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Transient nucleation distributions and fluxes at intermediate times
and sizes

Vitaly A. Shneidman
Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102

~Received 6 June 2001; accepted 15 August 2001!

General interpolating expressions, valid for near- and arbitrary overcritical sizes of clusters, are
proposed for the nucleation fluxes and distributions. Results are expressed in terms of the
deterministic growth rates, and are characterized by a non-Gaussian dependence on the size of
nuclei. In a sense, the proposed approximations combine the positive aspects of the parabolic model
by Trinkaus and Yoo@Philos. Mag. A55, 269 ~1987!# and of the boundary layer~‘‘matched
asymptotic’’! solution earlier described by the author@Sov. Phys. Tech. Phys.32, 76 ~1987!; 33,
1338 ~1988!#. Specifications of the general results are made for several mainstream nucleation
models via selection of appropriate growth rates. Examples include surface- and diffusion-limited
nucleation in the continuous~Zeldovich–Frenkel! and discrete~Becker–Do¨ring, Turnbull–Fisher!
versions of the nucleation equation. ©2001 American Institute of Physics.
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I. INTRODUCTION

The physical problem of transient nucleation can be f
mulated as follows. An initially stable system is rapid
quenched into a metastable region, after which its thermo
namic parameters~temperature, pressure, etc.! are held con-
stant. Nuclei of the new phase are formed due to ther
fluctuations and one is interested in the rate of their form
tion and distribution over sizes.

For many fluid systems, such as one-component su
saturated vapor or non-glass forming undercooled liquid,
actual transient period, typically, will be unobservably sh
and the nucleation process can be treated as steady
~Eventually, the metastable phase will be exhausted by
growing nuclei, and the steady state will be destroyed,
this happens much later in time, and will not be part of t
present study.! For solids, on the other hand, the time interv
before the steady-state nucleation regime can be appreci
and can range, for example, from minutes to days in cas
crystal nucleation in glasses.1–3 Similar effects are of interes
in amorphous silicon.4

The classical picture views nucleation as a random w
of nuclei in the space of their sizes via random gain or loss
monomers. The master equation~the ‘‘Becker–Döring equa-
tion’’ ! was originally formulated in the steady-state version5,6

which can be treated exactly.5 Zeldovich7 considered the
time-dependent version of the master equation and g
some semiquantitative estimations for the transient probl
Nevertheless, in the absence of relevant experiments,
main attention was devoted to the steady state for which
present terminology, an asymptotic analysis was perform
A numerical survey of early studies on transient nucleat
which followed Ref. 7 until the early 1980s can be foun
e.g., in Ref. 8.

The time-dependent Becker–Do¨ring equation cannot be
solved exactly.9 There are a few features which can ma
even an asymptotic treatment a challenging task. First, c
8140021-9606/2001/115(17)/8141/11/$18.00
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ficients of this equation are nonlinear functions of the size
a nucleusn. Second, the difference of the gain and loss c
efficients changes sign at the critical sizen* . This feature is
most natural from a physical point of view, describing tra
sition from decay atn,n* to growth atn.n* , but math-
ematically it leads to a rather complex boundary layer str
ture of the solution. Next, the standard methods of analy
are often hard to apply to a discrete equation, and one ha
worry about constructing an adequate continuo
approximation.10–15 Still, a realistic continuous equatio
~e.g., the one due to Zeldovich and Frenkel! will retain the
aforementioned nonlinear and boundary layer aspects.

Most of such aspects were ignored in early treatment
the transient problem. Kaschiev,16 for example, replaced the
nucleation equation by a diffusion equation in the ne
critical region when evaluating the Green’s function. Th
makes the problem exactly solvable, but the key feature
transition from nucleation to growth is lost, and many oth
aspects of nucleation are not reproduced.

In case one intends to mimic nucleation by a stand
exactly solvable differential equation, the choice should
not the diffusion but the so-called unstable Ornstei
Uhlenbeck equation. This equation is well studied~especially
in its stable version! in connection with random processes17

and the Green’s function is known exactly. The Ornstei
Uhlenbeck equation has linear coefficients and homogene
boundary conditions which makes it different from th
Zeldovich–Frenkel equation, but the change of sign nearn*
is properly reproduced.

The Ornstein–Uhlenbeck equation appears in the p
bolic nucleation model employed by Trinkaus and Yoo18

~TY!. An inhomogenous boundary condition of the nuc
ation problem, formally, ruins the exact solvability, but mo
likely the standard Green’s function of that equation is stil
reasonable approximation and, within the model, the TY
pressions are sufficiently close to the exact ones. Limitati
1 © 2001 American Institute of Physics



lf
at

e

e
n-

u
a
o

e

be

er
A

n

f
c

em
t
a
ct

e
ea
th

A

nt
be
e

ai
ib

a-

m

ad
a

a
e
ic
s

ls

of
eral

in
cle-
-
r.
e-
the

ns
ng
l-

be
ex-
r to
p-

cal

n,
on
to

he
ents

ter-

re.
n.
al-

f an

of
ult

pen-

a-
wn
the
s a
lu-

fer-
on,

ev-
on-
ary
nd
-
er-

A

8142 J. Chem. Phys., Vol. 115, No. 17, 1 November 2001 Vitaly A. Shneidman
of the TY results come not so much from the solution itse
but rather from the parabolic model which is not accur
away fromn* , in the region of large sizes.

About the time of the TY paper, it was shown by th
present author19 that the general nucleation equation~with
nonlinear coefficients! can be solved asymptotically if th
nucleation barrierW* is large compared to the thermal e
ergy,T ~Boltzmann constant is taken as unity!. The method is
based on a combination of matched asymptotic~MA ! tech-
nique ~which is standard in boundary layer analysis20! and
the technique of Laplace transformations, and is briefly o
lined in the Background section. The Laplace transform of
analog of the Ornstein–Uhlenbeck equation is indeed rec
ered as part of the solution, but only in the vicinity ofn* . In
the growth region the resulting nucleation flux is describ
by a characteristic ‘‘double-exponential’’ function19 with a
non-Gaussian dependence on size.

Compared to the TY solution, the MA results can
applied to arbitrary sizes in the growth region21 and to a
general nucleation model, including the discrete Beck
Döring equation. In contrast to TY, however, the original M
solution predicted an asymptotic, not an exact zero att50,
causing a certain surprise in some of the later publicatio
More importantly, the time-dependent flux19 ~and the result-
ing distribution! could not be used in the direct vicinity o
n* . Klimenko,22 using a technically different asymptoti
method, further showed that the solution19 can be extended
into the near-critical domain of sizes, although the probl
at t50 remained and, in fact was enhanced compared to
growth region. Subsequently, the MA approach w
generalized23 to construct a nucleation flux with an exa
rather than an asymptotic zero att50; this was done, how-
ever, only atn5n* , which prevented matching with th
growth region. There were other related studies for the n
critical region—see references in Refs. 24 and 25—or for
growth region~e.g., in the contexts of pre-existing nuclei23,26

or continuous quench19,27!, but a unified approximation
which would combine the positive aspects of the TY and M
approaches at all sizes has not been constructed.

The importance of such a unification can be substa
ated by the fact that while the TY or the MA solutions can
accurate in the regions of sizes for which they are design
naive attempts to extend them beyond their natural dom
can be disastrous. For example, the growth-region distr
tion of the MA solution19,21 diverges if extrapolated ton
5n* . Alternatively, the erfc-type near-critical approxim
tion for the distribution of nuclei~which in the time-
dependent version was suggested by TY and which with
nor modifications enters all later relevant studies! can lead to
an ‘‘asymptotic catastrophe’’25 if applied straightforwardly,
without matching of asymptotes, towards large sizes. In
dition, a single interpolation for the time dependence c
clarify the nature of the asymptotic zero neart50.

The goal of the present paper is thus to construct
expression for the distribution of nuclei which would bridg
the sizes in the near critical and growth regions, and wh
would be applicable, at least formally, for arbitrary time
including t50. This is achieved by Eq.~37!, which is ex-
pected to be valid for various types of nucleation mode
,
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including discrete models of the Becker–Do¨ring type.
Hopefully, the availability of a single unifying formula

will consolidate the somewhat fragmented current state
the transient nucleation theory. However, the same gen
expression can have multiple simplified representations
various domains of times and sizes, and for specific nu
ation models, which~together with clarification of some me
thodical issues! determines the overall volume of the pape

Possible applications are related to analysis of tim
dependent cluster distributions which span the near- and
overcritical sizes. Available examples of such distributio
include computer experiments for nucleation in Isi
systems.28 Similar effects can be of potential interest for rea
life experiments with a sufficiently largen* ~e.g., in poly-
mers!. In other situations the simpler MA expressions can
equally accurate, but the intent of the proposed general
pressions is not to replace the earlier results, but rathe
establish their interconnections and clarify the limits of a
plicability.

Results also can be useful in connection with numeri
transient solutions of the Becker–Do¨ring equations.8,29,30

Such solutions, in principle, can have unlimited precisio
playing the role of exact results for a specific nucleati
model. It is often a challenge for an analytical treatment
reproduce numerical data with sufficient accuracy. At t
same time, analytics can complement numerical treatm
by a more general, ‘‘trans-model’’ view of the nucleation
picture.

The paper has the following structure.
The Background section emphasizes the role of de

ministic growth rate,ṅ in the nucleation problem.7 The TY
solution and a recent attempt by Maksimovet al.25 to extend
it into the growth region, are also briefly analyzed he
Some insight into the structure of the MA solution is give
Remarkably, much of the understanding can be obtained
ready from the steady-state case, where a possibility o
exact treatment5 provides additional help.

The transient flux is obtained in Sec. III via inversion
the Laplace transform derived earlier in Ref. 23. The res
resembles the TY expression but with a non-Gaussian de
dence on size described by a functionz(n). The latter, in
turn, is determined byṅ. The MA solution19,21 is recovered
in the growth region at larger times.

In Sec. IV the cluster distribution is obtained via integr
tion of the flux. The result interpolates between the kno
erfc-type approximations in the near-critical region and
double-exponential expression at larger sizes, and ha
proper steady-state limit. The number of nuclei also is eva
ated in this section; interestingly enough, despite the dif
ent form of the result compared to the earlier MA expressi
the time-lag21 remains unchanged.

In Sec. V the general expressions are specified for s
eral mainstream nucleation models via evaluation of the n
linear functionz(n). Results can be expressed as element
functions for the standard Zeldovich–Frenkel equation a
for diffusion-limited nucleation. The situation is more in
volved for the discrete nucleation models, but simple int
polations are possible.

Section VI contains the discussion, and Appendixes
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and B, respectively, present some formal derivations
generalizations for the case of pre-existing nuclei, and
solution of the Becker–Do¨ring equation in the strict limitt
→0.

II. BACKGROUND

A. Thermodynamics, kinetics and the nucleation
equation

In the classical theory of nucleation the minimal wo
which is required to form a nucleus ofn monomers is given
by

W~n!5W* H 3S n

n*
D 2/3

22
n

n*
J . ~1!

HereW* is the work to form a critical nucleus with sizen* ;
according to Gibbs,W* represents the barrier to nucleatio
To ensure marginal stability of a metastable phase, this v
should be large compared to the thermal energyT.

The growth rateṅ is determined by the kinetics of mas
exchange between the nucleus and the matrix. The
known examples are the ballistic~surface-limited! and the
diffusion-limited mass exchange mechanisms. Growth ra
look simpler in terms of reduced radiir ~with ṙ 5ṅ dr/dn!
and with neglect of discreteness effects are given by

ṙ 5
1

tr u S 12
1

r D , r[S n

n*
D 1/3

~2!

with u50 andu51 for the ballistic- and diffusion-limited
cases, respectively. Withu521, Eq. ~2! corresponds to
cavitation.7 In all cases the parametert has a dimension o
time and will be defined below. Growth rates which accou
for the discrete nature ofn are also available, as described
Sec. V.

The actual model of nucleation requires evolution of t
nuclei distribution function,f n(t). The corresponding maste
equation, the general ‘‘Becker–Do¨ring equation’’ ~BD!, is
given in Appendix B. At this point it should be sufficient t
note that the key kinetic parameter of the master equatio
the gain probabilityb(n) ~which specifies amodelwithin the
general BD scheme!, and that the relation to experimental
observed ‘‘nucleation rate’’ is given by the fluxj (n,t). The
BD equation is constructed in such a manner that the flu
identically zero for the~quasi! equilibrium distributionNn

}exp$2W(n)/T%, which is equivalent to the detailed balanc
The continuous version of that equation has the form7

] f

]t
52

] j

]n
, j 52b~n!N

]

]n

f

N
. ~3!

For surface-limited nucleation withb(n)}n2/3, Eq. ~3! is the
standard Zeldovich–Frenkel equation.

There exists a fundamental connection between the ‘‘
croscopic’’ coefficientb(n) and the deterministic~‘‘macro-
scopic’’! growth rate in continuous models7

ṅcont~n!52~b~n!/T!dW/dn ~4!

which leads to Eqs.~2! for b(n)}n(22u)/3. A generalized
version of Eq.~4!, appropriate for the BD scheme,
d
e

ue

st

s

t

is

is

.

i-

ṅBD~n!5b~n!$12exp@T21 dW/dn#% ~5!

was discussed in Refs. 19 and 15 in connection with discr
ness effects; specific growth rates for the mainstream nu
ation models were known earlier—see Sec. V.

The parametert can be equivalently represented as

t215
dṅ

dnU
n5n

*

5
2b~n* !

D2 ~6!

with

D2252~2T!21 d2W/dn2 at n5n* . ~7!

Connection betweenb(n) and ṅ can be useful in two
ways. First, the macroscopic models for growth and de
are often based on well-studied deterministic equations
hydrodynamic type, and are better understood compare
their microscopic~stochastic! nucleation counterparts. Equa
tion ~6! allows one to estimateb(n* ) and thus to evaluate
the steady-state nucleation rate7 ~see next section!. Second,
even if one starts from a purely microscopic model of nuc
ation with a specifiedb(n), an asymptotic time-dependen
solution still will be expressed in terms ofṅ rather than
b(n).19,21 In particular, a general solution of a simpler co
tinuous equation can be applied to the discrete BD equa
if ṅcont is replaced byṅ in accord with Eq.~5!.

As a preliminary example, consider the ‘‘incubatio
time’’ which appears in the MA solution, and which is th
time it takes the flux to reach 1/e of its steady-state value
This time is given by21

t i~n!5tdec~n* 2D/& !1tgr~n* 1D/&,n!. ~8!

Heretdec andtgr are positive deterministic decay and grow
times ~i.e., integrals*dn/ṅ! with indicated initial sizesn*
7D/&, respectively. The final size is the indicated sizen for
growth, while for decay this size is the smallest sizenmin

present in the system. Selection of a model will affect t
value of t i(n) but not the shape of the transient flux.

In other words, the deterministic rateṅ allows one to
construct general time-dependent solutions to the nuclea
equation, prior to the specification of a concrete form
coefficients of that equation. A specification can be sub
quently achieved by substitution into the general results
appropriate growth rate, and evaluation of the aforem
tioned integrals*dn/ṅ.

B. Steady-state distribution and flux

Formally, the steady-state nucleation equation allows
an exact solution.5 In case of the Zeldovich–Frenkel equ
tion, for example, the exact expression is given by7

f s~n!/N~n!5 j sE
n

`

dn8/b~n8!N~n8! ~9!

with the steady-state flux,j s determined from the lower
boundary condition

f n5Nn at n5nmin .

One should keep in mind, however, that the abo
boundary condition is already asymptotic, neglecting
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depletion of the matrix by growing nuclei. Otherwise,
integral conservation law should be employed.31 Neglect of
depletion is equivalent to large values ofW* /T, with an
exponentially small nucleation rate and a correspondin
large lifetime of a metastable state. For that reason, m
instructive~and more appropriate in view of time-depende
generalizations! is the asymptotic steady-state solution,7 al-
though exact results remain useful for verification purpos
A large barrier is equivalent to smallD/n* .

In the vicinity of n* the barrier is parabolic and th
equilibrium distribution is approximated as

N~n!5N~n* !exp$~zlin!2%, uzlinu!n* /D ~10!

with zlin linearly depending onn

zlin[~n2n* !/D. ~11!

The steady-state distribution is given by7

f s~n!5 1
2N~n!erfc~zlin! ~12!

with an associated fluxj (n)5const[js:

j s.
D

2tAp
N~n* !. ~13!

Equation~13! is valid for the flux atany size, while Eq.
~12! ~and thus the time-dependent generalizations of the e
approximation! is strictly valid only in the parabolic region
~the ‘‘boundary layer’’!. In particular, Eq.~12! does not pre-
dict a proper distribution of nuclei in the growth regionn
2n* @D, which should be of drift form

f s~n!5 j s /ṅ. ~14!

@The drift form is well known in physical kinetics;32 in the
specific nucleation context it also can be deduced dire
from the exact expression forf s(n) both in the
continuous33~a! and discrete33~b! cases forW* @T#.

Figure 1 ~solid line! shows exact steady-state distrib
tions over radii, f s(r )5 f s(n)dn/dr for the standard
Zeldovich–Frenkel equation. The erfc-approximation~long-
dashed lines! works reasonably in the near-critical regio
but fails dramatically away fromr * . The asymptotic Eq.
~14! shown by dotted lines in Fig. 1, on the other han

FIG. 1. The reduced steady-state distributionf s(r )/t j s of the standard
Zeldovich–Frenkel equation in the above-critical region of sizes
W* /T520. Solid line, exact Eq.~9!. Dotted line, asymptotic Eq.~14!.
Long-dashed line, the erfc-approximation, Eq.~12!. Short-dashed line,
steady-state limit of the proposed interpolating approximation, Eq.~38!.
ly
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blends in with exact results in the growth region but diverg
at the critical sizer 51. An interpolation obtained as th
steady-state limit of the general transient expression in S
IV, bridges the two limits and is shown by a short-dash
line. The difference from the exact distribution at any size
minor for the chosen value ofW* /T520 ~which is small by
most experimental standards!; a more realistic value of
W* /T530 would make the two curves practically indistin
guishable.

Failure of the erfc-approximation is even more specta
lar in case of diffusion-limited growth, Fig. 2, where a sim
lar scaled distributionf s(r )/t j s is plotted. Here Eq.~12! with
a full ~non-Gaussian! N(n) describes an exponential deca
into the growth region instead of a linearincreaseat r @1.
The error can be reduced if the erfc-approximation is u
more consistently together with the approximate Eq.~10!
~not shown in the figure!, but even in that case the resu
would be a power-law decay forr @1. This is in distinct
contrast with increasing distribution, as in Fig. 2 or wi
saturation, as in Fig. 1.@Not being able to distinguish be
tween the surface- and diffusion-controlled nucleation is
other drawback of the erfc-approximation. These limitatio
however, do not affect the correct value ofj s which is sen-
sitive exclusively to the near-critical region. Note also th
asymptotes of Eqs.~12! and ~14! coincide in the common
region of applicability; this is an important preview of th
matched asymptotic ideas described below.#

C. The growth region transient solution „Refs. 19 and
21… and distribution of nuclei

The method of solution~see the Appendix in Ref. 19!
involves the Laplace transform of the nucleation equati
which makes it an ordinary differential equation; after th
standard matched asymptotic technique20 can be applied. In
the ‘‘outer region’’ belown* a nonlinear first order differen
tial equation is considered which is solved in terms of t
decay timetdec(n). Alternatively, nearn* ~‘‘inner region’’! a
second-order linear differential equation is recovered wh
is solved in terms of the repeated error integrals34 ~see also
Appendix A below!, which generalize the standard erfc
Eq. ~12!. The asymptote of the outer solution atn→n* can

r

FIG. 2. Reduced steady-state and transient distributions in case of diffus
limited nucleation and growth forW* /T520. Solid line, exact steady-stat
distribution, Eq. ~9! with b(n)}n1/3. Long-dashed line, the erfc-
approximation, Eq.~12! ~same as in Fig. 1!. Short-dashed lines, asymptoti
transient distributions given by Eqs.~15!, ~18!, and~52! for t/t510, 20, 30,
and 40~from left to right!.
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be matched with the subcritical asymptote of the inner so
tion, giving the proportionality coefficient of the latter. Th
other, above-critical inner asymptote has a relatively sim
structure and, after the inversion of the Laplace transfo
determines the asymptote of the growth distribution and
corresponding flux.19 This flux is replicated in time~with
correction for retardation! by any flux in the growth region21

and is given by

j ~n,t !5 j s exp$2e2x%, x5~ t2t i~n!!/t. ~15!

The incubation timet i(n) is determined by Eq.~8! above or
by an integral representation, Eq.~7! of Ref. 21.

The number of nuclei with size exceeding a given va
of n ~which is usually measured in experiments1–3! is given
by21

r~ t !5t j sE1~e2x!. ~16!

Here E1 is the first exponential integral.34 In some of the
latter studies it was suggested to subtract from this exp
sion a constantt j sE1(eti /t) in order to ensure an exact rath
than an asymptotic zero att50. Strictly speaking, this would
be incorrect, even though the added constant is neglig
small both asymptotically and numerically. It will be show
below that if one wishes to refine the solution neart50, a
different functional form of Eq.~16! will appear which au-
tomatically satisfies the initial condition.

At large timest2t i(n)@t one hasr(t); j s@ t2tL(n)#
with21

tL~n!5t i~n!1gt, ~17!

g50.5772... being Euler constant, andtL(n) known as the
‘‘time-lag’’ ~also, ‘‘induction time’’!. Alternatively, an exact
expression for the time-lag also can be constructed both
the discrete and continuous versions of the nuclea
equation.12,35 With a certain effort one can show33 that in
each case the asymptotes of the exact expressions in
coincide with t i(n)1gt, testifying to the validity of the
matched asymptotic solution.

The transient distribution in the growth region is relat
to the flux by the same standard relation

f ~n,t !5 j ~n,t !/ṅ ~18!

as discussed above in the steady-state context. Exampl
such distributions for diffusion-limited growth at differen
times are shown in Fig. 2 by dotted lines.~Similar curves
were observed in Ref. 36 from numerical solutions of a d
fusion version of the Turnbull–Fisher equation, although
direct identification has been performed.! One should keep in
mind, however, that Eq.~18! is also asymptotic, and in gen
eralizations of Eq.~15! for smaller times and sizes describe
below, relations between the distribution and the flux a
will become more complex.

D. The parabolic model „Ref. 18…

Consider a parabolic approximation for the barrier

Wpar5W* 2T~zlin!2 ~19!
-

le
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e

e
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o

which is expected to be valid at all sizes. With a siz
independentb(n), the growth rate in Eq.~4! is a linear func-
tion

ṅlin5
n2n*

t
. ~20!

In that case, Eq.~3! is reduced to a standard unstab
Ornstein–Uhlenbeck equation, albeit with an inhomog
neous boundary condition atn5nmin , which prevents an ex-
act solubility. Still, a rather accurate solution to this equat
was constructed by Trinkaus and Yoo~TY!18 via a minor
perturbation of the condition on the lower boundary. To si
plify identification of the results, let us introduce a functio

a~ t !51/A12exp~22t/t! ~21!

as in Ref. 23, and rewrite the TY results in present notati
as

f TY~n,t !5 1
2N~n!erfc$a~ t !zlin~n!2Aa2~ t !21zlin~0!%,

~22!

j TY~n,t !/ j s5a~ t !exp$2a2~ t !@zlin~n!

2A121/a2~ t !zlin~0!#21zlin
2 ~n!%. ~23!

@Herewith zlin(0), not zlin(nmin), will be used for brevity of
notations; in fact in most situations treating the lowest s
nmin as zero is an excellent approximation, especially for
Zeldovich–Frenkel equation.#

If one accepts the parabolic model from the start, th
the TY solution is a rather accurate one. In particular,
predicts an exact zero att50. On the other hand, the para
bolic model itself is not a good representation of the nuc
ation problem away fromn* , especially in the growth re-
gion. In particular, atn@n* even in the steady-state limit th
TY distribution deviates from the proper result by an exp
nentially large factor. A similar problem is recovered in oth
similar erfc-type approximations discussed by Maksim
et al.25 and could be labeled an ‘‘asymptotic catastrophe’
one uses the terminology of that paper~although the latter
discussed the ‘‘catastrophe’’ in terms of the flux!.

At the same time, the TY solution can be remarkab
accurate nearn* where a parabolic approximation for th
barrier or a linear approximation for growth are reasonab
Non-linearity will affect only decay and will result in a sligh
difference betweenz(0) andzlin(0). Since this difference is
a nonasymptotic constant~a number! it can be treated as a
minor correction. Moreover, in case of the continuous bal
tic model ~standardZeldovich–Frenkel equation! this num-
ber is exceptionally small—see Sec. V—and errors produ
by the TY approximation nearn* can be hard to detect eve
in numerical studies.

E. Nonlinear transformation of coordinates and
interpolation of the critical flux „Ref. 23…

In the vicinity of the critical size a natural variable
zlin(n). On the other hand, in the growth region the natu
variable should have a form of const exp(ti(n)/t), in order to
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ensure the simplest structure of the exponential in the t
sient solution, Eq. ~15!. The required compromise i
achieved by using23

z~n!52expF E
n
*

2D

n dn

tṅ1 i0G . ~24!

Here i is the imaginary unity, and despite the somewhat
usual structure, the above expression is reduced to elem
tary functions for some of the mainstream nucleat
models—see Sec. V. Nearn* the new variablez(n) indeed
coincides with zlin, in particular z(n) changes sign atn
5n* . Away from n* , it is related to the incubation an
decay times introduced earlier

t i~n!/t5 ln$22z~n!z~0!%, n.n* , ~25!

z~0!52exp$2tdec~n* 2D!/t%. ~26!

@Note thatuz(0)u is large asO(n* /D).#
Using the z variables allows one to construct a mo

general~compared to the original MA treatment! Laplace
transform of the flux which is valid at arbitrary sizes a
which, upon inversion, ensures an exact zero att50. The
critical flux is given by23

j * ~ t !5 j sa~ t !exp$2~a2~ t !21!exp@2tdec~n* 2D!/t#%.
~27!

Inversion of the Laplace transform at arbitrary sizes will
part of the present work.

F. Generalizations of Eq. „23… for the growth region
„Ref. 25… and open questions

Recently, Maksimovet al.25 suggested, among sever
other options, that the TY expression for the flux also co
be used for the Zeldovich–Frenkel equation at arbitrary s
if the variablezlin ~in current notations! is replaced by some
nonlinear functionB(n) while A52B(1) is substituted for
zlin(0). Thevalue ofB(n) is given by25

B~n!.A2W*
T

~n/n* 21!C~n* /n!

~n/n* !1/2211A6C~n* /n!
~28!

with

C~y!5123y1/31A6y29y2/3/32.

The assumption about a possibility of nonlinear gen
alization of size in the TY expression, most likely is justifie
for the flux ~but not for the distribution!, as will be described
below. However, an attempt to evaluateB(n) without match-
ing the asymptotes lead to Eq.~28!, which does not describe
correctly the region of large sizes. Indeed, the time-lag25

tL~n!.t ln~AB~n!!

increases logarithmically withn asn→`. This can be true,
however, only for a strictly linear growth.21 For other mod-
els, including the standard Zeldovich–Frenkel equation,
time-lag should increase with size as a power law.21 Simi-
larly, the ‘‘asymptotic catastrophe’’ of the erfc-approximatio
for the distribution function remains, and one of the goals
the present work is to overcome this problem.
n-

-
n-

d
s

r-

e

f

III. TRANSIENT FLUX AND LIMITS

Inversion of the Laplace transform of the flux—see A
pendix A—gives the following result

j ~n,t !/ j s5a~ t !exp$2~a2~ t !21!~z~0!21z~n!2!%

3exp$2f~n,t !% ~29!

with

f~n,t !52uz~0!uz~n!Aa2~ t !@a2~ t !21#. ~30!

Equation~29! is valid if at least one ofuz(0)u or z(n) is
large. To isolate the large parameter inuz(0)u one can write

z~0!52
n*
D

eC ~31!

with C being a model-dependent constant19 of the order of
unity

C52 lim
d→0

@ tdec~n* 2d!/t1 ln~d/n* !#. ~32!

~If the lower boundary is selected at negligibly small valu
of nmin , the constantC equals zero for strictly linear growth
as in the TY case, and is 12 ln 3 for the standard Zeldovich–
Frenkel equation.19!

The other parameter of the solution,z(n) is large if n is
in the growth region. More precisely, if deviation ofn from
n* is of the order ofn* , ~say,n52n* !, one hasz(n) com-
parable touz(0)u. Further into the growth regionz(n) in-
creases exponentially with size, dramatically increasing
accuracy of the asymptotic results.

In the vicinity of n* the Gaussian form of Eq.~29! could
be anticipated, and it should be treated as a unifying exp
sion for earlier results. For example, the parabolic limit
TY is recovered from Eq.~29! if z(n), z(0) are replaced,
respectively, byzlin(n), zlin(0). Alternatively, for z(n* )50
and a generalz(0), Eq. ~29! gives

j * ~ t !/ j s5a~ t !exp$2~a2~ t !21!z2~0!%. ~33!

This is the critical flux of Ref. 23, Eq.~27! above. Next, for
t@t andz(n) replaced byzlin , the form of Eq.~29! becomes
similar to the one by Klimenko,22 and several other approxi
mations of Gaussian-type mentioned in Ref. 25 also foll
from Eq. ~29! after linearization ofz(n) and specification of
the time scales.

Applicability of Eq. ~29! away fromn* is less obvious,
although a similar time dependence~with a rather different
dependence on size! was recently suggested by Maksimo
et al.25 The dependence is Gaussian in terms of the nonlin
function z(n). The width of the maximum unboundedly in
creases with time, whena(t) tends to 1. In terms of the
physical variablen, however, the structure of the solution
very different due to an exponential dependence ofz(n).
After a short initial period, the flux is practically steady sta
for all n smaller than somenF(t)—a front which propagates
with the growth rate. Atn.nF(t) the flux decays with size
extremely rapidly~with a ‘‘double-exponential’’ rate—see
below!. Location of the front, approximately, is given by th
solution of the equationt5t ln$2z(nF)uz(0)u%[ti(nF). The
width of the front is of the order oftṅF .
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The double-exponential limit, which describes the afo
mentioned front, is recovered from Eq.~29! in the growth
region, albeit in a less straightforward manner. For sm
times, t&t, the limit of Eq. ~29!—see below—is different
from Eq.~15!. However, forW* @T, the flux at such times is
anyway exceptionally close zero due to large values ofuz(0)u
andz(n) @or, equivalently, due to larget i(n)/t in the double-
exponential expression#. Flux becomes nonzero at large
times with t;t ln(uz(0)uz(n)). Here the functiona(t) ap-
proaches 1, but the small differencea(t)21 is multiplied by
a large factor containinguz(0)u and z(n). This leads to an
intermediate asymptote with the leading dependencies
time and size combined in a dependence on a single pa
eterx, as in Eq.~15!. The dominant dependence onx, and the
corrections, become explicit if Eq.~29! is cast in mixed no-
tations as

j ~n,t !/ j s5expH 2e2x2
1

4
e22xS 1

z~0!2 1
1

z~n!2D1 ln a~ t !

2~a2~ t !21!Fe2x1
1

4
e22xS 1

z~0!2 1
1

z~n!2D G J .

~34!

For finite ~nonasymptotic! values of x with a2(t)21
;1/(z(0)z(n))2, corrections to the double-exponential lim
are asymptotically small; the largest one is given
e22x/4z(0)2. @Strictly speaking, when considering finitex,
the value a2(t)21 should be replaced by its asympto
exp(22t/t) while the exponential with corrections should b
expanded, but it is tempting to keep the form which ensu
an exact zero att50.#

Consider now the limit of Eq.~29! for t!t with a(t)
;1/A2t/t@1. Neglecting 1 compared toa2(t) in Eqs.~29!
and ~30! one obtains

j / j s5
1

A2t/t
expH 2

~z~n!2z~0!!2

2t/t J . ~35!

This is a diffusionlike behavior, in qualitative agreeme
with the early suggestion by Zeldovich7 ~a similarity also
noted by Maksimov25!. The exponential size dependence
z(n)—see Sec. V—is different, however, from earli
power-law expectations. No specific role is played by
critical size at such small times.

A note of caution on this limit should be added. A
though Eq.~35! correctly predictsj 50 at t50, it still should
be treated as a small-time interpolation~see the Discussion
section! rather than a strict result. In particular, the soluti
of the Becker–Do¨ring equation in the limitt→0 has a struc-
ture which is different from Eq.~35!, as described in Appen
dix B.

IV. THE DISTRIBUTION FUNCTION AND THE
NUMBER OF NUCLEI

From the continuity equation one has

f ~n,t !52E
0

t

dt8
] j ~n,t8!

]n
. ~36!
-

ll

n
m-

s

t

f

e

Using Eqs.~13! and ~29! for the steady state and transie
fluxes, respectively, one obtains after integration

f ~n,t !5
1

2
N~n* !exp@z2~n!#

z~n!D

tṅ
erfc$a~ t !z~n!

2Aa2~ t !21z~0!%. ~37!

Introducing p(n)[z(n)D/tṅ and q(n)[N(n* )
3exp@z2(n)#/N(n), one notes that for any nucleation mod
p(n), q(n).1 near the critical size. For a strictly linea
growth and a parabolic barrier these approximations are
act at any size. Thus, withz(n), z(0) replaced, respectively
by zlin(n) andzlin(0), Eq.~37! becomes identical to the on
by TY. Similarly, restricting Eq.~37! to the vicinity of n*
wherez(n).zlin(n) and where the above equalities forp and
q are approximately valid, one recovers at larger times
functional form of the near-critical distribution b
Klimenko,22 and several other erfc-type approximatio
mentioned in Ref. 25 also can be reproduced with appro
ate specifications.

The major novelty of the result is associated with t
region away fromn* where p(n), q(n)Þ1 and where the
erfc function acquires a size-dependent prefactor which
exponentially large and which qualitatively changes t
structure of the distribution. As will be shown below, wit
the new prefactor a proper drift-type structure of the dis
bution, Eq. ~18! is recovered in this region, after a sho
initial transient period. In particular, there is now n
‘‘asymptotic catastrophe’’ in the steady-state limit. Fort
→`, Eq. ~37! takes the form

f s~n!5
1

2
N~n* !exp@z2~n!#

z~n!D

tṅ
erfc$z~n!%. ~38!

This converges either to the Zeldovich limit, Eq.~12! near
n* , or goes asymptotically to Eq.~14! in the growth region
with z(n)@1. For these reasons, Eq.~38! can be numerically
close to the exact distribution at all sizes—see Fig. 1.

An important simplification of the general time
dependent expression is possible if one notes that the a
ment of the exponential function can be large not only
largez(n) in the growth region, but also for a large produ
Aa221uz(0)u for arbitrary z(n) ~i.e., for not too large
times!. In this case one has a generalization of Eq.~18!,

f ~n,t !'
j ~n,t !

ṅ

1

a~ t !1Aa221uz~0!u/z~n!
. ~39!

The distribution is smaller than predicted by the drift expre
sion due to the diffusion component of the flux. In particul
at n@n* with z(n)@uz(0)u one has

f ~n,t !'
j ~n,t !

a~ t !ṅ
, ~40!
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which, together with Eq.~29! for the flux, determines the
distribution at any time. It is interesting to note that the dri
type distribution which corresponds toa(t)51 in Eq. ~40!,
is observed early, att*t, well before the double-exponentia
limit of Eq. ~15! is established att;t ln(uz(0)uz(n))@t.

Equation~39! is also valid nearn* , although for a lim-
ited time. Atn5n* the singularity ofṅ→0 disappears since
z(n) also tends to zero, and one has

f * ~ t !.
j * ~ t !t

D

1

Aa2~ t !21uz~0!u
, t&

t

2
ln

W*
T

~41!

with j * (t) given by Eq.~27!. Indicating the restrictions on
time is necessary since the above expression has no ste
state limit.@Nonrigorously, adding a small constant 1/Ap to
the denominator could validate Eq.~41! at t→` without
much effect on transient behavior.#

Returning to the general distribution, Eq.~37! one can
evaluate the number of particles with size exceedingn

r~n,t !5E
n

`

dn8 f ~n8,t !. ~42!

Performing the integration with asymptotic accuracy one
tains

r~n,t !'t j s exp@2~a2~ t !21!~z~0!21z~n!2!#

3E1@f~n,t !~11A121/a2~ t !uz~0!u/z~n!!#

~43!

with the functionf(n,t) defined in Eq.~30!. Note that there
is no singularity atn5n* sincef(n,t) crosses zero togethe
with z(n).

In the growth region fort*t ln(uz(0)uz(n)), f(n,t) takes
the asymptotic form ofe2x; in other parts of the expressio
a(t) can be replaced by 1, leading to Eq.~16!. The time-lag

tL~n!5 lim
t→`

$t2r~n,t !/ j s% ~44!

remains unchanged, and is given by Eq.~17!.

V. SPECIFICATION OF THE MODELS

A. The standard Zeldovich–Frenkel „ZF… equation

The standard ZF equation corresponds to surface-lim
nucleation with a gain coefficient

bn5b~n* !~n/n* !2/3, b~n* !5D2/2t ~45!

and with the growth rate@in terms of radii r[(n/n* )1/3#
given by Eq.~2! with u50. The incubation time is given
by21

t i
ZF~r !5t$r 221 ln~r 21!1 ln~6W* /T!%. ~46!

The nonlinear functionz(n) is obtained by integration of Eq
~24!

zZF~r !5
r 21

e r
exp~r 21!, e r[

D

3n*
!1 ~47!

~e r5D dr/dn at n5n* is the width of the barrier in ther
space!. This is consistent with Eqs.~25! and ~46!.

In Fig. 3 zZF(r ) ~solid line! is shown together with the
dy-

-

d

parameterB(r ) by Maksimov et al.25 ~dotted line!. The
short-dashed line corresponds tozlin by TY ~zlin looks non-
linear sincer, not n is used as a variable!. All of these func-
tions are multiplied bye r , so that there are no free param
eters, which simplifies the comparison.

In the vicinity of r * 51 the functionszlin(r ) and z(r )
coincide with each other; the difference is cubic inr 21. As
a result, one has

zlin~0!5zZF~0!exp~12 ln 3!'0.906zZF~0!

which is close tozZF(0). Thus the TY expressions will pro
vide good numerical approximations for the transient dis
bution and flux nearr * . At larger sizes, however there is
strong deviation between a power-lawzlin(r ) and exponen-
tial zZF(r ), and the TY expression is inapplicable even f
the flux; error in the distribution is still larger due to th
prefactor of the erfc-expression, and does not vanish at
→`.

Maksimov’s expression forB(r ) is close to the correc
values ofzZF(r ) nearr 51, although not as close aszlin since
the difference inB(r )2zZF(r ) is quadratic~not cubic! in r
21. At largerr, Maksimov’s expression exponentially dev
ates fromzZF(r ).

B. The Becker–Dö ring „BD… and Turnbull–Fisher „TF…
models

The BD and TF models are the two major discrete mo
els for surface-limited nucleation. In the BD case the g
coefficient is the same as in Eq.~45!, while in the TF case it
is multiplied by exp$@W(n)2W(n11)#/2T%.

The growth rates for these models are known—see, e
Ref. 37 for growth in the Turnbull–Fisher model, or Refs.
for a general survey. One has

ṙ BD51/at $12exp@a~1/r 21!#% ~48!

ṙ TF52/at $sinh@~a/2!~121/r !#% ~49!

with

a52W* /Tn* 5dm/T

FIG. 3. The nonlinear parameterz(r ), Eq.~47!, for the standard Zeldovich–
Frenkel ~ZF! equation~solid line!, and alternative approximations. Shor
dashed lines,zlin(r ); dotted line, parameterB(r ) by Maksimovet al. Long-
dashed line,z(r ) for diffusion-limited growth, Eq.~51!. All parameters are
multiplied by e r , see the text.
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being the ‘‘discreteness parameter’’ which is responsible
deviations of Eqs.~48! and ~49! from Eq. ~2!; dm is the
difference of chemical potentials between phases.

For both models the integral*dr/ ṙ cannot be evaluated
in elementary functions and, strictly speaking, the value
z(n) is to be evaluated numerically. In practice, howev
even for not very smalla, deviation from the ZF growth rate
is not that large and for moderate sizes the elementary
pression forzZF(r ), Eq. ~47!, can work. In the simpler
double-exponential limit, accuracy of the elementary pred
tions in case of the TF model was verified numerically
Spinellaet al.4

For larger @1 one has to account for a different limitin
growth ratesṙ ` in the discrete models compared toṙ `

ZF

51/t ~otherwise even a minor discrepancy will store u
boundedly asr→`!. One could use

z~r !.
r 21

e r
exp~r /t ṙ `21! ~50!

which is similar to corrections suggested for the incubat
time.38 Numerical accuracy of such corrections tot i was ex-
amined recently by Granasy and James.30 One should keep in
mind, however, that Eq.~50! is accurate only in its leading
exponential term and a more detailed study of the limir
→` will be presented elsewhere.39

C. Diffusion-limited nucleation and growth

Integration of Eqs.~2! and ~24! with u51 gives

zdiff~r !5
r 21

e r
exp$r 2/21r 23/2%. ~51!

Together with Eq.~25! this is consistent with the incubatio
time obtained earlier21

1

t
t i
diff~r !5~r 21!2/212~r 21!23/21 ln~r 21!1 ln

6W*
T

.

~52!

The values ofe rz
diff(r ) are shown in Fig. 3 by a long

dashed line. Due to slower growth,zdiff(r ) increases with
size much faster than its counterpart for surface-limi
nucleation, Eq.~47!. Larger values ofz(r ) imply weaker
small-time transient effects, before the double-exponen
regime is established.

In the growth region with largez(r ) transient distribu-
tions ~37! and ~51! would be numerically indistinguishabl
from those obtained from the double-exponential soluti
which were shown in Fig. 2. The difference, neverthele
can become important nearn* .

VI. DISCUSSION

In the present work a general expressions for the dis
bution of nuclei, Eq.~37! was proposed. Relevant expre
sions for the flux and the number of nuclei also can be
interest. ‘‘Generality’’ implies applicability to arbitrary
nucleation model after the nonlinear function of sizez(n) in
Eq. ~24! ~which depends exclusively on the determinis
growth rate! is calculated. It is helpful that for the some o
r

f
,

x-

-

-

n

d

al

,
,

i-

f

the mainstream models, including the standard Zeldovic
Frenkel equation,z(n) evaluates to elementary function
~Sec. V!.

In the obtained expression time can be arbitrary; size
nuclei span near- and over-critical regions. There is no up
bounds for time or sizes as long as the original Becke
Döring formulation which neglects the depletion of mon
mers by nucleation and growth is considered.

Simplifications achieved by using thez variables can be
explained as follows. One can show that in these variab
the Zeldovich–Frenkel equation becomes asymptotic
close to the exactly solvable Ornstein–Uhlenbeck~OU!
equation not only in the vicinity ofn* , but in the decay and
growth regions as well. In the Becker–Do¨ring case two dif-
ferent continuous approximations are required15,19 for the
subcritical region~smooth functionv5 f n /Nn , the ratio of
kinetic to equilibrium distribution! and for the growth region
~smooth f n!. Nevertheless, inz variables each of the two
differential representations approach a corresponding form
the OU equation. It is not surprising that results are Gauss
in terms of the variablez, which is typical for the OU case

Most of relevant earlier expressions are reproduced
the obtained results in appropriate limits. For example,
double-exponential matched asymptotic~MA ! solution19,21 is
recovered in the growth region fort@t @wheret is defined
in Eq. ~6!#. Similarly, the Trinkaus and Yoo~TY!18 expres-
sions for the distribution and the flux are obtained for a line
z(n)5zlin(n) and a parabolic nucleation barrier. Kaschiev
results, however, are not reproduced in any limit since he
effect, was solving a diffusion rather than a nucleation eq
tion.

The main applied value of the proposed distribution
associated with spanning of the regions of sizes since pr
ous expressions worked either near the critical size~e.g., the
TY results18! or in the growth region ~e.g., the MA
solution19,21!. The domain of small times covered by th
present results seems to be of less practical significance
though it allows one to trace the establishment of the dou
exponential regime starting fromt50, and to estimate the
corrections.

The limit t→0 requires a separate consideration. T
obtained expressions for the flux, distribution, etc., produ
an exact zero att50, which could be considered as an a
vantage compared to the double-exponential MA solut
where this zero is asymptotic. Nevertheless, the presen
sults should be treated as an interpolation. In contrast to
MA solution the asymptotic structure of which is well unde
stood, it is unclear if Eqs.~29! and~37! are unique, or if it is
possible to construct an alternative approximation wh
bridges the instantt50 and the double-exponential limit a
later times.

The reason for the uncertainty is that the MA ideas
straightforward ifW* /T is theonly large asymptotic param
eter of the problem. Other parameters also can be large
they are either directly linked to the barrier~as the paramete
n* /D!, or these parameters are expected to form finite, n
asymptotic combinations with the barrier. This is best exe
plified by the parameterx, Eq. ~15!, which is a combination
of the logarithm of the barrier and possibly large time a
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size, but which is finite and which is the only argument
the asymptotic solution. When time gets small, howev
there appears a competing large function,a(t). Analysis
suggests that time in the nucleation problem has a com
multizone boundary layer structure neart50 with each zone
requiring a different approximation. Getting a single expr
sion which would be reasonable on every scale of time
this situation becomes almost a matter of luck. In particu
higher-order terms in the expansion of the solution can
anticipated. Such terms appear, for example, in the Lap
transform of the near-critical flux,33~b! although a full tran-
sient expression is yet unavailable.39

To emphasize the problem, in Appendix B a small-time
solution to the Becker–Do¨ring ~BD! equation has been con
structed without the assumption of a high nucleation barr
This solution satisfies the initial conditions, but its structu
is very different from the small-time limit of Eq.~37!. In
fact, it is unlikely that any differential approximation to th
BD equation can produce a time-dependent solution of t
~B3!, which could be an important reminder in view of th
search for ‘‘the best’’ differential version of the nucleatio
equation.11–15

However, with all the intriguing mathematics of the B
equations at very small times, which still requires clarific
tion, for most physical problems the regiont&t is often of
no practical interest since at such times the flux is anyw
indistinguishable from zero~whether this zero is treated a
an exact or as an asymptotic one!. Observable results, suc
as the time-lag of transient nucleation, remain unchange

APPENDIX A: INVERSION OF THE LAPLACE
TRANSFORM FOR THE FLUX

In the inner region nearn* the Laplace transform of the
nucleation equation~written in terms of the reduced distribu
tion v5 f n /Nn! is solved by a repeated error integr
i m erfc(zlin).19 Herem5pt, with p being the Laplace index
~in the remaining part of this section time will be measur
in the units oft, so thatm andp will not be distinguished!.
The functioni m erfc is defined as34

i m erfc~z!5
2

ApG~m11!
E

z

`

~x2z!m exp~2x2!dx ~A1!

with a power-law and exponential asymptotes forz→7`,
respectively. Inversion of the asymptote of the inner solut
into the growth region allows one to find the correspond
distribution and the flux, Eq.~15!—see Appendix of Ref. 19
for detail.

A more general Laplace transform was suggested in R
23 in connection with pre-existing nuclei. Iff n(0) is the
initial distribution, and v(n,0)[ f n(0)/Nn , one has the
transform of the flux

J~n,p!52 j s

p

4p
G~m11!2mi m21 erfc@z~n!#

3E
0

n

dw
dv~w,0!

dw
exp@z2~w!# i m21

3erfc@2z~w!#exp@z2~n!# ~A2!
f
r,

ex

-
n
r,
e
ce

r.

e

-

y

n
g

f.

~the last exponential factor was accidentally omitted in R
23; otherwise the reader is referred to that paper for techn
detail of the derivation!.

Inversion of the Laplace transform does not affect t
m-independent termdv(w,0)/dw. If the inverse of the re-
maining part of Eq.~A2! is labeled asd j (n,w,t), the total
flux will be expressed as

j ~n,t !5E
0

n

dw
dv~w,0!

dw
d j ~n,w,t !. ~A3!

The functiond j (n,w,t), which is related to a Green’s func
tion, will determine the partial contribution to the flux at siz
n at time t from the initial distribution near sizew.

In order to obtaind j (n,w,t), one can expressG(m
11) in Eq. ~A2! through a product ofG(m/2) andG(m/2
11/2).34 Each of the resulting gamma functions is furth
combined with one of the erfc functions, and known40 ex-
pressions are used to invert

G~m/21n!i m21 erfc~z!

for n50 andn51/2. The convolution theorem leads to

d j ~n,w,t !/ j s5
2

Ap
exp~z1

21z2
2!z2E

0

t

d e2ua~ t2u!a3~u!

3exp$2z1
2a2~ t2u!2z2

2a2~u!%, ~A4!

wherez1 andz2 stand forz(n) andz(w), respectively, and
a(t) is defined in Eq.~21!. Introducing a new integration
variable

y5z2Aa2~u!2a2~ t !

one can cast Eq.~A4! as

d j ~n,w,t !/ j s5
2a~ t !

Ap
exp$2~a2~ t !21!~z1

21z2
2!%

3E
0

`

dy expH 2
Q

y22y2J ~A5!

with

Q[z1
2z2

2a2~ t !@a2~ t !21#.

The integral evaluates toAp/2 exp(22AQ). This gives an
asymptotic expression ford j (n,w,t). With v(w,0)
5U(nmin2w) one returns to conventional transient nuc
ation ~no pre-existing nuclei!, obtaining Eq.~29! in the text.

APPENDIX B: THE BECKER–DÖ RING EQUATION AT
SMALL TIMES

The classical master equation of the nucleation prob
has the form

] f n /]t5 j n2 j n11 , j n5bn21f n212anf n ~B1!

with the loss coefficientan5bn21Nn21 /Nn determined by
detailed balance. At very small times one can consider o
gain; losses can be neglected due to conditionf n11! f n

!Nn . This gives
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] f n

]t
'bn21f n21 ~B2!

or, with nmin51 and f 15const,

f n115
1

n!
f 1b1b2¯bntn1O~ tn11!. ~B3!

The critical size~which is due to competition of gain and th
neglected loss! does not play any special role at such sm
times.

In the standard case ofbn given by Eq.~45! one has

f n11
BD ~ t !' f 1~ t/t!n~D2/2!nn

*
22n/3~n! !21/3. ~B4!

This result describes analytical properties of the solution
the limit t→0, but otherwise the region of its applicability
exceptionally short, smaller than 1/a2—the time it takesf 2

to approach its near-equilibrium value.
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