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Asymptotic relations between time-lag and higher moments of transient
nucleation flux

Vitaly A. Shneidmana)

Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102

~Received 1 July 2003; accepted 25 September 2003!

Exact relations betweenTk , thekth temporal moments of the nucleation flux, and the derivative of
its Laplace transform~LT! are established and applied to available asymptotic expressions for the
LT, generalizing earlier results by Shneidman and Weinberg@J. Chem. Phys.95, 9148~1991!; 97,
3629 ~1992!# on the time-lagT0 . For anyk>2 the momentsTk are expressed through simple
algebraic combinations ofT0 andT1 . The two lower moments can thus be used to parametrize the
time-dependent flux, with parametrization being substantially different from earlier, nonasymptotic
approximations. The leading asymptotic dependences are expected to be applicable to both discrete
and continuous versions of the nucleation equation, and to arbitrary sizes in the growth region.
Higher-order corrections at the critical size are also obtained. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1627327#
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The effects of transient nucleation are important exp
mentally in systems with long internal relaxation times, as
crystallization of glass-forming melts1,2 or amorphous
silicon,3 or in systems which can be controlled by a ve
rapid change of external parameters, as in condensatio
electron–hole liquid.4 Compared to more conventiona
steady-state description of nucleation, transient effects
much more sensitive to the detail of kinetics in a spec
system. Understanding of such effects and improvemen
mathematical methods of their description will potentia
enhance control over microstructural properties of new m
terials.

In theoretical work on transient nucleation in classic
type models5,6 one can indicate three major directions. T
first is related to direct numerical solution of the nucleati
master equation with parameters appropriate for the af
mentioned experiments.3,7,8 The advantage of such ap
proaches is their potential straightforward generalization
more realistic~and more complex! experimental schedules9

The second direction is based on the possibility to obt
exact values of the temporal moments of the transie
flux10–15 ~which is a big help; otherwise the time-depende
nucleation master equation cannot be solved exactly!. The
third direction is based on the asymptotic solution of t
nucleation equation in the limit of a high nucleatio
barrier.16,17 The transient shape is given by an element
function—see the following—which is insensitive to the pa
ticular nucleation model employed. Model dependence
contained in the ‘‘incubation time’’ defined in terms of
‘‘deterministic growth rate,’’ approximately, the difference
the gain and loss coefficients in the master equation. T
helps one understand the relation between various nuclea
models and strengthens connection with experiments w
growth rates can be measured. Ideally, all three directi
should be cross-tested, leading to a comprehensive pictu

a!Electronic mail: vitaly@oak.njit.edu
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transient nucleation. However, although several comparis
between numerical and asymptotic3,8,16,18–20 or between
asymptotic and exact results14,15 are available, in practice
such comparisons are often complicated by a variety of m
els and parameters discussed. Therefore, outside of the a
mentioned publications, the status of the asymptotic solu
~especially in connection with discrete nucleation models
Becker–Do¨ring or Turnbull–Fisher5,6! or its relations to the
exact expressions remain mostly unknown.13

The common point for all three directions could be z
roth moment of the flux, the so-called time-lagT0 ~defined in
the following! which, on the one hand, can be determin
exactly and, on the other, differs by just a constant from
incubation time in the asymptotic solution.17 Convergence of
exact and asymptotic expressions forT0 had been establishe
for both continuous14 and discrete15 nucleation models. In
addition, experimentally the time-lag is the primary featu
of transient nucleation, and as a rule is reported in numer
studies.

The exact solubility is also a distinct feature of high
temporal moments—see, e.g., Ref. 13 and references the
At the same time, except forT0 ,14,15the asymptotic structure
of the available complicated exact expressions is not kno
~for which reason, such expressions are sometimes ca
formally exact!, and it is usually not possible to predict the
behavior in various domains of parameters, or when swit
ing to another nucleation model. The major goal of this stu
will thus be to establish an efficient way of generating high
moments using as a starting point the asymptotic trans
solution and the time-lag,T0 . In a general form, relations
between moments are insensitive either to the nuclea
model selected or to one of the primary controlling para
eters, the sizen at which the moments are evaluated. T
more accurate~also more model- and parameter-specific! ex-
act expressions can be potentially used to verify the m
robust asymptotic dependences, either confirming the en
approach, or establishing its limitations, in any case narro
7 © 2003 American Institute of Physics
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ing the existing gap between exact and asymptotic studi
The kth temporal moment is defined as

Tk~n!5E
0

`

tk@12 j ~n,t !/ j s#dt ~1!

with j (n,t) being the transient flux at a given sizen, and j s

being itsn-independent, steady-state value~in what follows
then dependence will not be indicated, unless confusion
occur!. As mentioned, exact relations can be obtained forTk ,
although fork>1 they are expressed in terms of slowly co
verging repeated sums which are rather hard to evaluate
ymptotically.

An alternative approach is to avoid the exact expressi
for Tk , but use the asymptotic solution forj (n,t). The
reader is referred to the original paper16 for technical detail
of the derivations, but briefly, the major steps involved c
be described as follows. The large parameter of the prob
is the dimensionless nucleation barrierW* /T ~Boltzmann
constant is taken as one! and the general method of solutio
is known as matched asymptotic expansions. The domai
sizesn is divided in three regions, the near-critical regio
characterized by a small widthD;n* /AW* /T, the subcriti-
cal region n* 2n@D, and the growth regionn2n* @D.
Under rather relaxed assumptions about the smoothnes
the coefficients of the master equation, solutions can be c
structed in each of the aforementioned regions, and th
solutions can be matched asymptotically, giving the distri
tion and flux for arbitraryn in the growth region, which is of
the main experimental interest.17 An important intermediate
step is switching to the Laplace transform~LT!. This simpli-
fies applications of the asymptotic method but also es
lishes strong similarities of transient nucleation with oth
nucleation problems. For example, the LT equation is sim
to the equation which appears for nucleation with a tim
dependent barrier,16 and can be solved using the same a
proach. Or, the solution for the LT can be directly applied
nucleation of particles with finite lifetimes~in the presence
of an aerosol!,21 without repeating the elaborate intermedia
steps of the matched asymptotic analysis. Connection
tween the LT of the transient flux and the time-lag was
tablished in Ref. 22, and in the following it will be show
that higher moments can be efficiently generated once the
is known.

The transient solution in the growth region is give
by16,17 j (n,t)/ j s[f with

f~x!5exp$2exp~2x!%, x5@ t2t i~n!#/t ~2!

and is illustrated in Fig. 1 for different sizesn. Heret i is the
‘‘incubation time’’ with size-dependence determined by a
lected nucleation model, whilet is a constant ‘‘relaxation
time’’ defined ast215dn(n)/dn at n5n* , with n(n) being
the deterministic growth rate. Explicit expressions fort i

~Ref. 17! will not be required, although it could be useful
indicate thatt i is logarithmically large compared tot when
the barrier is large, and thatt i further increases withn into
the growth region~an elementary expression fort i in the
Zeldovich–Frenkel model is used in Fig. 1, and will be p
sented later in the paper!. Note that att50 Eq. ~2! has an
asymptotic, rather than an exact zero, although as longt i
.
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is much larger thant, the two types of zeroes are impossib
to distinguish due to the rapid decay off(x) at negativex
@e.g., for the curves in Fig. 1 the values ofj (n,0)/j s range
from 10278 to less than 1026000]. An interpolation which
adjusts Eq.~2! to an exact zero att50 has been constructe
in Ref. 23, but the more complex dependence does
modify the time-lag~and, most likely, will not modify the
higher moments!, and will not be used in the present stud

Experimentally, one usually measures the number
larger-than-n nuclei, r(t)5*0

t j (n,t8)dt8.t j sE1(e2x),17

with E1 being the first exponential integral.24 The time-lag is
then obtained from the large-time asymptote ofr(t). j s(t
2T0) for large t. One has

T0.tE
2`

`

~x1t i /t!
df

dx
dx ~3!

with df/dx5exp$2x2exp(2x)%. This evaluates toT05t i

1gt17 with g50.5772... being the Euler constant. Note th
integration inx must be extended to2` within the accuracy
of the asymptotic treatment. In principle, replacing the fac
(x1t i /t) in Eq. ~3! by tk(x1t i /t)k11/(k11) would give a
general asymptotic expressions for the higher moments.
actual calculations, however, it is more straightforward
use the LT from which Eq.~2! was derived.16

Near the critical size,n* , the LT of the flux is expressed
in terms of a special function, the repeated error integ
However, extending the asymptote of LT into the grow
region ~very similarly to what was done in Ref. 16 for th
distribution function!, and matching that asymptote with th
growth asymptote, leads to an elementary expression for
LT at any sizen.n* . Using the aforementioned relatio
betweent i andT0 , one has

J~n,p!5 j s

1

p
eptgG@pt11#exp@2pT0#, ~4!

wherep is the Laplace index andG is the gamma function.
The relation betweenTk and the LT follows from the

definition ~1!,

Tk5~21!k lim
p→0

S ]

]pD kS 1

p
2

J~p!

j s
D . ~5!

FIG. 1. Typical transient curvesj (n,t)/ j s as a function of reduced timet/t.
For each of the curves~from left to right! the dimensionless ‘‘radius’’r
5(n/n* )1/3 is taken, respectively, asr 52, 3, 4, and 5, and in all cases th
dimensionless barrierW* /T is 30. The points of intersection with the lowe
line, j (n,t)/ j s51/e'0.37 determine the reduced incubation timet i /t,
while intersections with the upper line, exp@2exp(2g)#'0.57 coincide with
the reduced time-lag,T0 /t. Shifting each of the curves by a correspondin
incubation time would bring them to single curve given by Eq.~2!.
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TABLE I. Dimensionless truncated moments evaluated from Eq.~A2!. The full momentsTk can be recon-
structed using Eq.~A3!. The value ofx4 evaluates to 12.8865, and for largerk only numerical or asymptotic
values are shown.

k 0 1 2 3 4 5 6 7 k→`

xk 0
p2

12

2

3
z~3!

3p4

80

2

3
p2z~3!1

24

5
z~5! 67.8122 402.162 2828.83 k!e2g
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equation~5! is exact, and generalizes the one obtained
k50 in Ref. 22. In other words, temporal moments a
linked to coefficients of the Laurent series expansion of
LT,

J~p!

j s
5

1

p
2T01T1p1¯1

~21!k11

k!
Tkp

k1¯ . ~6!

If one further uses the asymptotic Eq.~4! for the LT, one
obtains explicitly the higher moments. The derivative
G(pt11) at p50 in Eq. ~5! can be expressed through th
Riemann zeta-function,z(m),24 and the latter can be evalu
ated explicitly~as a power ofp! for an even argument. Sev
eral first moments are shown in the following:

T15T0
2/21p2t2/12,

T25T0
3/31p2t2T0/612z~3!t3/3, ~7!

T35T0
4/41p2t2T0

2/412z~3!t3T013p4t4/80,

etc. Numerical values are to be used for the zeta-functio
an odd argument, one has, e.g.,z(3)51.2020569... in the
above. An efficient method for generating such relations
larger k is to expressTk through ‘‘truncated moments’’ ob
tained fromp21eptgG@pt11#, the size-independent part o
the LT—see Table I and Appendix A. Note the structure
the leading term,Tk;T0

k11/(k11), and the absence of th
next power,tT0

k ~which is due to the absence of the line
term in the small-p expansion ofeptgG@pt11#). Since one
expectsT0@t, the leading term provides a rather accura
approximation for the higher moment, and only in expre
sions which contain adifference Tk2T0

k11/(k11) ~see the
following! corrections in Eq.~7! become important.

The value oft thus corresponds to

t5
A6

p
A2T12T0

2, ~8!

which means that all higher moments withk>2 can be ex-
pressed throughT0 andT1 . It is important to emphasize tha
this prediction is asymptotic, i.e., whilek is arbitrary, it is
expected to be finite, not competing with the ma
asymptotic parameter, which is the barrier.@In other words,
with the increase of the barrier—and most likely with t
increase of size—equations of type~7! can be written for a
largerk#.

If indeed all moments can be expressed throughT0 and
T1 , then the entire transient curve can be parametrized u
these two moments. This is consistent with the suggestion
Wu,13 although the actual shape of the transient curve
rather different.
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To facilitate comparison, one can introduce temporar
a dimensionless timet̃ 5t/T0 , and a dimensionless param
eterq52T1 /T0

2. One has13

fWu~ t̃ !512
1

2
erfcF ln~ t̃Aq!

A2 lnq
G . ~9!

Compare this with expected Eq.~2! with

x5
p

A6

t̃ 21

Aq21
1g. ~10!

The parameterq depends primarily on the nucleatio
barrier and on the sizen where the flux is evaluated, ap
proaching 1 forn@n* . ~For example, for transient curve
shown in Fig. 1q changes between, approximately, 1.07 a
1.01!. Wu performed an empirical analysis of transie
curves obtained numerically from the Turnbull–Fisher nuc
ation model, and suggested to use the ‘‘lognormal’’ shape~9!
as the best fit. It was claimed that the double-exponen
~‘‘Weibull’’ ! fit was substantially less accurate, although t
exact parametrization for that fit was not reported, and i
not quite clear whether it was tested only atn5n* , or also
in the growth regionn52n* andn53n* of Fig. 12.13 @Here
the asymptotic results are expected to be the most accu
and Eq.~2! should work even with calculated, not fittedt i

andt#. A crude estimation indicates that Wu’s values ofq in
the growth region, approximately, fall between 1.1 and 1
In this domain Eqs.~2!, ~10!, and ~9! are remarkably close
and the corresponding curves would practically blend w
each other if plotted, e.g., the differencef(x)2fWu( t̃ ) does
not exceed 1022 for any t̃ , and for values ofq near 1.13 the
maximum difference is closer to 231023(!). Thus, if nu-
merics of Ref. 13 in the growth region confirm Eq.~9!, most
likely they also do so for Eqs.~2! and~10!. This could mean
an important improvement in the status of the match
asymptotic solution, especially in connection with mo
elaborate, discrete nucleation models. At the same time,
~9! and ~2!, ~10! are obviously different analytically, and
remaining pertinent issue is to determine which of them
more adequate for the nucleation problem.

The difference between the two transient curves sho
be detectable in dedicated numerical studies, but this ca
a challenging task for a single set of data~and for largerq the
asymptotic solution can require higher-order corrections
illustrated in Appendix B!. More likely, one needs to con
sider the tendencies of such curves when the sizen is
changed. In terms of the physical timet, the asymptotic ex-
pression predicts that all transient curves will have identi
shapes in the growth region, each being shifted by a tim
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independent constant, as in Fig. 1. On the other hand,
shape of lognormal curves will change with size, albeit mo
estly. A related feature is the values of the flux att5T0 ~i.e.,

for t̃ 51). One has here from Eqs.~2! and ~10!, f5exp
@2exp(2g)#'0.5717 for any size, the upper dashed line
Fig. 1. Equation~9!, on the other hand, gives a value
fWu(1) which depends onq, approaching the above value o
0.57 only forq close to 1.14, and going to the limit of 1/2 fo
q→1. ~In that limit the lognormal dependence is close to
2(1/2)erfc@(x2g))/p1A(q21)/8#). In practice, the two
curves given, respectively, by Eqs.~2!, ~10! or Eq. ~9!, can
be clearly distinguished forq smaller than 1.02 if both are
plotted as functions ofx against properly scaled numeric
data, or if plotted as functions of the physical timet, as in

Fig. 1 ~as functions oft̃ the two curves will resemble nearl
identical steplike functions!. Small q correspond to rathe
large n, which nevertheless can be achieved numerically
shown by Granasy and James.8 For smallq the functionf in
Eqs. ~2! and ~10! decays much faster thanfWu asx→2`,
and in this context one could note a minor overshoot of
lognormal curve over simulation data forn53n* at small
times,13 which could become a systematic tendency at lar
sizes. Again, comparative numerical studies would be
quired here for a definite conclusion.

For q not too close to 1, the lognormal shape should
be a bad assumption since it has an exact zero att50, a
useful feature in the nonasymptotic case, and since m
functions are often well reconstructed by their two low
moments~although the uniqueness of the approximation
mains an issue!. On the other hand, an advantage of Eq.~9!
is that it follows from a consistent asymptotic analysis a
thus is expected to become accurate in the limit of a la
barrier and for largen, i.e., for q→1. More importantly, this
equation is accompanied by simple, in some cases elem
tary asymptotic expressions for the momentsT0 andT1 . For
example, in the Zeldovich–Frenkel case used in Fig. 1,
has:17 T0 /t5 ln(6W* /kBT)1r221ln(r21)1g, with r indi-
cating the dimensionless ‘‘radius,’’ and the size-depende
of T1 /t ~and of higher moments! also is described in term
of elementary functions, as follows from Eq.~7!.

A few remarks on generality and limitations of the o
tained results. The exact Eq.~5! is of general validity, al-
though without an explicit expression for the LT of the flux
remains formal. Equation~7! or Eqs. ~2! and ~10! are ex-
pected to be valid asymptotically~for a high nucleation bar-
rier! in the growth region for classical-type nucleatio
models5,6 of discrete~Becker–Do¨ring, Turnbull–Fisher! and
continuous~Zeldovich–Frenkel! forms. Specifics of a mode
enters through explicit size dependence ofT0 . The latter can
be taken in the simpler, asymptotic form, although the ex
form is also an option, especially when comparing with E
~9!.

Since the LT of the transient flux at the critical size
given by the same Eq.~4! with t replaced byt/222 ~and with
a different t i* ), formally, asymptotic results should be als
valid at n5n* with such modification oft. However, the
expected accuracy atn* is lower since here higher-orde
corrections to the LT are inversely proportional to thesquare
he
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root of the barrier,16 in practice not a very large number~see
Appendix B!.

Finally, the growth-region results are also valid if th
moments are introduced for the distribution rather than
the flux in Eq. ~1!.13 Indeed, in that region one hasf s(n)
. j s /n(n) and f (n,t). j (n,t)/n(n) for the steady-state an
transient distributions, respectively, which makes the tem
ral moments for the distributions asymptotically equivale
to those defined for the fluxes.

Strictly speaking, in order to estimate the accuracy of
obtained formulas one requires further terms in t
asymptotic expansions. This is a rather elaborate task, w
is also model-specific and will require an additional stud
Preliminary analysis indicates that higher-order correctio
to the LT in Eq.~4! are proportional to (W* /T)21 multiplied
by a model-dependent decaying function of size. With
nucleation barrier of 20– 40T such corrections typically
amount to a few percent at twice the critical radius, and
smaller at largerr. Within an ‘‘experimental level of accu-
racy’’ this can be undetectable. Nevertheless, those cor
tions are worth taking notice of, since they potentia
modify the structure of Eq.~7!, adding terms with the miss
ing second largest powerT0

k , even if with a small coefficient.
This effect is also seen~and is much stronger, of the order o
1/AW* /T) at the critical size, which can be examined
more detail since higher-order corrections to the LT a
available15—see the Appendix B.

In summary, general asymptotic relations between hig
moments of the transient nucleation flux have been obtain
Since such moments, at least in principle, can be evalu
exactly, verification of the above-mentioned relations wou
strengthen the links between the exact and the asymp
treatments with mutual benefits. Alternatively, verificatio
could be possible from numerical solutions of the nucleat
equations with the moments evaluated via direct integrat
as in Eq.~1!. Specifically, it is expected that for a sufficient
high barrier and for any sizen in the growth region the
following can be verified:~a! the differenceT12T0

2/2 should
remain constant, despite the fact that bothT1 andT0 strongly
depend onn, ~b! the second two relations of Eq.~7! @with t
evaluated from Eq.~8!# should hold, with accuracy improv
ing with increasing barrier; similar relations should hold f
higherTk although, generally, largerk will require a higher
barrier~or larger size! in order for the expressions to becom
accurate. A more stringent test could use the availa
asymptotic dependences forT0 ~which are sensitive to the
nucleation model selected! and assess the accuracy of t
predicted absolute values of higher moments, rather than
relations between them.

I am grateful to L.S. Bartell for useful corresponden
and remarks on the manuscript.

APPENDIX A: THE TRUNCATED MOMENTS

One can introduce the ‘‘truncated moments,’’T̃k , which
are centered aroundT0 . Formally, they can be defined b
replacingtk in Eq. ~1! with (t2T0)k. Compared to the full
momentsTk , the truncatedT̃k are expected to be indepen
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dent of sizen ~providedn is located in the growth region!,
and when reduced byt, asymptotically should give a fixed
numberxk , the same for any nucleation model of classic
type.5,6

Shifting time byT0 is equivalent to multiplying the LT
by exp(pT0). This indeed eliminates the size dependen
from Eq. ~4!, and further reduction of the time byt makes
the remaining part of the LT dimensionless,

J̃~s!5s21esgG@s11# ~A1!

with s5pt. One has

xk5
~21!k11

k11
lim
s→0

S ]

]sD
k11

sJ̃~s! ~A2!

with the values ofxk given in Table I. Symbolic computa
tions can be helpful fork*3, but the large-k approximation
can provide sufficient accuracy starting already fromk56.

The full momentsTk can be reconstructed using the fo
lowing relations:

Tk5
T0

k11

k11
1

tk11

k11 (
m51

k

~m11!Ck11
m11xmS T0

t D k2m

, ~A3!

whereCn
k are the binomial coefficients. This coincides wi

Eq. ~7! for k51, 2, and 3. In principle, Eq.~A3! can be
applied to anyk, but the asymptotic nature of the LT from
which the numberxk are derived should be kept in mind
Note thatxk rapidly increase withk. Comparing the first and
the last terms in Eq.~A3! for T0@t, and using the Stirling
formula for k!, one has the conditionk;eT0 /t when these
terms become of the same order. For such and largerk cau-
tion must be exercised when using the above expressi
although the above-given limitations are rather relaxed,
ceeding 10, for example, for any of the curves in Fig.
Evaluation of the terms resulting from higher-order corre
tions to the LT would be required for a more accurate e
mation of the domain of validity.

APPENDIX B: HIGHER-ORDER CORRECTIONS AT
THE CRITICAL SIZE

The values appropriate for the critical size will be ind
cated by an asterisk~* !. Introducing «̃5(3W* /T)21/2 and
using Eqs.~4.8!–~10! of Ref. 15, one obtains after som
transformations a correction to the LT atn5n* ,

dJ* ~p!/ j s52
4

3
«̃t exp@2pti* #GF31pt

2 G . ~B1!

Here t i* is the incubation time atn* which contains a large
‘‘universal’’ part t ln(1/«̃) and small model-specific correc
tions. ~In particular, t i* contains the ‘‘discreteness corre
tions’’ which distinguish the Becker–Do¨ring or Turnbull–
Fisher and the Zeldovich–Frenkel nucleation model15

Note, however, that although such corrections can be c
parable or even larger than terms which are higher orde
«̃, changes in the incubation time alone do not modify eit
the relations between moments or the shape of the tran
curve!.
l

e

s,
x-
.
-
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-
in
r
nt

When Eq.~B1! is substituted into Eq.~5!, the correction
to the time-lagT0* 5t i* 1gt/2 is given bydT0* 52Ap«̃t/3,
which is consistent with Ref. 15. Corrections to higher m
ments also follow:

dT1* .
2Ap

3
«̃@tT0* 2t2~12 ln 2!#,

~B2!

dT2* .
Ap

12
«̃t@8~T0* !2216T0* t~12 ln 2!

1t2~p228 ln 2~22 ln 2!!#,

etc. The leading terms in the above should be compa
respectively, withp2t2/48, 0.8t3, etc., the smallest terms in
Eq. ~7! with t replaced byt/2. EstimatingT0* as t ln(1/«̃),
one concludes that for a typical barrier of 30T with «̃'0.1,
the higher order corrections toT1* andT2* will have contri-
butions which are comparable with the smallest lead
terms, and thus cannot be ignored. In particular,dT1* will
affect the differenceT1* 2(T0* )2/2, and the transient curve.

In order to obtain the correction to the transient cur
one needs to invert asymptotically the correction to the
given by Eq.~B1!. This can be done via summation ov
residues of the gamma function located in the finite part
the complexp plane, as in Ref. 16. One obtains

df~x* !.2 8
3«̃e23x* /2f~x* ! ~B3!

with x* 5(t2t i* )/(t/2).
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