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Asymptotic relations between time-lag and higher moments of transient
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Exact relations between, , thekth temporal moments of the nucleation flux, and the derivative of

its Laplace transforniLT) are established and applied to available asymptotic expressions for the
LT, generalizing earlier results by Shneidman and Weinlhér@Chem. Phys95, 9148(1991); 97,

3629 (1992] on the time-lagT,. For anyk=2 the momentsT, are expressed through simple
algebraic combinations dfy andT;. The two lower moments can thus be used to parametrize the
time-dependent flux, with parametrization being substantially different from earlier, nonasymptotic
approximations. The leading asymptotic dependences are expected to be applicable to both discrete
and continuous versions of the nucleation equation, and to arbitrary sizes in the growth region.
Higher-order corrections at the critical size are also obtained.20803 American Institute of
Physics. [DOI: 10.1063/1.1627327

The effects of transient nucleation are important experitransient nucleation. However, although several comparisons
mentally in systems with long internal relaxation times, as inbetween numerical and asymptdfic¢®18-2° or between
crystallization of glass-forming meftd or amorphous asymptotic and exact resuits® are available, in practice
silicon? or in systems which can be controlled by a very such comparisons are often complicated by a variety of mod-
rapid change of external parameters, as in condensation efs and parameters discussed. Therefore, outside of the afore-
electron—hole liquid. Compared to more conventional, mentioned publications, the status of the asymptotic solution
steady-state description of nucleation, transient effects ar@specially in connection with discrete nucleation models of
much more sensitive to the detail of kinetics in a specificBecker—Daing or Turnbull-Fishet®) or its relations to the
system. Understanding of such effects and improvement afxact expressions remain mostly unknot®n.
mathematical methods of their description will potentially The common point for all three directions could be ze-
enhance control over microstructural properties of new maroth moment of the flux, the so-called time-l&g (defined in
terials. the following which, on the one hand, can be determined

In theoretical work on transient nucleation in classical-exactly and, on the other, differs by just a constant from the
type models® one can indicate three major directions. Theincubation time in the asymptotic solutiéhConvergence of
first is related to direct numerical solution of the nucleationexact and asymptotic expressions Tgrhad been established
master equation with parameters appropriate for the aforgor both continuou¥' and discret® nucleation models. In
mentioned experimenfs’® The advantage of such ap- addition, experimentally the time-lag is the primary feature
proaches is their potential straightforward generalization tf transient nucleation, and as a rule is reported in numerical
more realisticland more complexexperimental scheduls. studies.

The second direction is based on the possibility to obtain  The exact solubility is also a distinct feature of higher
exact values of the temporal moments of the transienttemporal moments—see, e.g., Ref. 13 and references therein.
flux*°~** (which is a big help; otherwise the time-dependentat the same time, except fdf,, 1+ 5the asymptotic structure
nucleation master equation cannot be solved exacllie  of the available complicated exact expressions is not known
third direction is based on the asymptotic solution of the(for which reason, such expressions are sometimes called
nucleation equation in the limit of a high nucleation formally exact, and it is usually not possible to predict their
barrier’®*’ The transient shape is given by an elementanhehavior in various domains of parameters, or when switch-
function—see the following—which is insensitive to the par-ing to another nucleation model. The major goal of this study
ticular nucleation model employed. Model dependence igy|l thus be to establish an efficient way of generating higher
contained in the “incubation time” defined in terms of & moments using as a starting point the asymptotic transient
“deterministic growth rate,” approximately, the difference of ¢g|ution and the time-lagT,. In a general form, relations
the gain and loss coefficients in the master equation. Thigetween moments are insensitive either to the nucleation
helps one understand the relation between various nucleatiqiode| selected or to one of the primary controlling param-
models and strengthens connection with experiments wheigers the sizan at which the moments are evaluated. The
growth rates can be measured. Ideally, all three directiong,qre accuratéalso more model- and parameter-spetiie-
should be cross-tested, leading to a comprehensive picture gt expressions can be potentially used to verify the more

robust asymptotic dependences, either confirming the entire
dElectronic mail: vitaly@oak.njit.edu approach, or establishing its limitations, in any case narrow-
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ing the existing gap between exact and asymptotic studies. reducled flux

The kth temporal moment is defined as
0.8
Tk(n)=JO t{[1—j(n,t)/js]dt () I Y A S A
with j(n,t) being the transient flux at a given sineandj R ity by by el
being itsn-independent, steady-state valile what follows 0.2
the n dependence will not be indicated, unless confusion can reduced time
occup. As mentioned, exact relations can be obtainedrigr 2 4 6 8 10 12 =%

althO,UQh fork=1 they are e.xpressed in terms of SIOW|y con- FIG. 1. Typical transient curveggn,t)/js as a function of reduced tintér.
verging repeated sums which are rather hard to evaluate agor each of the curvegrom left to right the dimensionless “radiust
ymptotically. =(n/n, ) is taken, respectively, as=2, 3, 4, and 5, and in all cases the
An alternative approach is to avoid the exact expressiongimEhSiome.SS barria, /T is 30. 'I_'he points of inters_ection Y\Iith the lower
for T, but use the asymptotic solution fcjl(n,t). The line, j(n,t)/js=1/e~0.37 determine the reduced incubation timér,

. S . . while intersections with the upper line, éxpexp(—7)]~0.57 coincide with
reader is referred to the orlglnal pab‘?efor technical detail the reduced time-ladl, /7. Shifting each of the curves by a corresponding

of the derivations, but briefly, the major steps involved canincubation time would bring them to single curve given by E2).

be described as follows. The large parameter of the problem

is the dimensionless nucleation barrif, /T (Boltzmann ) .
constant is taken as onand the general method of solution IS much larger tham, the two types of zeroes are impossible
is known as matched asymptotic expansions. The domain dP distinguish due to the rapid decay ¢{x) at negativex
sizesn is divided in three regions, the near-critical region [&-9- for 7t£1e curves in Fig. Gloothe values j¢h,0)/j range
characterized by a small width~n, /\W, /T, the subcriti-  from 10" to less than 10 9. An interpolation which
cal regionn, —n>A, and the growth regiom—n,>A. _adjusts Eq(2) to an exact zero at=0 has been constructed
Under rather relaxed assumptions about the smoothness ¥ Ref. 23, but the more complex dependence does not
the coefficients of the master equation, solutions can be corinedify the time-lag(and, most likely, will not modify the
structed in each of the aforementioned regions, and thoddgher moments and will not be used in the present study.
solutions can be matched asymptotically, giving the distribu- ~ EXperimentally, one USU"’}"_V measures the n_um?;ar of
tion and flux for arbitraryn in the growth region, which is of larger-thana  nuclei, p(t)=Joj(n,t")dt’=7jsE,(e7),"

the main experimental interestAn important intermediate  With Ex being the first exponential integréiThe time-lag is
step is switching to the Laplace transfoftT). This simpli- ~ then obtained from the large-time asymptotepgt)=j(t

fies applications of the asymptotic method but also estab= To) for larget. One has

lishes strong similarities of transient nucleation with other % do

nucleation problems. For example, the LT equation is similar ~ To= Tf (x+1ti/7) g dx Q)

to the equation which appears for nucleation with a time- o

dependent barriéf, and can be solved using the same ap-with d¢/dx=exp{—x—exp(—x)}. This evaluates tdl,=t;
proach. Or, the solution for the LT can be directly applied to+ y7*” with y=0.5772... being the Euler constant. Note that
nucleation of particles with finite lifetime@n the presence integration inx must be extended te o within the accuracy

of an aerosol?! without repeating the elaborate intermediateof the asymptotic treatment. In principle, replacing the factor
steps of the matched asymptotic analysis. Connection bex+t;/7) in Eq.(3) by 7%(x+t;/7)**%/(k+ 1) would give a
tween the LT of the transient flux and the time-lag was esgeneral asymptotic expressions for the higher moments. For
tablished in Ref. 22, and in the following it will be shown actual calculations, however, it is more straightforward to
that higher moments can be efficiently generated once the LTise the LT from which Eq(2) was derived?®

is known. Near the critical sizen, , the LT of the flux is expressed
The transient solution in the growth region is givenin terms of a special function, the repeated error integral.
by j(n,t)/js= ¢ with However, extending the asymptote of LT into the growth

region (very similarly to what was done in Ref. 16 for the
() =exg{—exp(—x)}, x=[t=ti(n)]/7 @ distribution function, and matching that asymptote with the

and is illustrated in Fig. 1 for different sizes Heret; is the ~ growth asymptote, leads to an elementary expression for the

“incubation time” with size-dependence determined by a se-LT at any sizen>n, . Using the aforementioned relation

lected nucleation model, while is a constant “relaxation betweent; andT,, one has

time” defined asr~'=dv(n)/dn atn=n, , with »(n) being 1

the deterministic growth rate. Explicit expressions for J(n,p)=j—ePT[pr+1llexd —pTol, (4

(Ref. 19 will not be required, although it could be useful to P

indicate thatt; is logarithmically large compared towhen  wherep is the Laplace index anH is the gamma function.

the barrier is large, and that further increases witm into The relation betweef, and the LT follows from the
the growth region(an elementary expression for in the  definition (1),

Zeldovich—Frenkel model is used in Fig. 1, and will be pre- a\<1 I(p)

sented later in the papeote that att=0 Eq.(2) has an Te=(—1)¥lim (_) (__ _p ) (5)
asymptotic, rather than an exact zero, although as lortg as p—-0 P/ AP s
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TABLE I. Dimensionless truncated moments evaluated from (Bg). The full momentsT, can be recon-
structed using Eq(A3). The value ofx, evaluates to 12.8865, and for largepnly numerical or asymptotic
values are shown.

k 0 1 2 3 4 5 6 7 k—oo
@ 2 37t 2 24 _
X 0 Lz > Z.2 = 67.8122  402.162 2828.83 kle™”
k A 3{(3) 80 37 {(3)+ 5 {(5)

equation(5) is exact, and generalizes the one obtained for  To facilitate comparison, one can introduce temporarily
k=0 in Ref. 22. In other words, temporal moments area dimensionless timé=t/T,, and a dimensionless param-
linked to coefficients of the Laurent series expansion of tthterq=2T1/T(2). One ha¥

LT,

- In(t\/q)
k+1 -1-=
‘](jp)=%—TO+T1p+«--+%Tkpk+-~. ® Pwu(t) =1 2en‘c{ ml )
) ) Compare this with expected E(R) with
If one further uses the asymptotic E¢g) for the LT, one
obtains explicitly the higher moments. The derivative of T -1
I'(pr+1) atp=0 in Eq. (5) can be expressed through the X= % \/—TlJ“ Y (10
Riemann zeta-function;(m),?* and the latter can be evalu- d
ated explicitly(as a power ofr) for an even argument. Sev- The parameteq depends primarily on the nucleation
eral first moments are shown in the following: barrier and on the siza where the flux is evaluated, ap-
i - proaching 1 forn>n, . (For example, for transient curves
Ty =Tol2+ w7712, shown in Fig. 1q changes between, approximately, 1.07 and

1.0). Wu performed an empirical analysis of transient
curves obtained numerically from the Turnbull-Fisher nucle-
T3=Tg/4+ m2r2T5/4+2{(3) 7°To+ 3m* 74180, ation model, and suggested to use the “lognormal” shighe
as the best fit. It was claimed that the double-exponential
etc. Numerical values are to be used for the zeta-function of‘weibull” ) fit was substantially less accurate, although the
an odd argument, one has, e.g(3)=1.2020569... in the exact parametrization for that fit was not reported, and it is
above. An efficient method for generating such relations fohot quite clear whether it was tested onlyratn, , or also
largerk is to expressT through “truncated moments” ob- in the growth regiom=2n, andn=3n, of Fig. 1213[Here
tained fromp~'eP"T'[pr+ 1], the size-independent part of the asymptotic results are expected to be the most accurate,
the LT—see Table | and Appendix A. Note the structure ofand Eq.(2) should work even with calculated, not fitted
the leading termT,~T¢"/(k+1), and the absence of the and7]. A crude estimation indicates that Wu's valuesydh
next power,7T§ (which is due to the absence of the linear the growth region, approximately, fall between 1.1 and 1.2.
term in the smalp expansion oe?™T'[p7+1]). Since one |n this domain Eqs(2), (10), and(9) are remarkably close,
expectsTy> 7, the leading term provides a rather accurateand the corresponding curves would practically blend with
approximation for the higher momerlt, and only in expres-gach other if plotted, e.g., the differendéx) — dy,(1) does
sions which contain alifference -E_TOH./(kJrl) (see the |\ exceed 102 for anyt, and for values ofj near 1.13 the
following) corrections in Eq(7) become important. maximum difference is closer t0>210 3(!). Thus, if nu-

The value ofr thus corresponds to merics of Ref. 13 in the growth region confirm E), most
\/g likely they also do so for Eqg2) and(10). This could mean
= 2T,— T3, (8)  an important improvement in the status of the matched
asymptotic solution, especially in connection with more
which means that all higher moments wkk=2 can be ex- elaborate, discrete nucleation models. At the same time, Egs.
pressed througfiy andT; . It is important to emphasize that (9) and (2), (10) are obviously different analytically, and a
this prediction is asymptotic, i.e., whilke is arbitrary, it is  remaining pertinent issue is to determine which of them is
expected to be finite, not competing with the mainmore adequate for the nucleation problem.
asymptotic parameter, which is the barrign other words, The difference between the two transient curves should
with the increase of the barrier—and most likely with the be detectable in dedicated numerical studies, but this can be
increase of size—equations of typ® can be written for a a challenging task for a single set of dé&ad for largeiq the
largerk]. asymptotic solution can require higher-order corrections, as
If indeed all moments can be expressed throligland illustrated in Appendix B. More likely, one needs to con-
T,, then the entire transient curve can be parametrized usingjder the tendencies of such curves when the sizis
these two moments. This is consistent with the suggestion bghanged. In terms of the physical timethe asymptotic ex-
Wu,? although the actual shape of the transient curve ipression predicts that all transient curves will have identical
rather different. shapes in the growth region, each being shifted by a time-

To=T33+ m272Tl6+2¢(3) 713, @
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independent constant, as in Fig. 1. On the other hand, theot of the barrier'® in practice not a very large numbesee
shape of lognormal curves will change with size, albeit mod-Appendix B).

estly. A related feature is the values of the flux=atT, (i.e., Finally, the growth-region results are also valid if the
for T=1). One has here from Eq¢2) and (10), ¢=exp Mmoments are introduced for the distribution rather than for
[—exp(—)]~0.577 for any size, the upper dashed line in thg flux in Eq.(2)."3 queed, in that region one hdg(n)

Fig. 1. Equation(9), on the other hand, gives a value of =Is/v(n) andf(n,t)=j(n,t)/»(n) for the steady-state and
Swi(1) which depends og, approaching the above value of transient distributions, _res_pec_tlvely, which makes the _tempo-
0.57 only forq close to 1.14, and going to the limit of 1/2 for ral moments for the distributions asymptotically equivalent
g— 1. (In that limit the lognormal dependence is close to 1 thsot?iitlci/egg::kfiggt?r?czlrl:j);?st.o estimats the accuracy of the
— J— + — . H

cu(ryezs) Zrlt/({e(r): rz):sgtivefg b)l/)lé?:](;),l?lgr?)?tlézi (g;fa Ct;/\r/]o obtained. formulas_ one _requires further terms in th_e
be clearly distinguished foq smaller than 1.02 if both are asymptotic expansions. This is a rather elaborate task, which

plotted as functions ok against properly scaled numerical is also model-specific and will require an additional study.
data, or if plotted as functions of the physical timeas in Preliminary analysis indicates that higher-order corrections

) i ~ . to the LT in Eq.(4) are proportional to\(V, /T) ~* multiplied
Fig. 1 (as functions of the two curves will resemble nearly 1, 3 model-dependent decaying function of size. With a
identical steplike functions Small q correspond to rather | cleation barrier of 20—40 such corrections typically

large n, which nevertheless can be achieved numerically agmount to a few percent at twice the critical radius, and are
shown by Granasy and JanfeSor smallq the functiongin - smaller at larger. Within an “experimental level of accu-
Egs.(2) and(10) decays much faster thapy, asx——~=,  yacy” this can be undetectable. Nevertheless, those correc-
and in this context one could note a minor overshoot of th&jons are worth taking notice of, since they potentially
|Ogn0rma| curve over simulation data for= 3n* at small m0d|fy the structure of ECK?), addlng terms with the miss-
times;® which could become a systematic tendency at largefng second largest pow@¥, even if with a small coefficient.
sizes. Again, comparative numerical studies would be reThijs effect is also seefand is much stronger, of the order of
quired here for a definite conclusion. 1/\JW, /T) at the critical size, which can be examined in

For g not too close to 1, the lognormal shape should noimere detail since higher-order corrections to the LT are
be a bad assumption since it has an exact zero=&, a  availablé®>—see the Appendix B.
useful feature in the nonasymptotic case, and since many |n summary, general asymptotic relations between higher
functions are often well reconstructed by their two lower moments of the transient nucleation flux have been obtained.
moments(although the uniqueness of the approximation re-Since such moments, at least in principle, can be evaluated
mains an issue On the other hand, an advantage of E).  exactly, verification of the above-mentioned relations would
is that it follows from a consistent asymptotic analysis andstrengthen the links between the exact and the asymptotic
thus is expected to become accurate in the limit of a largereatments with mutual benefits. Alternatively, verification
barrier and for large, i.e., forg— 1. More importantly, this  could be possible from numerical solutions of the nucleation
equation is accompanied by simple, in some cases elemerguations with the moments evaluated via direct integration,
tary asymptotic expressions for the momehgandT,. For  as in Eq.(1). Specifically, it is expected that for a sufficiently
example, in the Zeldovich—Frenkel case used in Fig. 1, ondigh barrier and for any size in the growth region the
has!” To/7=In(6W, /kgT)+r—2+In(r—1)++v, with r indi-  following can be verified(a) the differencer, — T3/2 should
cating the dimensionless “radius,” and the size-dependenceemain constant, despite the fact that botrandT, strongly
of T, /7 (and of higher momentsalso is described in terms depend om, (b) the second two relations of E€7) [with 7
of elementary functions, as follows from E). evaluated from Eq(8)] should hold, with accuracy improv-

A few remarks on generality and limitations of the ob- ing with increasing barrier; similar relations should hold for
tained results. The exact E¢p) is of general validity, al- higher T, although, generally, larges will require a higher
though without an explicit expression for the LT of the flux it barrier(or larger siz¢in order for the expressions to become
remains formal. Equatioii7) or Egs.(2) and (10) are ex- accurate. A more stringent test could use the available
pected to be valid asymptoticalljor a high nucleation bar- asymptotic dependences f@g (which are sensitive to the
rier) in the growth region for classical-type nucleation nucleation model selecte@nd assess the accuracy of the
model€® of discrete(Becker—Daing, Turnbull-Fisherand predicted absolute values of higher moments, rather than the
continuous(Zeldovich—Frenkelforms. Specifics of a model relations between them.
enters through explicit size dependencd gf The latter can
be taken in the simpler, asymptotic form, although the exac(}ind
form is also an option, especially when comparing with Eq.
9).

Since the LT of the transient flux at the critical size iS APPENDIX A: THE TRUNCATED MOMENTS
given by the same Ed4) with rreplaced byr2?2 (and with N
a differentt¥), formally, asymptotic results should be also ~ One can introduce the “truncated moments$,’, which
valid at n=n, with such modification ofr. However, the are centered around,. Formally, they can be defined by
expected accuracy at, is lower since here higher-order replacingt® in Eq. (1) with (t—To)*. Compared to the full
corrections to the LT are inversely proportional to fupiare  momentsT,, the truncatedl, are expected to be indepen-

| am grateful to L.S. Bartell for useful correspondence
remarks on the manuscript.
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dent of sizen (providedn is located in the growth region When Eq.(B1) is substituted into Eq.5), the correction
and when reduced by, asymptotically should give a fixed to the time-lagT§ =t* + y7/2 is given by 6T% =275 7/3,
numberx,, the same for any nucleation model of classicalwhich is consistent with Ref. 15. Corrections to higher mo-

type>6 ments also follow:
Shifting time by T, is equivalent to multiplying the LT 2m
by exppTy). This indeed eliminates the size dependence 51—91«2_773[71-3_7.2(14” 2)],
from Eq. (4), and further reduction of the time bymakes 3
the remaining part of the LT dimensionless, J7 (B2
_ * Y~ *\2_ * _
J(s)=51eT[s+1] (A1) o1z =15 #718(Ts)"~16Te r(1-In2)
with s=p7. One has +2(m?-81In2(2—1n2))],
_(—1)‘”1|.m i kﬂsf](s) A2) etc. The leading terms in the above should be compared,
TR SLO Js respectively, withm?72/48, 0.8°, etc., the smallest terms in

. _ . . Eq. (7) with 7 replaced bys/2. EstimatingTg as 7In(1/8),
with the values ofx, given in Table I. Symbolic computa- one concludes that for a typical barrier of B@ith ~0.1,
tions can be helpful fok=3, but the large« approximation  the higher order corrections @ and T5 will have contri-

can provide sufficient accuracy starting already friom6. butions which are comparable with the smallest leading
The full momentSTk can be reconstructed USing the fol- terms’ and thus cannot be ignored_ In particu}ﬁf’i‘ will
lowing relations: affect the differencd} — (T%)?/2, and the transient curve.

ThH1 k1 K k—m In order to obtain the correction to the transient curve
Tk:ki—l+ pE) > (m+ 1)Cﬂ"jllxm(70) ,  (A3)  one needs to invert asymptotically the correction to the LT

m=1 given by Eq.(B1). This can be done via summation over

whereCy are the binomial coefficients. This coincides with residues of the gamma function located in the finite part of

Eq. (7) for k=1, 2, and 3. In principle, Eq(A3) can be the complexp plane, as in Ref. 16. One obtains

applied to anyk, but the asymptotic nature of the LT from R S S

which the numbeix, are derived should be kept in mind. 0P(X")=~5ze $X*) (B3)

Note thatx, rapidly increase witkk. Comparing the first and with x* = (t—t*)/(7/2).

the last terms in Eq(A3) for To> 7, and using the Stirling

formula fork!, one has the conditiok~eT,/7 when these

terms become of th_e same order._ For such and ldgau- _ 1p James, Phys. Chem. Glasd&s95 (1974,

tion must be exercised when using the above expressionsy. peubener, J. Non-Cryst. Soliag4 195 (2000.
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