economic way to solve the impurity problem: provid
Cu and O levels are well separated, provided both
proaches use properly downfolded for each case Coulo

interaction matrix elementsVabgd
RR8R9R- , and provided correla-

tions are treated on all orbitals, the final answer should
similar regardless the choice of the basis. A faster algorit
will be obtained by treating the one-band Hamiltonian w
antibonding Cux22y22Ox,y orbital. If indeed the self-energy
is localized on the scale of the distance between Cu and O
is clear where the inefficiency of the three-band model
pears: the second term in Eq.~53! needs to be extende
within the cluster involving both Cu and nearest O sites a
should involve both Cu and O centered orbitals simply
reach the cluster boundary. In the one-band case this is
coded into the decay of the properly constructed Wann
state.

The preceding discussion is merely a conjecture. It d
not imply that the localization range for the real self-ener
of correlated electron at given frequencyv is directly pro-
portional to the size of Wannier states located in the vicin
of v1m. It may very well be that in many cases this ran
is restricted by a single atom only~atomic sphere of Cu in
the example above!. Clearly more experience can be gain
by studying a correlation between the decay of the Coulo
matrix elementVRRR8R8 as a function ofR2R8 and the ob-
tained matrixS(R2R8,v) using a suitable cluster DMFT
technique. These works are currently being performed
will be reported elsewhere.58 The given discussion howeve
warns that in general the best choice of the basis for sin
site dynamical mean-field treatment may not be the cas
mostly localized representation. In this respect the area
stricted byu loc(r ,r 8) which is used to formulate SDFT in th
real space may need to be extended up to a cluster. How
alternative formulation with the choice of local Green fun
tion after Eq.~49! may be more economical since a singl
site approximation may still deliver good results. As we ha
argued, such spectral density-functional theory will also ne
the density of the system to complete the definition of lo
Green function. The local dynamical mean-field approxim
tion can be applied to the interaction functionalFSDF which
1-12
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SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC . . . PHYSICAL REVIEW B69, 245101 ~2004!
is viewed asFSDF@r,Gloc#. This idea is used by the LDA
1DMFT method described below.

D. LDA¿DMFT Method

Various methods such as LDA1U,7 LDA1DMFT,11 and
local GW ~Refs. 12 and 16! which appeared recently fo
realistic calculations of properties of strongly correlated m
terials can be naturally understood within spectral dens
functional theory. Let us, for example, explore the idea
expressing the energy as the density functional. Local d
sity approximation prompts us that a large portion of t
exchange-correlation partFxc@r# can be found easily. In-
deed, the charge density is known to be accurately obta
by the LDA. Why not think of LDA as the most primitive
impurity solver, which generates manifestly local sel
energy with localization radius collapsed to a singler point?
It is tempting to representFSDF@Gloc#5EH@r#1Exc

LDA@r#

1F̃@Gloc#2FDC@Gloc#, where the new functiona
F̃SDF@Gloc# needs in fact to take care of those electro
which are strongly correlated and heavy, thus badly
scribed by LDA. Conceptually, that means that the solut
of the cluster impurity model for the light electrons is a
proximated by LDA and does not need a frequency reso
tion for their self-energies.

Unfortunately, the LDA has no diagrammatic represen
tion, and it is difficult to separate the contributions from t
light and heavy electrons. TheExc

LDA@r# is a nonlinear func-
tional and it already includes the contribution to the ene
from all orbitals in some average form. Therefore we need
take care of a nontrivial double counting, encoded in
functional FDC@Gloc#. The precise form of the doubl
counting is related to the approximation imposed
F̃@Gloc#. We postpone this discussion until establishing
connection to the LDA1U method in the following section

The LDA1DMFT approximation considers both the de
sity and the local Green functionGloc,ab( iv) defined in Eq.
~49! as the parameters of the spectral density functional.59 A
further approximation is made to accelerate the solution o
single-site impurity model: the functional dependence com
from the subblock of the correlated electrons only. If loc
ized orbital representation$xa% is utilized, a subspace of th
heavy electrons$xa% can be identified. Thus, the approxim
tion can be written as F̃SDF@Gloc,ab( iv)#, where
Gloc,ab( iv) is the heavy block of the local Green functio
The double counting correction depends only on the aver
density of the heavy electrons. Its precise form will be d
cussed below, but for now we assume thatFDC@Gloc#

5FDC@ n̄c# with n̄c5T( iv(aGloc,aa( iv)eiv01
, where in-

dexa runs within a correlatedl c shell only. We can write the
LDA1DFMT approximation for the interaction energy a
follows:

FLDA1DMFT@r,Gloc#5EH@r#1Exc
LDA@r#1F̃@Gloc,ab~ iv!#

2FDC@ n̄c#. ~55!

The kinetic energy part is treated as usual with introduc
the auxiliary Green functionG(r ,r 8,iv).
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The full functional GLDA1DMFT@G# is considered as a
functional of the matrixGab(R2R8,iv) or its Fourier trans-
formed analogGab(k,iv). The stationarity is examined with
respect toGab(k,iv) and produces the saddle-point equati
similar to Eq.~20!. It has the following matrix form:

G0,ab
21 ~k,iv!5G ab

21~k,iv!1Mint,ab~k,iv!, ~56!

where the noninteracting Green function~9! is the matrix of
noninteracting one-electron Hamiltonian

G0,ab
21 ~k,iv!5^xa

k u iv1m1¹22Vextuxb
k &. ~57!

The self-energyMint,ab(k,iv) is the variational derivative
of FLDA1DMFT@r,Gloc#. Its precise form depends on th
basis set used in the LDA1DMFT calculation.

In general, it can be split onto several contributions
cluding Hartree, LDA exchange correlation, DMFT and t
double-counting correction. In orthogonal tight-binding, bo
DMFT, M̃ab( iv), and double counting,dabVaa

DC , matrices
do not depend onk. These matrices are nonzero within th
heavy block only. The Dyson equation~56! can be rewritten
by separating fromMint,ab(k,iv) the total LDA potential
VLDA(r )5Vext(r )1VH(r )1Vxc

LDA(r ):

G ab
21~k,iv!5^xa

k u iv1m1¹22VLDAuxb
k &2daadbaVaa

DC

1daadbbM̃ab~ iv!. ~58!

The Green functionGab(k,iv) obtained from Eq.~9! is
used to findGloc,ab( iv)5(kGab(k,iv) which is then used
in another Dyson equation to compute the bath Green fu
tion:

G0,ab
21 ~ iv!5Gloc,ab

21 ~ iv!1M̃ab~ iv!. ~59!

In Sec. III we will also describe an accurate procedure
solve the real space form~45! of the Dyson equation using
the linear muffin-tin orbital~LMTO! basis set. The LDA
1DMFT bath Green functionG0,ab( iv) is the only essentia
input to the auxiliary impurity model. Thus, the procedure
self-consistency within LDA1DMFT is reduced to the fol-
lowing steps. First, some self-energy matrix of the hea
orbitalsM̃ab( iv) is guessed. Then, the Dyson equation~56!
is solved in the entire Hilbert space and delivers the Gr
function Gab(k,iv). After that, the local Green function o
the correlated electrons is constructed, which is then use
the Eq. ~59! to deliver the bath Green functionG0,ab( iv).
This matrix is the input to the impurity model. Solution o
this model delivers the new self-energyM̃ab( iv) and the
process is iterated towards self-consistency.

Note that once the DMFT self-consistency is reached,
process can either be stopped or continued since the G
function Gab(k,iv) delivers new charge density of the sy
tem which modifies the Hartree and LDA exchang
correlation potentials in the expression~58!. In this respect,
the LDA1DMFT method assumes a double iterational loo
the internal one over the self-energy and the external
over the density. This is precisely dictated by the spec
density-functional stationarity condition. We illustrate su
1-13
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S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 ~2004!
loop on Fig. 4. Note that in order to access accurate t
energies and remove ambiguity that the LDA Green funct
~and not any other one! is used as an input to the DMF
calculation, this density self-consistency loop needs to
carried out. Our application to the volume expansion in
described later in this paper involves solution of the SD
equations allowing the full relaxation of the charge densi

Iterations over the density are not complicated to incor
rate in the programs for electronic-structure calculations. T
spherical part of the density at a given site can be writ
approximately using the atomic sphere approximation as
integral over the partial density of statesNl(E) till the Fermi
level EF :

r~r !5(
l
E

2`

EF
Nl~E!w l

2~r ,E!dE, ~60!

where w l(r ,E) are the solutions of the radial Schro¨dinger
equation. Usually these are constructed using spherical
of the LDA potential but in the present context the nonlo
self-energy operator needs to be utilized:63

~2¹ rl
2 2E!w l~r ,E!1E Me f f~r ,r 8,E!w l~r 8,E!r 82dr850.

~61!

Expression~60! can be simplified further if we assum
a Taylor expansion of w l(r ,E)5w l(r ,En l)1(E
2En l)ẇ l(r ,En l) around some linearization energiesEn l
taken at the centers of gravities of the occupied ene
bands, i.e.,En l5*

2`
EF ENl(E)dE/*

2`
EF Nl(E)dE. During the

iterations, DMFT modifies the density of states,DNl(E),
which leads to the changeDr(r ) of the density. The latter
has a feedback onto the changeDw l(r ,E) @or changes
Dw l(r ,En l),Dẇ l(r ,En l)]. If we assume that these chang
are small compared to the original LDA values, we can wo
out a linear response relationship for the density

Dr~r !5(
l
E

2`

EF
DNl~E!w l

2~r ,E!dE

1(
l
E

2`

EF
Nl~E!w l~r ,E!Dw l~r ,E!dE

1(
l

Nl~EF!w l
2~r ,EF!DEF ~62!

FIG. 4. Illustration of self-consistent cycle in spectral densi
functional theory with LDA1DMFT approximation: double itera
tional cycle consists of the innner DMFT loop and outer~density
plus total energy! loop.
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and for the LDA potential

DVLDA~r !5DVH~r !1
dVxc

LDA

dr
Dr~r !. ~63!

Thus, to first order, these are the quantities which are itera
in the external density loop of the spectral density functio
as shown on Fig. 4.

The main physical point of the LDA1DMFT methodol-
ogy is identification of a subset of the correlated orbit
$xa% which is separated from the full Hilbert space$xa%. In
the case such as Pu, this is the subset off-electron orbitals. In
other situations, this subset can be isolated based on phy
grounds. If$xa% is appropriately constructed Wannier repr
sentation, this subset may describe the bands crossing
Fermi level. We expect the dynamical self-energy correctio
to appear at first place only within the subset$xa%. However,
changes in the electronic densities of states,DNl(E), will
appear for all light and heavy electrons.

We did not discuss so far the relaxation of the scree
Coulomb interactionW(r ,r 8,iv), which, in principle, needs
to be done during the self-consistency in parallel
G(r ,r 8,iv). We stress that the short-range behavior appe
only for the local effective susceptibilityP(r ,r 8,iv) in Eq.
~33! and means its fast decay whenr departs fromr 8. Con-
trary, the functionW(r ,r 8,iv) can be as long range as th
bare Coulomb interaction if necessary. This is dictated
Eq. ~33! and is similar to the relationship~20! betweenG and
Mint .

The locality assumption forP should simplify the self-
consistency overW. This should be faster than the one em
ployed in the full GW method which formally tries to com
pute full P(r ,r 8,iv). In the language of local orbita
representation$xa%, this means computation of all matri
elements for Pab(R2R8,iv) or its Fourier transform
Pab(k,iv) as compared to the site-diagonal (dRR8) or small
cluster cases of SDFT. This will be discussed below in c
nection to the recently proposed12,16 local version of the GW
method.

So far we did not mention the problem of the optim
choice of the double counting corrections. This is discus
below in connection to the LDA1U method.

E. Double counting and LDA¿U method

Historically, the LDA1U method has been introduced60

as an extension of the local spin-density approximat
~LSDA! to treat the ordered phases of Mott insulating soli
In this respect it is a natural extension of LSDA. Howev
this method was first to recognize that a better energy fu
tional can be constructed if not only the density but the d
sity matrix of correlated orbitals is brought into the dens
functional. We have discussed the correlated subset$xa% and
the local Green functionsGloc,ab( iv) in connection to the
LDA1DMFT method. The density matrixnab is related to
the correlated subblock of the local Green function:

nab5T(
iv

eiv01
Gloc,ab~ iv!. ~64!

-

1-14
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Therefore, the LDA1U method can be viewed as an a
proximation ~Hartree–Fock approximation! to the spectral
density functional within LDA1DMFT.

The correct interaction energy among the correlated e
trons can be written down explicitly using the Hartree–Fo
approximation. In our language the LDA1DMFT interaction
energy functional~55! is rewritten in the form

FLDA1U@r,nab#5EH@r#1Fxc
LDA@r#1F̃U@nab#2FDC@ n̄c#,

~65!

where the functional formF̃U@nab# is known explicitly:

F̃U@nab#5
1

2 (
abcd

~Uacbd2Uacdb!nabncd . ~66!

Here, indexesa,b,c,d involve fixed angular momentuml of
the heavy orbitals and run over magneticm and spins quan-
tum numbers. The on-site Coulomb interaction matrixUabcd
is the on-site Coulomb interaction matrix eleme
Va5ab5bg5cd5d

RRRR appeared in Eq.~54! which is again taken
for the subblock of the heavy orbitals. Note that sometim
Uabcd is defined asVa5ab5cg5bd5d

RRRR .
The double counting termFDC@nab# needs to be intro-

duced since both the L~S!DA and U terms account for the
same interaction energy between the correlated orbitals.
includes in first place the Hartree part. However, the prec
form of the double counting is unclear due to nonlinear
ture of the LDA exchange–correlation energy. In practice
was proposed7 that the form forFDC is

FDC@ n̄c#5 1
2 Ūn̄c~ n̄c21!2 1

2 J̄@ n̄c
↑~ n̄c

↑21!1n̄c
↓~ n̄c

↓21!#.
~67!

where Ū5@1/(2l 11)2#(abUabab, J̄5Ū2@1/2l (2l

11)#(ab(Uabab2Uabba) and where n̄c
s5(aP l c

naadsas ,

n̄c5n̄c
↑1n̄c

↓ . Some other forms of the double countings ha
also been discussed in Ref. 61.

The minimization of the functionalGLDA1U@r,nab# is
now performed. The self-energy correction in Eq.~58! ap-
pears as the orbital dependent correctionM̃ab2Vab

DC :

M̃ab5
dF̃U

dnab
5(

cd
~Uacbd2Uacdb!ncd , ~68!

Vab
DC5

dFDC

dnab
5dabF ŪS n̄c2

1

2D2 J̄S n̄c
s2

1

2D G . ~69!

While the correction is static, it is best viewed as the Hartr
Fock approximation to the self-energyMab( iv) within the
LDA1DMFT method. Note that such interpretation allow
us to utilize double counting forms within LDA1DMFT as
M̃(r ,r 8,i`) or M̃(r ,r 8,i0). Note also that the solution o
the impurity problem collapses in the LDA1U method since
the self-energy is known analytically by formula~68!.

From a practical point of view, despite the great succ
of the LDA1U theory in predicting materials properties
correlated solids7 there are obvious problems with this a
proach when applied to metals or to systems where the
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bital symmetries are not broken. They stem from the we
known deficiencies of the Hartree–Fock approximation. T
most noticeable is that it only describes spectra of magn
cally ordered systems which have Hubbard bands. We h
however argued that a correct treatment of the electro
structure of strongly correlated systems has to treat b
Hubbard bands and quasiparticle bands on the same foo
Another problem occurs in the paramagnetic phase of M
insulators: in the absence of any broken symmetry
LDA1U method reduces to the LDA, and the gap collaps
In systems such as NiO where the gap is of the order of
but the Neel temperature is a few hundred Kelvin, it is u
physical to assume that the gap and the magnetic orde
are related. For this reason the LDA1U predicts magnetic
order in cases that it is not observed, as, e.g., in the cas
Pu.62

F. Local GW approximation

We now discuss the relaxation of the screened Coulo
interaction W(r ,r 8,iv) which appeared in the spectra
density-functional formulation of the problem. Both LDA
1DMFT and LDA1U methods parametrize the interactio
W with optimally screened set of parameters, such, e.g.
the matrixUabcd appeared in Eq.~66!. This matrix is sup-
posed to be given by an external calculation such, e.g., as
constrained LDA method.28 To determine this interaction
self-consistently an additional self-consistency loop d
scribed by the Eqs.~33! and ~46! has to be switched on
together with calculation of the local susceptibili
P(r ,r 8,iv) by the impurity solver. This brings a truly self
consistentab initio method without input parameters and th
double counting problems.

A simplified version of this method has been recen
proposed12,16 which is known as a local version of the GW
method ~LGW!. Within the spectral density-functiona
theory, this approximation appears as approximation to
functionalCSDF@Gloc ,Wloc# taken in the form

CLGW@Gloc ,Wloc#52 1
2 TrGlocWlocGloc . ~70!

As a result, the susceptibilityP(r ,r 8,iv) is approximated
by the product of two local Green functions, i.e.,P
522dCLGW /dWloc5GlocGloc , and the exchange
correlation part of our mass operator is approxima
by the local GW diagram, i.e.,Mxc5dCLGW /dGloc
52GlocWloc .

Thus, the impurity model is solved and the procedure c
be made self-consistent: For a givenMint andP, the Dyson
equations~20!, ~37! for G andW are solved. Then, the loca
quantitiesGloc, Wloc are generated and used to find ne
Mint andP thus avoiding the computation of the bath Gre
function G0 after Eq. ~45!, and the interactionV, after
Eq. ~46!.

Note that since the local GW approximation Eq.~70! is
relatively cheap from computational point of view, its impl
mentation on a cluster and for all orbitals should not be
problem. The results of the single-site approximation for
local quantities have been developed independently and
1-15
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ported in the literature.16 The cluster extension is currentl
being performed and the results will be reported elsewher63

Note finally that the local GW approximation is not th
only one which can be implemented as the simplified im
rity solver. For example, another popular approximat
known as the fluctuational exchange approximation~FLEX!
can be worked out along the same lines. Note also that
combination of the DMFT and full GW diagram has be
recently proposed12,27 and a simplified implementation fo
Ni,27 and for a model Hamiltonian26 have been carried out
This procedure incorporates fullk dependence of the self
energy known diagrammatically within GW together wi
the additional local DMFT diagrams.

III. CALCULATION OF LOCAL GREEN FUNCTION

The solution of the Dyson equations described in the p
ceding section for a given strongly correlated material
quires the calculation of the local Green function during
iterations towards self-consistency. This is very similar to
procedure in the density-functional theory, when the cha
density is computed. A big advantage of DFT is the use
Kohn–Sham orbitals which reduces the Eq.~22! for the
Kohn–Sham Green function to a set of one-particle Schr¨d-
inger’s like equations for the wave functions. As a result
kinetic-energy contribution is calculated directly and t
evaluation of the total energy of a solid is not a proble
Here, a similar algorithm will be described for the energ
dependent Dyson equation, the solution in terms of
linear-muffin-tin orbital basis set will be discussed, and
formula for evaluating the total energy will be given.

A. Energy Resolved One-Particle Representation

We introduced the auxiliary Green functionG(r ,r 8,iv) to
deal with the kinetic part of the action in SDFT. It satisfies
the Dyson Eq.~9!. Let us now introduce the representation
generalized energy-dependent one-particle states

G~r ,r 8,iv!5(
k j

ck j v
R ~r !ck j v

L ~r 8!

iv1m2Ek j v
, ~71!

G 21~r ,r 8,iv!5(
k j

ck j v
R ~r !~ iv1m2Ek j v!ck j v

L ~r 8!,

~72!

where the leftck j v
L (r ) and rightck j v

R (r ) states satisfy to the
following Dyson equations:

@2¹21Vext~r !1VH~r !#ck j v
R ~r !

1E Mxc~r ,r 8,iv!ck j v
R ~r 8!dr 85Ek j vck j v

R ~r ! ~73!

@2¹21Vext~r !1VH~r !#ck j v
L ~r !

1E ck j v
L ~r 8!Mxc~r 8,r ,iv!dr 85Ek j vck j v

L ~r ! ~74!

@we dropped the imaginary unit for simplicity in the notatio
ck j v(r ) which shall be thought as a shortened version
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ck j (r ,iv)]. These equations should be considered as the
genvalue problems with complex non-Hermitian self-ener
As a result, the eigenvaluesEk j v @a shortened form for
Ek j ( iv)] being the same for both equations are complex
general. The explicit dependency on the frequencyiv in
both eigenvectors and eigenvalues comes from the s
energy. Note that left and right eigenfunctions are orthon
mal

E drck j v
L ~r !ck j 8v

R
~r !Äd j j 8 ~75!

and can be used to evaluate the charge density of a g
system using the Matsubara sum and the integral over thk
space:

r~r !5T(
iv

(
k j

gk j vck j v
L ~r !ck j v

R ~r !eiv01
, ~76!

where

gk j v5
1

iv1m2Ek j v
. ~77!

We have cast the notation of spectral density theory in a fo
similar to DFT. The functiongk j v is the Green function in
the orthogonal left/right representation which plays a role
a ‘‘frequency-dependent occupation number.’’

It needs to be pointed out that the frequency-depend
energy bandsEk j v represent an auxiliary set of complex e
genvalues. These are not the true poles of the exact
electron Green functionG(r ,r 8,z) considered at complexz
plane. However, they are designed to reproduce the lo
spectral density of the system. Note also that these ba
Ek jz are not the true poles of the auxiliary Green functi
G(r ,r 8,z). The latter ones still need to be located by solvi
a nonlinear equation corresponding to the singularities in
expression~71! after analytic continuation to real frequenc
For a one-band case this equation is simply:z1m2Ekz
50, whose solution delivers the quasiparticle dispersionZk .
General knowledge of the poles positionsZk j will allow us to
write an alternative expression forG which is similar to Eq.
~71!, but with the eigenvectors found atZk j thus carrying out
no auxiliary frequency dependence. These poles are the
one-electron excitational spectra in caseG is a good approxi-
mation toG. However, the use of Eq.~71! is advantageous
since it avoids additional search of poles and allows dir
evaluation of the local spectral and charge densities the
tem.

The energy-dependent representation allows us to obta
very compact expression for the total energy. As we ha
argued, the entropy terms are more difficult to evalua
However, they are generally small as long as we stay at
temperatures. The pure kinetic part of the free energy
pressed via@see, Eq.~39!#
1-16
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Tr ln G2TrMe f fG5T(
iv

eiv01E drdr 8ln G~r ,r 8,iv!

2T(
iv

E drdr 8Me f f~r ,r 8,iv!

3G~r 8,r ,iv! ~78!

needs to be separated onto the energy and entropy te
Both contributions can be evaluated without a problem,
in light of neglecting the entropy correction in the interacti
part, we concentrate on evaluating the kinetic energy on

T(
iv

eiv01E dr @~2¹ r
2!G~r ,r 8,iv!# r5r8

5T(
iv

eiv01

(
k j

^ck j v
L u2¹2uck j v

R &
iv1m2Ek j v

. ~79!

The SDFT total energy formula is now arrived by utilizin
the relationship Ek j v5^ck j v

L u2¹21Me f fuck j v
R &5^ck j v

L

u2¹21Vext1VH1Mxcuck j v
R &:

ESDF5T(
iv

eiv01

(
k j

gk j vEk j v

2T(
iv

E drdr 8Me f f~r,r 8,iv!G~r 8,r ,iv!1

1E drVext~r !r~r !1
1

2E drVH~r !r~r !

1
1

2
T(

iv
E drdr 8Mxc~r,r 8,iv!Gloc~r 8,r ,iv!.

~80!

If the self-energy is considered as input to the iteration wh
the Green function is the output, near stationary point
should have a convergency faster than the convergency in
Green function.

It is instructive to consider the noninteractive limit whe
the self-energy represents a local energy-independent po
tial, say, the ground-state Kohn Sham potential of
density-functional theory. This provides an important test
our many-body calculation. It is trivial to see that in the DF
limit, we obtain the Kohn–Sham eigenfunctions

ck j v
R ~r !→ck j~r !, ~81!

ck j v
L ~r !→ck j* ~r !, ~82!

Ek j v→Ek j , ~83!

and the one-electron energy bands are no longer frequ
dependent. The sum over Matsubara frequencies in the
pression for the charge density~76! can be performed ana
lytically using the expression for the Fermi-Diraq occupati
numbers:
24510
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f k j5
1

e(Ek j 2m)/T11
5T(

iv

eiv01

iv1m2Ek j
~84!

and the formula~76! collapses to the standard expression
the density of noninteracting fermions. The total-energy
pression~80! is converted back to the DFT expression for t
total energy since the eigenvalueEk j v becomes the DFT
band structureEk j , and the summation over Matsubara fr
quenciesT( iveiv01

gk j v gives according to Eq.~84! the
Fermi-Diraq occupation numberf k j . The standard DFT ex-
pression is recovered:

EDFT5(
k j

f k jEk j2E drVe f f~r !r~r !1E drVext~r !r~r !

1
1

2E drVH~r !r~r !1Exc@r#, ~85!

where Ek j5^ck j u2¹21Ve f fuck j&5^ck j u2¹21Vext1VH
1Vxcuck j&.

B. Use of linear muffin–tin orbitals

The next problem is to solve the Dyson equation for t
eigenvalues. The sophisticated basis sets developed to s
the one-electron Schro¨dinger equation can be directly used
this case. We utilize the LMTO method described exte
sively in the past literature42–44 as it provides a minimal
atom-centered local orbital basis set ideally suited for
electronic structure calculation. Within the LMTO basis, t
full Green function is represented as a sum

G~r ,r 8,iv!5(
k

(
ab

xa
k ~r !Gab~k,iv!xb

k* ~r 8! ~86!

and, as we have argued in the preceding section, the m
Gab(k,iv) needs to be considered as a variable in the sp
tral density functional. The stationarity yields the equati
for the Green function

Gab~k,iv!5@~ iv1m!Ô~k!2ĥ(0)~k!2Mint~k,iv!#ab
21 ,

~87!

where the overlap matrixOab(k)5^xa
k uxb

k &, the noninteract-
ing Hamiltonian matrix hab

(0)(k)5^xa
k u2¹21Vext(r )uxb

k &
and the self–energy formally comes as a matrix element

Mint,ab~k,iv!5E drdr 8xa
k* ~r !Mint~r ,r 8,iv!xb

k ~r 8!

~88!

over the LMTOs. Again, it is worth to point out that th
self-energy here depends onk via the orbitals even if the
single-impurity case is considered. In calculations perform
on a cluster, the self-energy will also pick its nontrivialk
dependence coming from the nearest sites.

While formally valid, the present approach is not ve
efficient since the Green functionG(r ,r 8,iv) has to be
evaluated via Eq.~86!. This is thek integral which has poles
in a complex frequency plane, and integrating singular fu
tions need to be performed with care. In this respect,
1-17
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adopt the eigenvalue representation~71!. We expand the
energy-dependent states in terms of the LMTO basis$xa

k % as
follows:

ck j v
R(L)~r !5(

a
Aa

k j v,R(L)xa
k ~r !. ~89!

The unknown coefficientsAa
k j v,R(L) are now the quantities

which have to be considered as variables in the spectral
sity functional. The stationarity yields the equations

(
b

@hab
(0)~k!1Mint,ab~k,iv!2Ek j vOab~k!#Ab

k j v,R50,

~90!

(
a

Aa
k j v,L@hab

(0)~k!1Mint,ab~k,iv!2Ek j vOab~k!#50.

~91!

These are the non-Hermitian eigenvalue problems solved
standard numerical methods. The orthogonality condition
volving the overlap matrix is

(
ab

Aa
k j v,LOab~k!Ab

k j 8v,R5d j j 8 . ~92!

Note that the present algorithm just inverts the matrix~87!
with help of the ‘‘right’’ and ‘‘left’’ eigenstates. The Green
function ~87! in the basis of its eigenvectors becomes

Gab~k,iv!5(
j

Aa
k j v,RAb

k j v,L

iv1m2Ek j v
. ~93!

This formula can be safely used to compute the Green fu
tion as the integral over the Brillouin zone, Eq.~86!, because
the energy denominator can be integrated analytically us
the tetrahedron method.64

Our next topic here is the evaluation of the bath Gre
functionG0(r ,r 8,iv). It can be found from the integral equa
tion

G0~r ,r 8,iv!5Gloc~r ,r 8,iv!

2E dr 9dr-Gloc~r ,r 9,iv!Mint~r 9,r-,iv!

3G0~r-,r ,iv!, ~94!

wherer andr 8 run overV loc In order to solve this equation
it is useful to representr5r1R, r 85r81R8, and redenote
G0(r ,r 8,iv) 5 G0,RR8(r,r8,iv),Gloc(r ,r 8,iv) 5 Gloc,RR8(r,
r8,iv),Mint(r ,r 8,iv)5Mint,RR8(r,r8,iv). Considering
one atom per unit cell let us see how this can be solved u
single k LMTO method in atomic sphere approximatio
~ASA!. The generalization to multiatomic systems with mu
tiple k basis sets as well as inclusion of full potential term
in the calculation can be done along the same lines. The f
of the LMTO basis function inside the sphere centered aR
is
24510
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xa
k ~r !5xa

k ~r!eikR5eikRFFa
H~r!1(

L
FL

J~r!SLa
k G ,

~95!

whereSLa
k are the structure constants of the LMTO meth

and whereFL
H,J(r) are such linear combinations of the s

lutions of the radial Schro¨dinger equation taken at spheric
part of the potential as well as their energy derivatives ta
at some set of energiesEn l at the center of interest so tha
they match to the spherical Hankel~H! and Bessel~J! func-
tions at the muffin-tin sphere boundary. The local Gre
function can be represented in this basis set as follows

Gloc,RR8~r,r8,iv!5(
LL8

(
m,n5H,J

FL
(m)~r!

3Gloc,LRL8R8
(mn)

~ iv!FL8
(n)* ~r8!, ~96!

where the matrices Gloc,aRbR8
HH ( iv),Gloc,aRL8R8

HJ ( iv),
Gloc,LRbR8

JH ( iv),Gloc,LRL8R8
JJ ( iv) ~indexesR and R8 are re-

stricted to a cluster! are given by the following Brillouin
zone integrals:

Gloc,LRL8R8
(mn)

~ iv!5(
k j

AL(m)
k j v,RAL8(n)

k j v,L

iv1m2Ek j v
eik(R2R8). ~97!

Here AL(H)
k j v,R(L) are the original eigenvectorsAL

k j v,R(L) and
AL(J)

k j v,L5(aAa
k j v,LSLa

k , AL(J)
k j v,R5(aSLa

k* Aa
k j v,R are the convo-

lutions of the eigenvectors with the LMTO structure co
stants. We now utilize a similar representation for the b
Green function

G0,RR8~r,r8,iv!5(
LL8

(
m,n5H,J

FL
(m)~r!

3G0,LRL8R8
(mn)

~ iv!FL8
(n)* ~r8!, ~98!

where the matrices G0,aRbR8
HH ( iv),G0,aRL8R8

HJ ( iv),
G0,LRbR8

JH ( iv),G0,LRL8R8
JJ ( iv) can be found from the following

Dyson equation~where the matrices sizes have been enlar
by a factor of 2!

G0,LRL8R8
(mn)21

~ iv!5Gloc,LRL8R8
(mn)21

~ iv!1Mint,LRL8R8
(mn)

~ iv!
~99!

with the self-energy matrices are defined as follows

Mint,LRL8R8
(mn)

~ iv!5E drdr8FL
(m)* ~r!

3Mint,RR8~r,r8,iv!FL8
(n)

~r8!. ~100!

The solution of the impurity model withG0,LRL8R8
(mn) ( iv)

delivers new matrix elements~100!. The k dependent
self-energy~88! to be used in constructing the new Gre
function in Eq. ~87! is found first by restoring thek
dependence from the cluster Mint,LL8

(mn) (k,iv)

5(R2R8Mint,LRL8R8
(mn) ( iv)eik(R2R8) and second, restoring th

k dependence of the LMTO basis as follows
1-18
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Mint,ab~k,iv!5Mint,ab
HH ~k,iv!1(

L
Mint,aL

HJ ~k,iv!SLb
k

1(
L8

SL8a
k* Mint,L8b

JH
~k,iv!

1(
LL8

SLa
k* Mint,LL8

JJ
~k,iv!SL8b

k . ~101!

In practical calculations performed with the LD
1DMFT method for Pu, only the subset of orbitals$xa% is
treated as correlated (f electrons of Pu! and a single-impurity
case is considered. It is useful to separate the Hartree
LDA exchange-correlations terms. Instead of dealing w
the noninteracting Hamiltonian in Eq.~87!, we can rearrange
the contributions to arrive

Gab~k,iv!5@~ iv1m!Ô~k!2ĥLDA~k!2DM̂~k,iv!#ab
21 ,

~102!

where hab
LDA(k)5^xa

k u2¹21VLDA(r )uxb
k & with VLDA(r )

5Vext(r )1VH(r )1Vxc
LDA(r ). The matrix DMab(k,iv)

5M̃ab(k,iv)2Vab
DC(k), where Mab(k,iv)

5daadbbM̃ab(k,iv) and Vab
DC(k)5daadbbVab

DC(k) repre-
sent the DMFT correction and double counting term d
scribed by Eq.~69!. These matrices are nonzero within th
correlated subset. To accelerate the calculation of the im
rity model, we can parametrize the self-energy matrix
M̃ab

(mn)( iv)5M̃ab
(p)( iv)^Fa

(m)uFb
(n)&. With such parametriza

tion, the local Green function which enters the Dyson eq
tion should be defined as follows Gloc,ab( iv)
5(k j (mnAa(m)

k j v,R ^Fa
(m)uFb

(n)&Ab(n)
k j v,L/ ( iv1m2Ek j v). This

represents the generalization of a partial-density-of-state
mula of the LMTO method. The bath Green function can
found from the equation:G0,ab( iv)215Gloc,ab( iv)21

1M̃ab
(p)( iv) and can be passed to the impurity solver. T

latter delivers a new self-energyM̃ab
(p)( iv) which is then

multiplied by ^Fa
(m)uFb

(n)& and used to reconstruct newk
dependent self-energy after~101!. Such procedure preserve
all k dependent information coming from the orbitals.

IV. APPLICATIONS TO PLUTONIUM

This section describes the application of the theory to P
tonium. Pu is known to be an anomalous metal.65 It has six
crystallographic structures. Starting from the low tempe
turea phase~0–100 C! with 16 atoms per unit cell it show
a series of phase transitions and ends up in relatively sim
fcc d ~300–450 C! and bcc« phases~500–650 C! just be-
fore it melts. The temperature dependence of atomic volu
in Pu is anomalous.66 It shows an enormous volume expa
sion betweena andd phases which is about 25%. Within th
d phase, the metal shows negative thermal expansion. T
sition betweend and higher-temperature« phase occurs with
a 5% volume collapse. Also, Pu shows anomalous resisti
behavior67 characteristic for the heavy fermion systems, b
neither of its phases is magnetic. The susceptibility is sm
and relatively temperature independent. The photoemissi68
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shows a strong narrow Kondo-like peak at the Fermi le
consistent with large values of the linear specific-heat co
ficient.

Density-functional based LDA and GGA calculations d
scribe the properties of Pu incorrectly. They predict magne
ordering.69 They underestimate70 equilibrium volume of the
d and « phase by as much as 30%, the largest discrepa
known in LDA, which usually predicts the volume of solid
within few percent accuracy even for such correlated syste
as high-temperature superconductors. Despite this, the
ume of thea phase is predicted correctly by LDA.70 Since
the transport and thermodynamic properties ofa and d Pu
are very similar, the nature of thea phase and the reaso
why LDA predicts accurately its structure and volume is
itself is another puzzle.

To address these questions several approaches have
developed. The LDA1U method was applied tod Pu.62,71 It
is able to produce the correct volume of thed phase for
values of the parameterU;4 eV consistent with atomic
spectral data and constrained density-functional calculatio
Similar calculation has been performed by a so-called or
ally ordered density functional method.72 However, both
methods predict Pu to be magnetic, which is not obser
experimentally. The LDA1U method is unable to predict th
correct excitation spectrum. Also, to recover thea phase
within LDA1U the parameter U has to be set to zero wh
is inconsistent with its transport properties and with mic
scopic calculations of this parameter. Another approa
proposed73 in the past is the constrained LDA approach
which some of the 5f electrons, are treated as core, while t
remaining are allowed to participate in band formation. R
sults of the self-interaction-corrected LDA calculations ha
been reported,74 as well as qualitative discussion of the bon
ing nature across the actinides series has been given.75

Thus, the problem of Pu is challenging because itsf elec-
trons are close to the Mott transition.76 It provides us a cru-
cial test for our quantitative theory of strong correlations.
short version of this work has appeared already.32 Our imple-
mentation is based on the self-consistent LDA1DMFT
method and uses the LMTO method in its tight-binding~TB!
representation.43 Spin-orbit coupling effects are important fo
actinide compounds and have been included in the calc
tion for Pu. The ‘‘full potential’’ terms have been neglecte
in the calculation through the use of the atomic sphere
proximation with a onek LMTO basis set. The necessaryk
space integrals for evaluating Green functions and cha
densities have been carried out using the tetrahedron me
using ~8,8,8! grid in the Brillouin zone. We also included
generalized gradient corrections after Ref. 77 in all our c
culations.

To evaluate total energy as a function of volume we ne
to iterate charge density and the local Green function fof
electrons towards self-consistency. This, first, involves
solution of eigenvalue problem~90!, ~91! which represents a
matrix analog of differential equations~73!, ~74! when using
a TB-LMTO basis set. We fixed radial wave function
F l

H,J(r ) appeared in Eq.~95! from linear combinations of
the solutionsw l(r ,En l) of the radial Schro¨dinger equation as
well as their energy derivatives taken at set ofEn l at the
1-19
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centers of interest constructed with the spherical part of
LDA potential. As the entire procedure is variational slig
modifications brought by the nonlocal self-energies after
~61! and ignored in the present study should not lead
significant modifications of the obtained total energies a
the one-electron spectra as long as TB-LMTO basis
thought to be complete within a given energy window. T
second step is a construction of the charge density using
obtained local Green function. In this regard, the form
~60! was used which takes into account the modification
the one-electron densities of statesNl(E) brought by the
correlations. As, the redistribution of the spectral weight
the f electrons involves the feedback on the remainings,p,d
electrons, change in the densities of statesNl(E) appears in
all l channels. The final step is the self-consistent evalua
of the total energy using the formula~80!. In the LDA
1DMFT approximation using a fixed basis set all comp
cated integrals appeared in Eq.~80! can be reduced to con
volutions between various matrices. Since the interac
functional has the form of Eq.~55!, we subtract from the
LDA the average interaction energy of thef electrons in the
form ~67! of the double counting term and then add im
proved estimates of these quantities using the self-consis
solution of the impurity model. This results in a simplifie
expression for the total energy:

Etot5T(
k j

(
iv

gk j vek j v2E Ve f f~r !r~r !dr

2T(
iv

(
ab

@Mint,ab~ iv!2Vab
DC#Gloc,ba~ iv!

1E Vext~r !r~r !dr1EH@r#1Exc
LDA@r#

1
1

2
T(

iv
(
ab

Mint,ab~ iv!Gloc,ba~ iv!2FDC@ n̄c#,

~103!

whereVab
DC is given by Eq.~69! andFDC@ n̄c# is given by Eq.

~67!.
Since the dynamical mean-field theory requires the so

tion of the Anderson impurity model for the multiorbitalf
shell of Pu, we have developed a method which, inspired
the success of the iterative perturbation theory,10 interpolates
the self-energy between small and large frequencies. At
frequencies, the exact value of the self-energy and its slop
extracted from the Friedel sum rule and from a slave-bo
mean-field treatment.37–39This approach is accurate as it h
been shown recently to give the exact critical value ofU in
the large degeneracy limit at half-filling78 At high frequen-
cies the self-energy behavior can be computed based
high-frequency moments expansions.14,40The result of inter-
polation can be encoded into a simple rational form for
self-energy.41 In practical calculations for Pu, we used a tw
pole approximation:

S~ iv!5S~ i`!1 (
n51,2

Wn

iv2Pn
, ~104!
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where the unknown four coefficientsWn and Pn are deter-
mined to satisfy known conditions in the low- and hig
frequency limits. We found that this kind of self-energy fi
quantum Monte Carlo~QMC! data in large region of param
eters, such asU and doping, and where this comparison is
all possible~small degeneracy and high temperature!.

Thus, our approach interpolates between four major l
its: small and large iv ’s valid for anyU as well as small and
large U8s ~band vs atom! valid for any iv. The analytical
continuation to the real frequency axis is not a problem w
the present method and avoids the use of the Pade79 and
maximum entropy4 based techniques. Complete details
our method can be found in Ref. 41. Here we only ment
technicalities connected to thef electrons of Pu where we
deal with the impurity Green functions which are the mat
ces 14314. However, for the relativisticf level in cubic
symmetry, the matrices can be reduced to 535 with four
nonzero off-diagonal elements. The solution of such impu
problem is still a formidable numerical problem. We ther
fore make some simplifications. First, the off-diagonal e
ments are in general small and will be neglected. We are
with the 5f 5/2 state split into 2 levels which are twofol
(G7), and fourfold (G8) degenerate, and with the 5f 7/2 state
split into three levels which are twofold (G6), twofold (G7),
and fourfold (G8) degenerate. Second, since in Pu the int
multiplet spin-orbit splitting is much larger than the intr
multiplet crystal field splitting~.5:1!, we reduce the prob-
lem of solving Anderson impurity model~AIM ! for the lev-
els separately by treating the 5f 5/2 G7 andG8 levels as one
sixfold degenerate level, and the 5f 7/2 G6 , G7 andG8 levels
as another eightfold degenerate level.

We first study in detail the total energy as a function of t
parameterU and give our predictions for the volumes ina,
d, and« phases. We then discuss the one-electron spect
both a andd phases and compare our results with the p
toemission experiment.68 Since our method does not yet a
low us to treat complicated lattices, we perform our calcu
tions for simple fcc and bcc structures and report only
simplified study of thea phase which formally has 16 atom
per unit cell.

A. Calculation of volume

To illustrate the importance of correlations, we discuss
results of our total energy calculations for various streng
of the on-site Coulomb interactionU. Figure 5 reports our
theoretical predictions. First, the total energy as a function
volume of the fcc lattice is computed. The temperature
fixed at 600 K, i.e. in the vicinity of the region where thed
phase is stable.U50 GGA curve indicates a minimum a
V/V050.7. This volume is in fact close to the volume of th
a phase. Certainly, we expect that correlations should be
important for the compressed lattice in general, but ther
no sign whatever of thed phase in theU50 calculation. The
total energy curve is dramatically different forU larger than
0. The details depend sensitively on the actual value ofU.
The behavior atU54 eV shows the possibility of a doubl
minimum; it is actually realized for a slightly smaller valu
of U. We find that forU53.8 eV, the minimum occurs nea
1-20
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SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC . . . PHYSICAL REVIEW B69, 245101 ~2004!
V/Vd50.80 which corresponds to the volume of thea phase
if we allow for monoclinic distortions and a volume
dependentU. When U increases by 0.2 eV the minimum
occurs atV/Vd51.05 which corresponds to the volume
the d phase, in close agreement with experiment. Since
energies are so similar, we may expect that as tempera
decreases, the lattice undergoes a phase transition fromd
phase to thea phase with the remarkable decrease of
volume by 25%.

We repeated our calculations for the bcc structure us
the temperatureT5900 K where thee phase is stable. Fig. 5
shows these results forU54 eV with a location of the mini-
mum at aroundV/Vd51.03. While the theory has a residu
inaccuracy in determining thed and e phase volumes by a
few percent, a hint of volume decrease with thed→e tran-
sition is clearly reproduced. Thus, our first-principles calc
lations reproduce the main features of the experimental ph
diagram of Pu.

Note that the values ofU;4 eV which are needed in ou
simulation to describe thea→d transition, are in good
agreement with the values of on-site Coulomb repulsion
tween f electrons estimated by atomic spectral data,80 con-
strained density-functional studies,81 and our previous LDA
1U studies.62

The double-well behavior in the total-energy curve is u
precedented in LDA or GGA based calculations but it is
natural consequence of the proximity to a Mott transitio
Indeed, recent studies of model Hamiltonian systems10,82 in
the vicinity of the Mott transition show that two DMFT so
lutions which differ in their spectral distributions can coexi
It is very natural that allowing the density to relax in the
conditions can give rise to the double minima as seen
Fig. 5.

B. Calculation of spectra

We now report our calculated spectral density of states
the fcc structure using the volumeV/Vd50.8 and V/Vd
51.05 corresponding to our theoretical studies ofa and d
phases. To compare the results of the dynamical mean-

FIG. 5. Total energy as a function of volume in Pu for differe
values ofU calculated using the LDA1DMFT approach. Data for
the fcc lattice are computed atT5600 K, while data for the bcc
lattice are given forT5900 K.
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calculations with the LDA method as well as with the expe
ment, we discuss the results presented in Fig. 6. Figure~a!
shows the density of states calculated using LDA1DMFT
method in the vicinity of the Fermi level. Solid black lin
corresponds to thed phase and solid gray line corresponds
thea phase. We predict the appearance of a strong quas
ticle peak near the Fermi level which exists in the bo
phases. Also, the lower and upper Hubbard bands can
clearly distinguished in this plot. The width of the quasipa
ticle peak in thea phase is found to be larger by 30 per ce
compared to the width in thed phase. This indicates that th
low-temperature phase is more metallic, i.e., it has lar
spectral weight in the quasiparticle peak and smaller we
in the Hubbard bands. Recent advances have allowed
experimental determination of these spectra, and our ca
lations are consistent with these measurements.68 Figure 6~b!
shows the measured photoemission spectrum ford ~black
line! anda ~gray line! Pu. We can clearly see a strong qu
siparticle peak. Also a smaller peak located at 0.8 eV for
d phase can be found. We interpret it as the lower Hubb
band.

The result of the local-density approximation is shown
Fig. 6~a! by dashed line. The LDA produces two peaks ne
the Fermi level corresponding to 5f 5/2 and 5f 7/2 states sepa-
rated by the spin-orbit coupling. The Fermi level falls in
the dip between these states and cannot reproduce the
tures seen in photoemission. We should also mention
LDA1U fails completely62,71 to reproduce the intensity o
the f states near the Fermi level as it pushes thef band 2–3
eV below the Fermi energy. This is the picture expected fr
the static Hartree-Fock theory such as the LDA1U. Only
full inclusion of the dynamic effects within the DMFT allow
to account for both the quasiparticle resonance and the H
bard satellites which explains all features of the photoem
sion spectrum ind Pu.

The calculated by LDA1DMFT densities of states at EF
equal to 7 st./@eV*cell# are consistent with the measured va

FIG. 6. ~a! Comparison between calculated densities of sta
using the LDA1DMFT approach for fcc Pu: the data forV/Vd

51.05, U54.0 eV ~black line!, the data for V/Vd50.80, U
53.8 eV ~gray line! which correspond to the volumes of thed and
a phases, respectively. The result of the GGA calculation~dotted
line! at V/Vd51(U50) is also given.~b! Measured photemission
spectrum ofd ~black line! anda ~gray line! Pu at the scale from
21.0 to 0.4 eV~after Ref. 68!.
1-21
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S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 ~2004!
ues of the linear specific-heat coefficient. We still find a
sidual discrepancy by about factor of 2 due to either inac
racies of the present calculation or due to the electro
phonon interactions. However, these values represen
improvement as compared to the LDA calculations wh
appear to be five times smaller. Similar inaccuracy has b
seen in the LDA1U calculation.62

A simple physical explanation drawn from these stud
suggests that in thed phase thef electrons are slightly on the
localized side of the interaction-driven localizatio
delocalization transition with a sharp and narrow Kondo-l
peak and well-defined upper and lower Hubbard bands
therefore has the largest volume as has been found by p
ous LDA1U calculations62,71 which take into account Hub
bard bands only. The low-temperaturea phase is more me
tallic, i.e. it has larger spectral weight in the quasiparti
peak and smaller weight in the Hubbard bands. It will the
fore have a much smaller volume that is eventually rep
duced by LDA/GGA calculations which neglect both Co
lomb renormalizations of quasiparticles and atomic multip
structure. The delicate balance of the energies of the
minima may be the key to understanding the anomal
properties of Pu such as the great sensitivity to sm
amounts of impurities~which intuitively would raise the en
ergy of the less symmetric monoclinic structure, thus sta
lizing the d phase to lower temperature! and the negative
thermal expansion. Notice however, that thea phase is not a
weakly correlated phase: it is just slightly displaced towa
the delocalized side of the localization–delocalization tran
tion, relative to thed phase. This is a radical new viewpoin
in the theoretical literature on Pu, which has traditiona
regarded thea phase as well understood within LDA. How
ever, the correlation viewpoint is consistent with a series
anomalous transport properties in thea phase reminiscent o
heavy electron systems. For example, the resistivity ofa –Pu
around room temperature is anomalously large, tempera
independent and above the Mott limit67 ~the maximum resis-
tivity allowed to the conventional metal!. Strong correlation
anomalies are also evident in the thermoelectric power.83

V. CONCLUSION

In conclusion, this work describes a first-principl
method for calculating the electronic structure of materi
where many-body correlation effects between the electr
are not small and cannot be neglected. It allows simultane
evaluation of the total free energy and the local electro
spectral density. The approach is based on the effective
tion functional formulation of the free energy and is view
as spectral density-functional theory. An approximate fo
of the functional exploits a local dynamical mean-fie
n

R
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theory of strongly correlated systems accurate in the si
tions when the self-energy is short ranged in a certain por
of space. The localization is defined with reference to so
basis in Hilbert space. It does not necessarily imply locali
tion in real space and is treated using a general basis
following the ideology of the cellular dynamical mean-fie
theory. Further approximations of the theory, such as LD
1DMFT and local GW are discussed. Implementation of t
method is described in terms of the energy-dependent o
particle states expanded via the linear muffin-tin orbitals. A
plication of the method in its LDA1DMFT form is given to
study the anomalous volume expansion in metallic Plu
nium. We obtain equilibrium volume of thed phase in good
agreement with experiment with no magnetic order impo
in the calculation. The calculated one-electron densities
states are consistent with the results of the photoemiss
Our most recent studies34 of the lattice dynamical propertie
of Pu address the problem of thed→« transitions and show
good agreement with experiment.84

Alternative developments of the LDA1DMFT approach
by several groups around the world discuss other appl
tions of the dynamical mean-field theory in electron
structure calculations. The results obtained are promis
Volume collapse transitions, materials near the Mott tran
tion, systems with itinerant and local moments, as well
many other exciting problems are beginning to be explo
using these methods.
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