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Transient nucleation distributions and fluxes at intermediate times
and sizes
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General interpolating expressions, valid for near- and arbitrary overcritical sizes of clusters, are
proposed for the nucleation fluxes and distributions. Results are expressed in terms of the
deterministic growth rates, and are characterized by a non-Gaussian dependence on the size of
nuclei. In a sense, the proposed approximations combine the positive aspects of the parabolic model
by Trinkaus and YodPhilos. Mag. A55, 269 (1987] and of the boundary layef‘matched
asymptotic”) solution earlier described by the autH&@ov. Phys. Tech. Phy82, 76 (1987); 33,

1338 (1988]. Specifications of the general results are made for several mainstream nucleation
models via selection of appropriate growth rates. Examples include surface- and diffusion-limited
nucleation in the continuou&eldovich—Frenkeland discreté¢Becker—Daing, Turnbull-Fisher
versions of the nucleation equation. 01 American Institute of Physics.
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I. INTRODUCTION ficients of this equation are nonlinear functions of the size of
) ) _ a nucleusn. Second, the difference of the gain and loss co-

The physical problem of transient nucleation can be forfficients changes sign at the critical size. This feature is
mulated as follows. An initially stable system is rapidly yost natural from a physical point of view, describing tran-
quer}ched into a metastable region, after which its thermodysition from decay ah<n, to growth atn>n, , but math-
namic parameterdemperature, pressure, gtare held con- o avically it leads to a rather complex boundary layer struc-
stant. NUC|e' of the new phase are formed due tq therm re of the solution. Next, the standard methods of analysis
fluctuations and one is interested in the rate of their forma:,jlre often hard to apply to a discrete equation, and one has to
tion and distribution over sizes. '

. worry about constructing an adequate continuous
For many fluid systems, such as one-component supet- .

. -~ 2P~ approximation'~1° Still, a realistic continuous equation
saturated vapor or non-glass forming undercooled liquid, th PP d

. : X . e.g., the one due to Zeldovich and Frenkslll retain the
actual transient period, typically, will be unobservably short . .
forementioned nonlinear and boundary layer aspects.

and the nucleation process can be treated as steady stages ) ]
Most of such aspects were ignored in early treatments of

(Eventually, the metastable phase will be exhausted by th . .
growing nuclei, and the steady state will be destroyed, buEene transient problem. Kaschi€vfor example, replaced the

this happens much later in time, and will not be part of thenu.cl:leatlon.equanon by a d_|ffu5|on equat[on n t-he near-
present study.For solids, on the other hand, the time interval Citical région when evaluating the Green's function. This
before the steady-state nucleation regime can be appreciablg2kes the problem exactly solvable, but the key feature of
and can range, for example, from minutes to days in case dgansition from nucleation to growth is lost, and many other

crystal nucleation in glassés® Similar effects are of interest 2SPects of nucleation are not reproduced.
in amorphous silicod. In case one intends to mimic nucleation by a standard

The classical picture views nucleation as a random walexactly solvable differential equation, the choice should be
of nuclei in the space of their sizes via random gain or loss oftot the diffusion but the so-called unstable Ornstein—
monomers. The master equatithe “Becker—Daing equa-  Uhlenbeck equation. This equation is well studiespecially
tion”) was originally formulated in the steady-state ver&fon in its stable versionin connection with random processes,
which can be treated exacflyZeldovicH considered the and the Green’s function is known exactly. The Ornstein—
time-dependent version of the master equation and gavdhlenbeck equation has linear coefficients and homogeneous
some semiquantitative estimations for the transient probleroundary conditions which makes it different from the
Nevertheless, in the absence of relevant experiments, th&eldovich—Frenkel equation, but the change of sign mgar
main attention was devoted to the steady state for which, ifs properly reproduced.
present terminology, an asymptotic analysis was performed. The Ornstein—Uhlenbeck equation appears in the para-
A numerical survey of early studies on transient nucleatiorbolic nucleation model employed by Trinkaus and ¥bo
which followed Ref. 7 until the early 1980s can be found,(TY). An inhomogenous boundary condition of the nucle-
e.g., in Ref. 8. ation problem, formally, ruins the exact solvability, but most

The time-dependent Becker—iug equation cannot be likely the standard Green’s function of that equation is still a
solved exactly. There are a few features which can makereasonable approximation and, within the model, the TY ex-
even an asymptotic treatment a challenging task. First, coepressions are sufficiently close to the exact ones. Limitations
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of the TY results come not so much from the solution itself,including discrete models of the Becker—idg type.
but rather from the parabolic model which is not accurate  Hopefully, the availability of a single unifying formula
away fromn, , in the region of large sizes. will consolidate the somewhat fragmented current state of
About the time of the TY paper, it was shown by the the transient nucleation theory. However, the same general
present authd? that the general nucleation equatiomith expression can have multiple simplified representations in
nonlinear coefficienjscan be solved asymptotically if the various domains of times and sizes, and for specific nucle-
nucleation barrietV, is large compared to the thermal en- ation models, whiclitogether with clarification of some me-
ergy, T (Boltzmann constant is taken as unityhe method is  thodical issuesdetermines the overall volume of the paper.
based on a combination of matched asymptti@ ) tech- Possible applications are related to analysis of time-
nique (which is standard in boundary layer analy8isand  dependent cluster distributions which span the near- and the
the technique of Laplace transformations, and is briefly outovercritical sizes. Available examples of such distributions
lined in the Background section. The Laplace transform of arinclude computer experiments for nucleation in Ising
analog of the Ornstein—Uhlenbeck equation is indeed recowsystems? Similar effects can be of potential interest for real-
ered as part of the solution, but only in the vicinityrgf . In life experiments with a sufficiently large, (e.g., in poly-
the growth region the resulting nucleation flux is describedmers. In other situations the simpler MA expressions can be
by a characteristic “double-exponential” functibhwith a  equally accurate, but the intent of the proposed general ex-
non-Gaussian dependence on size. pressions is not to replace the earlier results, but rather to
Compared to the TY solution, the MA results can beestablish their interconnections and clarify the limits of ap-
applied to arbitrary sizes in the growth regforand to a  plicability.
general nucleation model, including the discrete Becker— Results also can be useful in connection with numerical
Doring equation. In contrast to TY, however, the original MA transient solutions of the Becker—fug equation$:?%3°
solution predicted an asymptotic, not an exact zero=ed, = Such solutions, in principle, can have unlimited precision,
causing a certain surprise in some of the later publicationglaying the role of exact results for a specific nucleation
More importantly, the time-dependent ffdxand the result- model. It is often a challenge for an analytical treatment to
ing distribution could not be used in the direct vicinity of reproduce numerical data with sufficient accuracy. At the
n, . Klimenko?? using a technically different asymptotic same time, analytics can complement numerical treatments
method, further showed that the solutidman be extended by a more general, ttansmodel” view of the nucleation
into the near-critical domain of sizes, although the problenpicture.
att=0 remained and, in fact was enhanced compared to the The paper has the following structure.
growth region. Subsequently, the MA approach was The Background section emphasizes the role of deter-
generalizetf to construct a nucleation flux with an exact ministic growth ratef in the nucleation problerhThe TY
rather than an asymptotic zerotat0; this was done, how- solution and a recent attempt by Maksimetval >° to extend
ever, only atn=n, , which prevented matching with the it into the growth region, are also briefly analyzed here.
growth region. There were other related studies for the neaiSome insight into the structure of the MA solution is given.
critical region—see references in Refs. 24 and 25—or for thé&kemarkably, much of the understanding can be obtained al-
growth region(e.g., in the contexts of pre-existing nuéfi®  ready from the steady-state case, where a possibility of an
or continuous quench?), but a unified approximation exact treatmentprovides additional help.
which would combine the positive aspects of the TY and MA  The transient flux is obtained in Sec. Il via inversion of
approaches at all sizes has not been constructed. the Laplace transform derived earlier in Ref. 23. The result
The importance of such a unification can be substantiresembles the TY expression but with a non-Gaussian depen-
ated by the fact that while the TY or the MA solutions can bedence on size described by a functipfn). The latter, in
accurate in the regions of sizes for which they are designedurn, is determined by. The MA solutiort®?!is recovered
naive attempts to extend them beyond their natural domainis the growth region at larger times.
can be disastrous. For example, the growth-region distribu- In Sec. IV the cluster distribution is obtained via integra-
tion of the MA solutiort®?! diverges if extrapolated tm tion of the flux. The result interpolates between the known
=n, . Alternatively, the erfc-type near-critical approxima- erfc-type approximations in the near-critical region and the
tion for the distribution of nuclei(which in the time- double-exponential expression at larger sizes, and has a
dependent version was suggested by TY and which with miproper steady-state limit. The number of nuclei also is evalu-
nor modifications enters all later relevant stugliesn lead to  ated in this section; interestingly enough, despite the differ-
an “asymptotic catastrophe®® if applied straightforwardly, ent form of the result compared to the earlier MA expression,
without matching of asymptotes, towards large sizes. In adthe time-lag* remains unchanged.
dition, a single interpolation for the time dependence can In Sec. V the general expressions are specified for sev-
clarify the nature of the asymptotic zero nearO. eral mainstream nucleation models via evaluation of the non-
The goal of the present paper is thus to construct atinear functionz(n). Results can be expressed as elementary
expression for the distribution of nuclei which would bridge functions for the standard Zeldovich—Frenkel equation and
the sizes in the near critical and growth regions, and whicHor diffusion-limited nucleation. The situation is more in-
would be applicable, at least formally, for arbitrary times, volved for the discrete nucleation models, but simple inter-
including t=0. This is achieved by Eq37), which is ex- polations are possible.
pected to be valid for various types of nucleation models, Section VI contains the discussion, and Appendixes A
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and B, respectively, present some formal derivations and hBD(n)zﬁ(n){l—exp[Tﬂ dw/dn]} (5

eneralizations for the case of pre-existing nuclei, and the _ _ . . -
golution of the Becker—bxing eantion in thge strict limit  Was discussed in Refs. 19 and 15 in connection with discrete-

ness effects; specific growth rates for the mainstream nucle-

0. . i
- ation models were known earlier—see Sec. V.
The parametet can be equivalently represented as
Il. BACKGROUND 7,1_@ ~2pB(ny) ®
- - 2
A. Thermodynamics, kinetics and the nucleation dn n=n, A
equation with
_In _the cla_ssmal theory of nucleation the m|n|_mal_ work A2= —(2T) L dPWidr? at n=n, . @
which is required to form a nucleus afmonomers is given
by Connection betwee(n) andn can be useful in two
23 n ways. First, the macroscopic models for growth and decay
W(n)zw*[g(_) _2_]_ (1)  are often based on well-studied deterministic equations of
Ny Ny hydrodynamic type, and are better understood compared to

HereW, is the work to form a critical nucleus with sizg, ; their microscopidstochastit nucleation counterparts. Equa-
according to Gibbsy, represents the barrier to nucleation. tion (6) allows one to estimat@(n,) and thus to evaluate
To ensure marginal stability of a metastable phase, this valuéie steady-state nucleation ratsee next section Second,
should be large compared to the thermal enéfgy even if one starts from a purely microscopic model of nucle-

The growth rateh is determined by the kinetics of mass ation with a specifieg3(n), an asymptotic time-dependent
exchange between the nucleus and the matrix. The besplution still will be expressed in terms of rather than
known examples are the ballistisurface-limited and the ~ B(n).***"In particular, a general solution of a simpler con-
diffusion-limited mass exchange mechanisms. Growth rateinuous equation can be applied to the discrete BD equation
look simpler in terms of reduced radii(with i =hdr/dn)  if "®*"is replaced by in accord with Eq/(5).

and with neglect of discreteness effects are given by As a preliminary example, consider the “incubation
time” which appears in the MA solution, and which is the

1/3
P= 1 1— 1) rz(l 2) time it takes the flux to reach d/of its steady-state value.
r? r)’ n, This time is given b¢*
with /=0 and =1 for the ballistic- and diffusion-limited ti(N) =tged Ny — A/V2) +tg(n, +A/V2,N). (8

cases, respectively. Witlh=—1, Eq. (2) corresponds to
cavitation! In all cases the parameterhas a dimension of

time and will be defined below. Growth rates which account™ 3 Vel he final size is the indi d g
for the discrete nature of are also available, as described in +AV2, res_pectlve y. The fma §|ze_|st e indicate 3!'2f°r
Sec. V. growth, while for decay this size is the smallest sizg,

ghresent in the system. Selection of a model will affect the
value oft;(n) but not the shape of the transient flux.

Heretyec andty, are positive deterministic decay and growth
times (i.e., integralsfdn/n) with indicated initial size:,

The actual model of nucleation requires evolution of th
nuclei distribution functionf,,(t). The corresponding master e i
equation, the general “Becker~Bng equation” (BD), is In other words, the deterministic rafe allows one to
given in ,’Appendix B. At this point it should be suffici’ent to construct ge_neral time-depe_n_den_t solutions to the nucleation
note that the key kinetic parameter of the master equation igqufaf_thn, pru;r rt]o the sp_emfu:atlon Off a _concreteb formbor
the gain probability3(n) (which specifies anodelwithin the coetficients 0 that equauo_n. A speci ication can be subse-
general BD schemeand that the relation to experimentally quently _achleved by substitution into t.he general results an
observed “nucleation rate” is given by the flyxn,t). The appropriate growth rate, and evaluation of the aforemen-
BD equation is constructed in such a manner that the flux i§oned integralsidn/n.
identically zero for the(quas) equilibrium distributionN,,
ocexp{—W(n)/T}, whlch is equivalent to the detailed balance. B. Steady-state distribution and flux
The continuous version of that equation has the form

Formally, the steady-state nucleation equation allows for
. (3y  an exact solutioni.In case of the Zeldovich—Frenkel equa-
on N tion, for example, the exact expression is givel by

ot dj - N a f
S oy AT TBMN—S

For surface-limited nucleation witd(n)=n?3, Eq.(3) is the oo

standard Zeldovich—Frenkel equation. fs(n)/N(n):jsf dn’/B(n")N(n") 9
There exists a fundamental connection between the “mi- "

croscopic” coefficient3(n) and the deterministi¢‘macro-  with the steady-state fluxjs determined from the lower

scopic”) growth rate in continuous modéls boundary condition
nn)=—(B(n)/T)dW/dn (4) f,=N, atn=nyp.
which leads to Egs(2) for B(n)<n®~ 973 A generalized One should keep in mind, however, that the above

version of Eq.(4), appropriate for the BD scheme, boundary condition is already asymptotic, neglecting the
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FIG. 1. The reduced steady-state distributityfr)/rjs of the standard

Vitaly A. Shneidman

FIG. 2. Reduced steady-state and transient distributions in case of diffusion-

Zeldovich—Frenkel equation in the above-critical region of sizes forlimited nucleation and growth faW, /T=20. Solid line, exact steady-state

W, /T=20. Solid line, exact Eq(9). Dotted line, asymptotic Eq(14).
Long-dashed line, the erfc-approximation, Ed.2). Short-dashed line,
steady-state limit of the proposed interpolating approximation,(&8).

distribution, Eq. (9) with B(n)=n3. Long-dashed line, the erfc-
approximation, Eq(12) (same as in Fig.)1 Short-dashed lines, asymptotic
transient distributions given by Eg4.5), (18), and(52) for t/7= 10, 20, 30,
and 40(from left to righd.

depletion of the matrix by growing nuclei. Otherwise, an blends in with exact results in the growth region but diverges

integral conservation law should be employédieglect of
depletion is equivalent to large values Wf, /T, with an

at the critical sizer=1. An interpolation obtained as the
steady-state limit of the general transient expression in Sec.

exponentially small nucleation rate and a correspondinglyV, bridges the two limits and is shown by a short-dashed
large lifetime of a metastable state. For that reason, moréne. The difference from the exact distribution at any size is
instructive(and more appropriate in view of time-dependentminor for the chosen value &, /T=20 (which is small by

generalizationsis the asymptotic steady-state solutioal-

most experimental standajgdsa more realistic value of

though exact results remain useful for verification purposesWV, /T=30 would make the two curves practically indistin-

A large barrier is equivalent to small/n, .

In the vicinity of n, the barrier is parabolic and the

equilibrium distribution is approximated as

N(n)=N(n,)exp{(Zin)?},  |zin|<n, /A (10
with z;, linearly depending om

Zin=(n—n,)/A. (11
The steady-state distribution is given’by

fo(n)=3N(n)erfd(z;,) (12)
with an associated fluk(n) =constsjq:

' = N(n,) (13

= n,).
Is PPl

Equation(13) is valid for the flux atany size, while Eq.

(12) (and thus the time-dependent generalizations of the erfc-
approximation is strictly valid only in the parabolic region

(the “boundary layer’). In particular, Eq(12) does not pre-
dict a proper distribution of nuclei in the growth region

—n,>A, which should be of drift form
fs(nm=js/n. (14

[The drift form is well known in physical kinetic in the

guishable.

Failure of the erfc-approximation is even more spectacu-
lar in case of diffusion-limited growth, Fig. 2, where a simi-
lar scaled distributiorfig(r)/7j < is plotted. Here Eq(12) with
a full (non-GaussianN(n) describes an exponential decay
into the growth region instead of a linearcreaseat r>1.
The error can be reduced if the erfc-approximation is used
more consistently together with the approximate EL)
(not shown in the figure but even in that case the result
would be a power-law decay far>1. This is in distinct
contrast with increasing distribution, as in Fig. 2 or with
saturation, as in Fig. 1Not being able to distinguish be-
tween the surface- and diffusion-controlled nucleation is an-
other drawback of the erfc-approximation. These limitations,
however, do not affect the correct value jofwhich is sen-
sitive exclusively to the near-critical region. Note also that
asymptotes of Eqs12) and (14) coincide in the common
region of applicability; this is an important preview of the
matched asymptotic ideas described bejow.

C. The growth region transient solution
21) and distribution of nuclei

(Refs. 19 and

The method of solutior{isee the Appendix in Ref. 19
involves the Laplace transform of the nucleation equation,

specific nucleation context it also can be deduced directlyvhich makes it an ordinary differential equation; after that

from the exact expression forf¢(n) both in the

continuoug*® and discret®? cases foW, >T].

standard matched asymptotic technfjuzan be applied. In
the “outer region” belown, a nonlinear first order differen-

Figure 1(solid line) shows exact steady-state distribu- tial equation is considered which is solved in terms of the

tions over radii, f4(r)=fi(n)dn/dr for the standard
Zeldovich—Frenkel equation. The erfc-approximatitong-

decay timetgdn). Alternatively, nean, (“inner region”) a
second-order linear differential equation is recovered which

dashed linesworks reasonably in the near-critical region, is solved in terms of the repeated error integthisee also

but fails dramatically away fromr, . The asymptotic Eq.

Appendix A below, which generalize the standard erfc of

(14) shown by dotted lines in Fig. 1, on the other hand,Eq. (12). The asymptote of the outer solutionrat>-n, can
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be matched with the subcritical asymptote of the inner soluwhich is expected to be valid at all sizes. With a size-
tion, giving the proportionality coefficient of the latter. The independengB(n), the growth rate in Eq4) is a linear func-
other, above-critical inner asymptote has a relatively simpldion

structure and, after the inversion of the Laplace transform,

determines the asymptote of the growth distribution and the ;- _n=n, (20)
corresponding flux® This flux is replicated in timegwith T

correction for retardatiorby any flux in the growth regid

and is given by

In that case, Eq(3) is reduced to a standard unstable
Ornstein—Uhlenbeck equation, albeit with an inhomoge-
j(nt)=jsexp{—e ™}, x=(t—tj(n))/r. (15) neous boundary condition at=n,,, which prevents an ex-

) ) ) ) ) act solubility. Still, a rather accurate solution to this equation
The incubation time;(n) is determined by Eq@8) above or |\ .-« ~onstructed by Trinkaus and Y&®Y)® via a minor

by an integral representation, E@) of Ref. 21. perturbation of the condition on the lower boundary. To sim-
The number of nuclei with size exceeding a given value

R - 3 Ive plify identification of the results, let us introduce a function
of n (which is usually measured in experiments is given

by** a(t)=11—exp —2t/7) (21)
p(t)=7jsEi(e7). (16)  asin Ref. 23, and rewrite the TY results in present notations

Here E; is the first exponential integradf. In some of the as

latter studies it was suggested to subtract from this expres- fTY(n,t) = IN(n)erfcf a(t)z;,(n) — mznn(o)},
sion a constantjE;(e'i’") in order to ensure an exact rather (22)
than an asymptotic zero &t 0. Strictly speaking, this would

be incorrect, even though the added constant is negligibly ' (n,1)/js=a(t)exp{— a?(t)[Z;,(n)

small both asymptotically and numerically. It will be shown 5 2
below that if one wishes to refine the solution né&0, a ~ V1= Va™(1)2in(0)]°+ Zjin (n)- (23

different functional form of Eq(16) will appear which au-  [Herewith z;,(0), notz;,(ny;,), will be used for brevity of

tomatically satisfies the initial condition. notations; in fact in most situations treating the lowest size
_ 'g‘lt large timest—t;(n)>7 one hasp(t)~jJt—t.(N)] n . as zero is an excellent approximation, especially for the

with Zeldovich—Frenkel equatioh.
t (n)=t;(n)+ yr, (17) If one accepts the parabolic model from the start, than

the TY solution is a rather accurate one. In particular, it
y=0.5772... being Euler constant, ahdn) known as the predicts an exact zero &=0. On the other hand, the para-
“time-lag” (also, “induction time”). Alternatively, an exact bolic model itself is not a good representation of the nucle-
expression for the time-lag also can be constructed both fasition problem away fromm, , especially in the growth re-
the discrete and continuous versions of the nucleatiogjion. In particular, ah>n, even in the steady-state limit the
equation>® With a certain effort one can shdivthat in  TY distribution deviates from the proper result by an expo-
each case the asymptotes of the exact expressions inderdntially large factor. A similar problem is recovered in other
coincide with t;(n)+ y7, testifying to the validity of the similar erfc-type approximations discussed by Maksimov

matched asymptotic solution. et al?® and could be labeled an “asymptotic catastrophe” if
The transient distribution in the growth region is relatedone uses the terminology of that padatthough the latter
to the flux by the same standard relation discussed the “catastrophe” in terms of the flux

F(n,t)=j(n,0)/A (18) At the same time, the TY sol'ution can be_remarkably
' ' accurate nean, where a parabolic approximation for the
as discussed above in the steady-state context. Examples lrrier or a linear approximation for growth are reasonable.
such distributions for diffusion-limited growth at different Non-linearity will affect only decay and will result in a slight
times are shown in Fig. 2 by dotted lingSimilar curves difference betweer(0) andz;,(0). Since this difference is
were observed in Ref. 36 from numerical solutions of a dif-2 honasymptotic constai numbey it can be treated as a
fusion version of the Turnbull-Fisher equation, although nominor correction. Moreover, in case of the continuous ballis-
direct identification has been performe®ne should keep in  tic model (standardZeldovich—Frenkel equatigrthis num-
mind, however, that Eq18) is also asymptotic, and in gen- ber is exceptionally small—see Sec. V—and errors produced
eralizations of Eq(15) for smaller times and sizes described by the TY approximation near, can be hard to detect even
below, relations between the distribution and the flux alsdn numerical studies.
will become more complex.

E. Nonlinear transformation of coordinates and
D. The parabolic model (Ref. 18) interpolation of the critical flux  (Ref. 23)

Zin(n). On the other hand, in the growth region the natural

WP=W, —T(Z)? (190 variable should have a form of const e(/7), in order to
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ensure the simplest structure of the exponential in the trardl. TRANSIENT FLUX AND LIMITS
sient solution, Eq.(15). The required compromise is

achieved by usirf Inversion of the Laplace transform of the flux—see Ap-
pendix A—gives the following result
n dn
z(n)= —exp[ f Aol (24 J(n.1)/js= a(tyexp{ — (a’() = 1)(2(0)*+2(n)?)}
xXexp{— ¢(n,t)} (29

Herei is the imaginary unity, and despite the somewhat un-
usual structure, the above expression is reduced to elemewith

tary functions for some of the mainstream nucleation 210 \/2—21 30
models—see Sec. V. Near, the new variable(n) indeed ¢(n,1)=2[z(0)|z(n)Va ([ a*(t) ~1]. (30
coincides withz;,, in particular z(n) changes sign ah Equation(29) is valid if at least one ofz(0)| or z(n) is

=n, . Away from n, , it is related to the incubation and large. To isolate the large parameteria(0)| one can write
decay times introduced earlier

n
t,(n)/r=In{—2z(n)z(0)}, n>n,, (25) 2(0)=— € (31)
2(0) = —exp{ —tged Ny —A)/ 7} (260 with C being a model-dependent constdrf the order of

[Note that|z(0)| is large asO(n, /A).] unity
Using the z variables allows one to construct a more C=—lim[tgdn, — &)/7+In(8n,)]. (32)

general (compared to the original MA treatméntaplace s O *

transform of the flux which is valid at arbitrary sizes and
which, upon inversion, ensures an exact zerda=a0. The
critical flux is given by®

(If the lower boundary is selected at negligibly small values
of n,in, the constan€ equals zero for strictly linear growth,
as in the TY case, and is-1ln 3 for the standard Zeldovich—
Jx (D =]sa(t)exp{— (a’(t) — 1)exq 2tged N, —A)/ 7]} Frenkel equation?)
The other parameter of the solutiar{n) is large ifn is
Inversion of the Laplace transform at arbitrary sizes will bein the growth region. More precisely, if deviation offrom
part of the present work. n, is of the order o, , (say,n=2n,), one hag(n) com-
parable to|z(0)|. Further into the growth regiom(n) in-
creases exponentially with size, dramatically increasing the
F. Generalizations of Eq. (23) for the growth region accuracy of the asymptotic results.
(Ref. 25) and open questions In the vicinity of n, the Gaussian form of E¢29) could
be anticipated, and it should be treated as a unifying expres-

. 4 sion for earlier results. For example, the parabolic limit of
other options, that the TY expression for the flux also coul Y is recovered from Eq(29) if z(n), z(0) are replaced
be used for the Zeldovich—Frenkel equation at arbitrary Size?espectively byzi (), 2 (0). Alternat'ively forz(n,)=0 '
if the variablez;, (in current notationsis replaced by some 4"~ gener,ad(O)m Eq, (519) gives ' *
nonlinear functionB(n) while A= —B(1) is substituted for T

Recently, Maksimovet al?® suggested, among several

Zin(0). Thevalue ofB(n) is given by o (D] js=a(t)exp{—(a?(t)—1)z%(0)}. (33
2W,  (n/n,—1)¥(n, /n) This is the critical flux of Ref. 23, Eq27) above. Next, for
B(n)= (28)  t>randz(n) replaced by, , the form of Eq.(29) becomes

T (n/n,)2=1+ ‘/éq,(n* /n similar to the one by Klimenké? and several other approxi-
with mations of Gaussian-type mentioned in Ref. 25 also follow
from Eq.(29) after linearization oz(n) and specification of

W(y)=1-3y"*+ /By —9y?32. the tim?a (sca)les. " P

The assumption about a possibility of nonlinear gener-  Applicability of Eq. (29) away fromn, is less obvious,
alization of size in the TY expression, most likely is justified although a similar time dependentsith a rather different
for the flux (but not for the distributio)) as will be described dependence on sizevas recently suggested by Maksimov
below. However, an attempt to evalu@én) without match- et al® The dependence is Gaussian in terms of the nonlinear
ing the asymptotes lead to E@8), which does not describe functionz(n). The width of the maximum unboundedly in-
correctly the region of large sizes. Indeed, the timédag creases with time, wher(t) tends to 1. In terms of the

i — 7 IN(AB physical variablen, however, the structure of the solution is

L(m=7In(AB(n)) very different due to an exponential dependencez(f).
increases logarithmically with asn—o. This can be true, After a short initial period, the flux is practically steady state
however, only for a strictly linear growtft. For other mod-  for all n smaller than somag(t)—a front which propagates
els, including the standard Zeldovich—Frenkel equation, thevith the growth rate. Ah>ng(t) the flux decays with size
time-lag should increase with size as a power #8imi-  extremely rapidly(with a “double-exponential” rate—see
larly, the “asymptotic catastrophe” of the erfc-approximation below). Location of the front, approximately, is given by the
for the distribution function remains, and one of the goals ofsolution of the equationt= 7In{2z(ng)|z(0)[}=t;(ng). The
the present work is to overcome this problem. width of the front is of the order ofng.
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The double-exponential limit, which describes the afore-Using Egs.(13) and (29) for the steady state and transient
mentioned front, is recovered from E@9) in the growth  fluxes, respectively, one obtains after integration
region, albeit in a less straightforward manner. For small
times,t=<r, the limit of Eq. (29—see below—is different

from Eq.(15). However, forW, >T, the flux at such times is f(n,t)= EN(n*)exp[zz(n)] z(n.)A erfc|a(t)z(n)
anyway exceptionally close zero due to large valugg(d)| 2 7n
andz(n) [or, equivalently, due to largg(n)/r in the double- _ \/mz(O)}. 37)

exponential expressidn Flux becomes nonzero at larger
times with t~ 7In(|z(0)|z(n)). Here the functiona(t) ap-
proaches 1, but the small differenaét) — 1 is multiplied by Introducing p(n)=z(n)A/mh and q(n)=N(n,)
a large factor containingz(0)| andz(n). This leads to an XexgZ(n)}/N(n), one notes that for any nucleation model
intermediate asymptote with the leading dependencies oA(n), q(n)=1 near the critical size. For a strictly linear
time and size combined in a dependence on a single parargtowth and a parabolic barrier these approximations are ex-
eterx, as in Eq(15). The dominant dependence grand the ~ act at any size. Thus, witi(n), z(0) replaced, respectively,
corrections, become explicit if Eq29) is cast in mixed no- by z,(n) andz;,(0), Eq.(37) becomes identical to the one
tations as by TY. Similarly, restricting Eq.(37) to the vicinity of n,
wherez(n)=z;,(n) and where the above equalities foand

i(nt)/je= exp[ e X— le—ZX(Lﬁ Lz +1n a(t) g are approximately valid, one recovers at larger times the
4 z(0)*  z(n) functional form of the near-critical distribution by

1 1 1 Klimenko?? and several other erfc-type approximations
eX+—e2X( 2+—2) J

4 z(0)  z(n)

—(a?(t)—1) mentioned in Ref. 25 also can be reproduced with appropri-
ate specifications.

(39 The major novelty of the result is associated with the
region away fromn, wherep(n), q(n)#1 and where the
erfc function acquires a size-dependent prefactor which is
exponentially large and which qualitatively changes the
structure of the distribution. As will be shown below, with
the new prefactor a proper drift-type structure of the distri-
bution, Eq.(18) is recovered in this region, after a short
'gﬂtial transient period. In particular, there is now no
"fasymptotic catastrophe” in the steady-state limit. For

—o, Eq.(37) takes the form

For finite (nonasymptotit values ofx with «?(t)—1
~1/(z(0)z(n))?, corrections to the double-exponential limit
are asymptotically small; the largest one is given by
e~ ?¥/4z(0)2. [Strictly speaking, when considering finite
the value ¢?(t)—1 should be replaced by its asymptote
exp(—2t/7) while the exponential with corrections should be
expanded, but it is tempting to keep the form which ensure
an exact zero at=0.]

Consider now the limit of Eq(29) for t<7 with a(t)
~1/\2t/7>1. Neglecting 1 compared ?(t) in Egs.(29)
and(30) one obtains

~ (z(n)—2(0))?

1

J”S‘mexp{ ot 7 J

o o o o This converges either to the Zeldovich limit, Ed.2) near
This is a diffusionlike behavior, in qualitative agreementn* , or goes asymptotically to E¢14) in the growth region
with the early suggestion by Zeldovitffa similarity also with z(n)> 1. For these reasons, E@8) can be numerically
noted by Maksimo®). _The.exponential size dependence' of close to the exact distribution at all sizes—see Fig. 1.
z(n)—see Sec. V—is different, however, from earlier  an jmportant simplification of the general time-
power-law expectations. No specific role is played by thejependent expression is possible if one notes that the argu-
critical size at such small times. ment of the exponential function can be large not only for

A note of caution on this limit should be added. Al- |5rge z(n) in the growth region, but also for a large product
though Eq.(35) correctly predictg =0 att=0, it still should \/Ez—_1|z(0)| for arbitrary z(n) (i.e., for not too large
be treated as a small-time interpolatitsee the Discussion times. In this case one has a generalization of E),
section rather than a strict result. In particular, the solution

of the Becker—Ddng equation in the limit—0 has a struc-

1 ) z(n)A
fo(n)= EN(n* yexd ze(n)] erfc{z(n)}. (38

7n

(39

ture which is different from Eq35), as described in Appen- j(n,t) 1
dix B. f(n,t)~— . (39
N a(t)+Va?—1]z(0)|/z(n)
IV. THE DISTRIBUTION FUNCTION AND THE T'he distribution i§ smaller than predicted by the drift expres-
NUMBER OF NUCLEI sion due to the diffusion component of the flux. In particular,
atn>n, with z(n)>|z(0)| one has
From the continuity equation one has
t o 9j(n,t") j(n,t)
f(n,t =—f dt' ————. 36 ~—
(n,t) . on (36) f(n,t) MOLE (40)
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which, together with Eq(29) for the flux, determines the

distribution at any time. It is interesting to note that the drift-

type distribution which corresponds te(t)=1 in Eq. (40),

is observed early, dt&= 7, well before the double-exponential

limit of Eq. (15) is established at~ 7 In(|z(0)|z(n))> .
Equation(39) is also valid nean, , although for a lim-

ited time. Atn=n,, the singularity ofn— 0 disappears since

z(n) also tends to zero, and one has

j*(t)T
A

1
Ja2(H)—1|z(0)|

with j, (t) given by Eq.(27). Indicating the restrictions on

7 *
= _
~2|I”I T

fo(t)= (41
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z[r]

FIG. 3. The nonlinear parametg(r), Eq.(47), for the standard Zeldovich—

time is necessary since the above expression has no stead?yenkel (ZF) equation(solid line), and alternative approximations. Short-

state limit.[Nonrigorously, adding a small constant# to
the denominator could validate E¢1) at t—o without
much effect on transient behavipr.

Returning to the general distribution, EGR7) one can
evaluate the number of particles with size exceeding

p(ﬂ,t)=f:dﬂ’ f(n',t). (42

dashed linesz;,(r); dotted line, parametdé(r) by Maksimovet al. Long-
dashed linez(r) for diffusion-limited growth, Eq(51). All parameters are
multiplied by €, , see the text.

parameterB(r) by Maksimov et al?® (dotted lind. The

short-dashed line correspondszg by TY (z;, looks non-
linear sincer, notn is used as a variableAll of these func-

Performing the integration with asymptotic accuracy one obdtions are multiplied bye, , so that there are no free param-

tains
p(n, )~ rjsexd — (a?(t)—1)(z(0)*+2z(n)?)]

XE[p(n,t)(1+V1-1/a?(1)|2(0)|/z(n))]

(43
with the function¢(n,t) defined in Eq(30). Note that there
is no singularity an=n, since¢(n,t) crosses zero together
with z(n).

In the growth region fot= 7In(|z(0)|z(n)), ¢(n,t) takes
the asymptotic form oé™*; in other parts of the expression
a(t) can be replaced by 1, leading to E@6). The time-lag

tL(n)=lim{t—p(n,t)/js} (44)

t—o

remains unchanged, and is given by ELj).

V. SPECIFICATION OF THE MODELS

A. The standard Zeldovich—Frenkel  (ZF) equation

eters, which simplifies the comparison.

In the vicinity of r, =1 the functionsz,;,(r) and z(r)
coincide with each other; the difference is cubiainl. As
a result, one has

Zin(0)=Zz*F(0)exp(1—1In 3)~0.906°7(0)

which is close taz?F(0). Thus the TY expressions will pro-
vide good numerical approximations for the transient distri-
bution and flux near, . At larger sizes, however there is a
strong deviation between a power-lay,(r) and exponen-
tial z?7(r), and the TY expression is inapplicable even for
the flux; error in the distribution is still larger due to the
prefactor of the erfc-expression, and does not vanish as
— 00,

Maksimov's expression foB(r) is close to the correct
values ofzZ"(r) nearr =1, although not as close ag, since
the difference inB(r) —z?7(r) is quadratic(not cubig in r
—1. At largerr, Maksimov’s expression exponentially devi-
ates fromz?H(r).

The standard ZF equation corresponds to surface-limited

nucleation with a gain coefficient

Bn=B(n,)(n/n)?,  B(n,)=A%27 (45)
and with the growth ratdin terms of radiir=(n/n,)*?]
given by Eq.(2) with #=0. The incubation time is given
by**

t2(ry=r{r—2+In(r—1)+In(6W, /T)}. (46)
The nonlinear functioz(n) is obtained by integration of Eq.
(24)

r—1

“F(r)= . expr—1), €=
r

3n, <1 (47
(e,=Adr/dn at n=n, is the width of the barrier in the
spacé. This is consistent with Eq$25) and (46).

In Fig. 3 zZ(r) (solid line) is shown together with the

B. The Becker—Do ring (BD) and Turnbull-Fisher (TF)

models

The BD and TF models are the two major discrete mod-
els for surface-limited nucleation. In the BD case the gain
coefficient is the same as in E@J5), while in the TF case it
is multiplied by exg[W(n)—W(n+1)])/2T}.

The growth rates for these models are known—see, e.g.,
Ref. 37 for growth in the Turnbull-Fisher model, or Refs. 33
for a general survey. One has

iBP=1/ar {1-exda(lr—1)]}

i"F=2/ar {sinf (a/2)(1—1/r)]}
with

a=2W, /Tn, =6ulT

(48)
(49
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being the “discreteness parameter” which is responsible fothe mainstream models, including the standard Zeldovich—
deviations of Eqs(48) and (49) from Eq. (2); du is the  Frenkel equationz(n) evaluates to elementary functions
difference of chemical potentials between phases. (Sec. V.

For both models the integrdldr/ cannot be evaluated In the obtained expression time can be arbitrary; sizes of
in elementary functions and, strictly speaking, the value ohuclei span near- and over-critical regions. There is no upper
z(n) is to be evaluated numerically. In practice, however,bounds for time or sizes as long as the original Becker—
even for not very smakh, deviation from the ZF growth rate Doring formulation which neglects the depletion of mono-
is not that large and for moderate sizes the elementary exners by nucleation and growth is considered.
pression forz“(r), Eq. (47), can work. In the simpler Simplifications achieved by using tizevariables can be
double-exponential limit, accuracy of the elementary predicexplained as follows. One can show that in these variables
tions in case of the TF model was verified numerically bythe Zeldovich—Frenkel equation becomes asymptotically
Spinellaet al* close to the exactly solvable Ornstein—UhlenbgekU)

For larger>1 one has to account for a different limiting equation not only in the vicinity ofi, , but in the decay and
growth ratesi,, in the discrete models compared i§~  growth regions as well. In the Becker~fxg case two dif-
=1/7 (otherwise even a minor discrepancy will store un-ferent continuous approximations are required for the

boundedly as —<). One could use subcritical region(smooth functionv=f,/N,, the ratio of
r—1 kinetic to equilibrium distributionand for the growth region
z(r)= exp(r/7,—1) (50 (smooth f,). Nevertheless, iz variables each of the two

€ differential representations approach a corresponding form of

which is similar to corrections suggested for the incubatiorthe OU equation. It is not surprising that results are Gaussian
time 38 Numerical accuracy of such correctionstfavas ex-  in terms of the variable, which is typical for the OU case.
amined recently by Granasy and Jarft®ne should keep in Most of relevant earlier expressions are reproduced by
mind, however, that Eq50) is accurate only in its leading the obtained results in appropriate limits. For example, the
exponential term and a more detailed study of the limit double-exponential matched asymptatitA ) solution®?%is
—oo will be presented elsewhete. recovered in the growth region fo®& 7 [where 7 is defined
in Eq. (6)]. Similarly, the Trinkaus and Yo6TY)*® expres-
sions for the distribution and the flux are obtained for a linear

C. Diffusion-limited nucleation and growth z(n)=z;,(n) and a parabolic nucleation barrier. Kaschiev's

Integration of Eqs(2) and (24) with #=1 gives results, however, are not reproduced in any limit since he, in
r—1 effect, was solving a diffusion rather than a nucleation equa-
Z9f(ry= . exp(r?/2+r—3/2}. (51)  tion.
r

The main applied value of the proposed distribution is
Together with Eq(25) this is consistent with the incubation associated with spanning of the regions of sizes since previ-
time obtained earliét ous expressions worked either near the critical §izg., the
TY resultg® or in the growth region(e.g., the MA
_ solution®?Y. The domain of small times covered by the
T present results seems to be of less practical significance, al-
(52 though it allows one to trace the establishment of the double-
The values ofe, z%"(r) are shown in Fig. 3 by a long- exponential regime starting from=0, and to estimate the
dashed line. Due to slower growt®f(r) increases with corrections.
size much faster than its counterpart for surface-limited The limit t—0 requires a separate consideration. The
nucleation, Eq.(47). Larger values ofz(r) imply weaker obtained expressions for the flux, distribution, etc., produce
small-time transient effects, before the double-exponentiahn exact zero at=0, which could be considered as an ad-
regime is established. vantage compared to the double-exponential MA solution
In the growth region with large(r) transient distribu- where this zero is asymptotic. Nevertheless, the present re-
tions (37) and (51) would be numerically indistinguishable sults should be treated as an interpolation. In contrast to the
from those obtained from the double-exponential solutionMA solution the asymptotic structure of which is well under-
which were shown in Fig. 2. The difference, neverthelessstood, it is unclear if Eq929) and(37) are unique, or if it is

1 i 2 W,
—t(N)=(r=1)%2+2(r=1)=3/2+In(r=1)+In

can become important neay, . possible to construct an alternative approximation which
bridges the instant=0 and the double-exponential limit at
later times.

VI. DISCUSSION . . .
The reason for the uncertainty is that the MA ideas are

In the present work a general expressions for the distristraightforward ifW, /T is theonly large asymptotic param-
bution of nuclei, Eq.(37) was proposed. Relevant expres- eter of the problem. Other parameters also can be large, but
sions for the flux and the number of nuclei also can be othey are either directly linked to the barri@s the parameter
interest. “Generality” implies applicability to arbitrary n, /A), or these parameters are expected to form finite, non-
nucleation model after the nonlinear function of sz£@) in  asymptotic combinations with the barrier. This is best exem-
Eq. (24) (which depends exclusively on the deterministic plified by the parametex, Eq. (15), which is a combination
growth ratg is calculated. It is helpful that for the some of of the logarithm of the barrier and possibly large time and
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size, but which is finite and which is the only argument of (the last exponential factor was accidentally omitted in Ref.
the asymptotic solution. When time gets small, however23; otherwise the reader is referred to that paper for technical
there appears a competing large functier(t). Analysis detail of the derivation
suggests that time in the nucleation problem has a complex Inversion of the Laplace transform does not affect the
multizone boundary layer structure nearO with each zone mrindependent terndv (w,0)/dw. If the inverse of the re-
requiring a different approximation. Getting a single expres-smaining part of Eq(A2) is labeled assj(n,w,t), the total
sion which would be reasonable on every scale of time irflux will be expressed as
this situation becomes almost a matter of luck. In particular,

: : . . ) n do(w,0)
higher-order terms in the expansion of the solution can be ](n’t):j dw
anticipated. Such terms appear, for example, in the Laplace dw
transform of the near-critical flul¢® although a full tran-
sient expression is yet unavailafife.

5j(n,w,t). (A3)

The functiondj(n,w,t), which is related to a Green'’s func-

: . ) tion, will determine the partial contribution to the flux at size
To emphasize the problem, in Apperds a small-ime 4t timet from the initial distribution near sizer.

solution to the Becker—Ding (BD) equation has been con- In order to obtainsj(n,w,t), one can expres§ (m

structed without the assumption of a high nucleation barrier.,. 1) in Eq. (A2) through a product of (m/2) andT'(m/2
This solution satisfies the initial conditions, but its structure 1/2) 34 Each of the resulting gamma functions is further

is very different from the small-time limit of Eq37). I compined with one of the erfc functions, and kndfvex-
fact, it is unlikely that any differential approximation to the pressions are used to invert
BD equation can produce a time-dependent solution of type
(B3), which could be an important reminder in view of the ~ I'(m/2+v)i™ ! erfe(2)
search for “the best” differential version of the nucleation ¢, ,— o and»=1/2. The convolution theorem leads to
equationt~1°

However, with all the intriguing mathematics of the BD o2 _— t g 3
equations at very small times, which still requires cIarifica-5J(”1W!t)/ls:\/_—eXFJ(21+Zz)22JOd e “a(t—u)a’(u)
tion, for most physical problems the regios 7 is often of m
no practical interest since at such times the flux is anyway X exp{— Z2a?(t—u)— z5a?(u)}, (A4)
indistinguishable from zerdwhether this zero is treated as .
an exact or as an asymptotic gn®bservable results, such wherez, andz, stand forz(n) andz(w), respectively, and

as the time-lag of transient nucleation, remain unchanged. \‘;;:i)aésledefmed in Eq.(21). Introducing a new integration

APPENDIX A: INVERSION OF THE LAPLACE y=2,\a?(u)—a?(t)

TRANSFORM FOR THE FLUX one can cast EqA4) as

In the inner region nean, the Laplace transform of the
nucleation equatiofwritten in terms of the reduced distribu- Sj(n,w,t)/] :2a(t) exp{—(az(t)— 1)(22+22)}
tion v=f,/N,) is solved by a repeated error integral s 12
iMerfc(@z;,).° Herem=pr, with p being the Laplace index
(in the remaining part of this section time will be measured > fxdyexp[ _ %_yz] (A5)
in the units ofr, so thatm andp will not be distinguishef 0 y
The functioni ™ erfc is defined &% .

with

Mexp—x2)dx (A1) Q=zz5a’(t)[ a*(t) — 1].

2 fw
| x=2
VAl (m+1) Jz The integral evaluates tqw/2 exp(-2\Q). This gives an
with a power-law and exponential asymptotes fes +=,  asymptotic expression for §j(n,w,t). With v (w,0)
respectively. Inversion of the asymptote of the inner solution=0 (n,,—w) one returns to conventional transient nucle-
into the growth region allows one to find the correspondingation (no pre-existing nuclgj obtaining Eq.(29) in the text.
distribution and the flux, Eq.15—see Appendix of Ref. 19
for detail.

A more general Laplace transform was suggested in Ret&PPENDIX B: THE BECKER—DG RING EOUATION AT
23 in connection with pre-existing nuclei. ,(0) is the ' a Q

iMerfa(z) =

initial distribution, and v(n,0)=f.(0)/N,, one has the “VA Ltk TIMES
transform of the flux The classical master equation of the nucleation problem
- has the form
Jn,p)=—j—T(m+1)2M™ Lerfd z(n o .
(n.p) Js4p ( ) dzn] Ifnlat=jn=inr1, In=Bn-1fn-1—anfy (BY)

n  do(w,0) 5 I with the loss coefficienty,= 8,_1N,_1/N, determined by
X Jo dw dw exd z%(w)Ji detailed balance. At very small times one can consider only
gain; losses can be neglected due to conditign,;<f,
x erfd —z(w)]exg z2(n)] (A2)  <N,. This gives
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of,
Ewﬂnflfnfl (B2
or, with n,;,=1 andf,=const,
1
fn+1:mf1,31B2"',3ntn+ o(t"*h). (B3)

The critical size(which is due to competition of gain and the
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