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For a nearest-neighbor Ising model on a square lattice all cluster configurations with 17 or fewer
spins are identified. In neglect of cluster-cluster interactions, critical sizes and barriers to nucleation
are obtained as functions of temperature and magnetic field for two alternative definitions of a
‘‘critical cluster.’’ © 2004 American Institute of Physics.@DOI: 10.1063/1.1814080#

I. INTRODUCTION

From the early days of classical nucleation theory1

~CNT! it was clear that one of its main restrictions comes
from treating the nucleus as a macroscopic particle. In real-
ity, a typical critical nucleus contains only a handful of
monomersn* ;101, and recently several diverse experimen-
tal situations where the structure of a nucleus is qualitatively
different from that of the stable phase were identified.2,3

Another, even more serious limitation of CNT, already
noted by Farkas in 1927~Ref. 1! ~see also Ref. 4! comes
from the fact that there is a macroscopically undetermined
factor in the equilibrium distribution of clustersf n

;exp$2Wn /T% ~Boltzmann constant is taken as 1!. Even if
the critical nucleus is large,n* @1, evaluation of the prefac-
tor requires n;1, where the minimal work to form an
n-monomer cluster,Wn hardly can be any close to the bulk,
‘‘surface plus volume,’’ value.

On the other hand, the very fact that then is relatively
small, makes a nucleus an attractive object for computer
studies. For example, powerful equilibrium Monte Carlo
~MC! tools to describe a critical nucleus are being devel-
oped, e.g., Ref. 5. Dynamic MC approaches allow one to
study the entire nucleation process6–13 for lattice systems of
the Ising type. For such systems computers also provide a
remarkable possibility of an exact description of clusters, in
certain cases enabling crucial tests of more intuitive descrip-
tions of nucleation or, on a more practical level, allowing one
to test the MC methods~which, typically do require an inde-
pendent verifi cation due to the extreme rarity of the nucle-
ation events6!. One also can hope to preserve the attractive
features of CNT by using bulk values ofWn but employing
the exact data to adjust the prefactor in the equilibrium dis-
tribution, thus substantially improving the accuracy.6

The two-dimensional Ising model with external fieldH
~‘‘supersaturation’’ in the equivalent lattice-gas terminology!
provides the simplest, yet nontrivial example of a nucleating
system. Here the definition of a ‘‘cluster’’ is straightforward
for not too high temperatures, while availability of exact ex-
pressions for the interfacial tension allows one to specify the
bulk limit of CNT ~see Refs. 6 and 14 for the square and
triangular lattice, respectively, and references therein!. Exact
finite-size expressions for the critical size and the barrierW*
are also available in the limitT→015 for arbitrary values of

the field. Also, atT50 the preexponential of the nucleation
rate can be obtained both for strong16 and arbitrary fields17,18

for several Glauber-type dynamics. Moreover, even at finite
~albeit small! T the full expression for the nucleation rate,
including the preexponential, can be derived analytically
@small T, arbitrary H ~Refs. 18 and 19!# or using symbolic
computations@higher T, moderate-to-highH ~Refs. 20 and
21!#. Non-Glauber dynamics also was considered recently
for strong fields.22,23

The general difficulty in considering finite temperature
and weak fields is that an enormous number of cluster con-
figurations can contribute to nucleation. Thus, in the full dy-
namic problem the nucleation rate can be evaluated only for
rather modest values ofn* , currently <7 @which corre-
sponds toH>1 if T→0 ~Ref. 15!#. Already for the next
zero-T value of n* 513 the full dynamics of cluster-cluster
transitions is too rich and either some ‘‘pruning’’ of the
nucleation paths is required in the symbolic analytical
treatment,21 or numerical approaches are to be used.7

In the present study exact low-temperature equilibrium
cluster populations atn<17 are obtained with a breakdown
by energies~numbers of bonds!. This can be of independent
interest, but will also permit to gain some insight into the
structure ofn* and W* at finite temperatures and weak
fields. Larger values ofn compared to Refs. 20 and 21 are
achieved mostly at the expense of disregarding the dynamics
of cluster-cluster transitions, increasing the number of con-
figurations which can be identified. Fundamental difficulties
in rigorously definingn* and W* ~which, within the CNT
context are asymptotic, rather than exact quantities! are also
highlighted. Once a definition of those quantities is specified,
however, theirH, T map can be constructed with the situa-
tion being very rich compared to the zero-T limit of Ref. 15.

II. THE MODEL

Consider the standard Ising model with the total energy
given by

H52J(
nn

s isk2H(
i

s i . ~1!

HereJ.0 is the interaction energy between two neighboring
spins,s561 is the spin variable~andnn indicates summa-
tion over all nearest-neighbor pairs!. The system is assumed
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to be metastable, i.e., prepared with all spins originally point-
ing in one direction~down!, while the external fieldH.0
prescribes an ‘‘up’’ orientation. Some standard spin flip dy-
namics should be kept in mind, although specification of the
dynamics will not be required for most of the present study,
as long as the detailed balance is satisfied.

A well-defined metastable state will persist for an expo-
nentially long time, except for formation of isolated clusters
containingn spins,k nearest neighbor pairs~bonds!, and a
variety of shapes. The energies of formation, i.e., the differ-
ence inH once a given cluster is formed, are given by

En
k52JPn

k22nH ~2!

with Pn
k being the perimeter of a cluster. Or, using a simple

geometric relationPn
k54n22k ~see Ref. 18! one has

En
k~h!58Jn~12h!24Jk, h5H/4J. ~3!

The minimal number of bonds for a givenn corresponds
to a linear chain with

kmin~n!5n21. ~4!

Evaluation of the maximum number of bondskmax(n) is
slightly more elaborate,18 and depends on the position ofn

relative to the closest perfect square. If one definesm
5@An# ~with @x# being the largest integer not to exceedx!,
then

kmax~n!5H 2~n2m!, n5m2

2~n2m!21, m211<n<m21m

2~n2m21!, m21m11<n,~m11!2.

~5!

A typical arrangement of available energies is shown in
the left Fig. 1. The points shift in the vertical direction with
changing field; the upper line becomes horizontal forh
51/2. At h.1/2 one still can discuss conventional nucle-
ation ~with n51 corresponding to the critical cluster at 1/2
,h,1), but subsequent growth of nuclei will be different
since the interface becomes unstable.24 In what follows,
however, we focus onh<1/2.

Once the energies are known, the number densities~qua-
siequilibrium distributions! of noninteracting clusters can be
determined as

f n
k~h,T!5wn

k exp$2En
k/T%. ~6!

The valueswn
k represent the total number of configurations

with given n and k. Evaluation of such numbers represent
one of the primary goals of the present study.

III. RESULTS

A. Number of configurations

Results for the numberswn
k are given in Table I and are

depicted in the right part of Fig. 1. For a fixedn the number
of configurations monotonically decreases withk, with the
rate of decrease being smaller near the smallestk.

Correctness of the numbers was verified by available
tabulated data for smalln,25 and by our earlier results ob-
tained in the studies of the dynamic nucleation problem20,21

~where all cluster configurations could be identified forn
<9). To our knowledge, detailed data for largern have not
been reported previously, although cumulative data up ton
519 are available26 and could be used for verification. It is

FIG. 1. Cluster energiesEn
k ~left, in units of 4J) and numbers of configu-

rationswn
k ~right! for different numbers of spinsn and bondsk. Values ofEn

k

on the left are from Eq.~3! with h50.25. The upper bound~straight line!
and the lower bound~cusped line! correspond tok5kmin(n) and k
5kmax(n), respectively. Degenerations of each state forn<17 are given in
the right part of figure~and in Table I! with solid lines connecting configu-
rations with identical number of spinsn5kmin11. Dashed lines in the left
figure show the path corresponding toWmin

n for T51J ~lower line! and T
52J ~upper line!, respectively.

TABLE I. Numberswn
k of distinct clusters withn spins andk nearest-neighbor bonds.

n/ k2n11 0 1 2 3 4 5 6 7 8 9

1 1
2 2
3 6
4 18 1
5 55 8
6 174 40 2
7 570 168 22
8 1 908 677 134 6
9 6 473 2 708 656 72 1

10 22 202 10 724 3 008 482 30
11 76 886 42 012 13 456 2 596 310 8
12 268 852 163 494 58 742 13 034 2 086 151 2
13 942 651 633 748 250 986 63 256 11 789 1 392 68
14 3 329 608 2 448 760 1 056 608 297 262 62 396 9354 864 22
15 11 817 582 9 436 252 4 401 192 1 359 512 317 722 5 4 908 7 036 456 6
16 42 120 340 36 285 432 18 173 796 6 095 764 1 563 218 30 3 068 46 352 4 748 218 1
17 150 682 450 139 297 108 74 496 544 26 922 156 7 477 928 1 60 3 984 276 464 36 112 3 010 88
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important to note that the computer effort involved in such
computations increases rapidly withn since the number of
configurations grows faster than an exponential, as described
below. The available realization27 of the standard algorithm28

can be easiy modified to get cluster breakdown by energies
~and in combination with modern computer powers result up
to n'20 can be currently obtained29!. Nevertheless, the ap-
proach which was utilized in this work was closer to the one
used in the dynamic problem;20,21 this allowed for additional
cross testing, and details of the algorithm will be described
elsewhere.30

The total number of configurations forn<17 can be
approximated by

(
k5kmin~n!

kmax~n!

wn
k.exp~a1bn1cn2! ~7!

with a521.73160.50, b51.1560.12, and c50.007
60.001. Despite the small values of the positive coefficient
c, its presence is essential for an accurate estimation. For
example, a pure exponential interpolation suggested in Ref.
31 for n<10 would underestimate the number of the largest
configurations by more then two times if extrapolated to cur-
rent values ofn. Note, however, that the main intent of ap-
proximation ~7! is to estimate the amount of computer re-
sources required for a largern. Otherwise, for physical
applications one requires individual estimations for different
energies and most of the higher-energy configurations@which
give a major contribution to the sum~7!# will effectively not
contribute for any reasonable temperature being far away
from the nucleation path, as in the left part of Fig. 1.

From the right part of Fig. 1 one can see that as a func-
tion of k logarithms of the numbers of ‘‘open’’ configurations
~with few bonds compared to the most compact cluster! in-
crease approximately linearly. That is, one could draw near-
straight lines~not shown in the figure! through configura-
tions with kmin bonds, withkmin11 bonds, etc. This would
allow one to make a crude estimation ofwn

k for the numbers
of excited configurations atn.17. On the other hand, the
most compact configurations, which will not appear in those
extrapolations~or the few first excited states which will be
given inaccurately! can be obtained exactly since those states
have a modest number of configurations even for largen.
The latter approach was used, e.g., for the number of the
most compact configurations of a 21-spin cluster,w21

32

5187, which will be used below when estimating the critical
size. The necessity of considering largen stems from the fact
that small clusters might not reveal a general pattern either in
the structure of the nucleation paths or in the field and tem-
perature dependences ofn* . Indeed, atT→0 the critical
number has the valuesn* 5m21m11 with m50,1,2,... .15

The n* 57 is the first value where the nucleus can have
excited states~and where the degeneracy of the lowest en-
ergy state leads to branching of the nucleation paths18!. The
next valuen* 513 ~smaller field! was already beyond the
previous computational possibilities. The low-temperature
boundary of then* 513 domain is determined byn* 517
~see below!, for which reason clusters with up to 17 spins
were considered in the present study.

B. The critical cluster

Once the exact data for cluster distributions become
available, the most delicate operation is the definition of the
‘‘critical cluster.’’ Note that the experimentally observable
quantity is the nucleation rateI, and there is certain flexibil-
ity when the ‘‘barrier’’ and the ‘‘preexponential’’ are
introduced.18 The same relates to the critical size. In con-
structing the formal definition one could wish to be able to
recover the zero-T limit 15 and at the same time to remain
close to conventional wisdom based on CNT where the criti-
cal cluster either corresponds to the minimum~one-
dimensional formulation! or the saddle point~multidimen-
sional formulation! of the quasiequilibrium distribution. A
kinetic definition of the critical cluster~which, within the
CNT has an equal chance to grow or decay at long times! is
used in Monte Carlo studies,8 but would require specification
of the dynamics and will not be considered in the present
work. ~To avoid confusion with terminology, note that non-
conventional kinetic definitions of a critical cluster were also
suggested,31 with multiple values at a given pair ofh, T,
which also will not be considered here!.

If n were the only argument of the quasiequilibrium dis-
tribution f n , then unambiguouslyn* would determine the
minimum of this distribution. This is possible, however, only
for n* <3 when clusters have no excited states~and the
Becker-Döring type description of nucleation is accurate18!.
For larger clusters there is an additional parameterk ~and
many shapes with the samen and k!, and there are more
choices. Ideally, one would wish to identify a ‘‘saddle-point’’
configuration, but without specifying the dynamics~or, with-
out introducing some formal metrics in then, k space! this
cannot be uniquely done even if the energy landscape is
known. Since the present study is restricted to equilibrium
properties, two alternatives will be discussed.

First, a ‘‘microscopic’’ definition can be introduced,
which for a givenn identifies a maximumf n

k among all pos-
sible k, and then a minimum among such distributions is
selected. This definition will be the closest to the saddle-
point one. Alternatively, a thermodynamically averaged dis-
tribution can be constructed for eachn, and then a similar
minimum can be identified.~The latter case, most likely
makes sense if there is an equilibration mechanism among
different configurations with the samen, as in the Kawasaki
dynamics, but it also allows one to come up with an upper
bound for the nucleation rate in a more general case, as will
be discussed later in the paper!.

Let us introduce

Wn
k~h,T!5En

k~h!2T ln wn
k . ~8!

In the microscopic definition the smallest value ofWn
k for a

fixed n is given by

Wmin
n ~h,T!58Jn~12h!2max$4Jk1T ln~wn

k!,

kmin~n!<k<kmax~n!%. ~9!
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A collection ofWmin
n for a given pair ofh andT represents a

‘‘path’’ as in the left Fig. 1. The largest value ofWmin
n on this

path

W* ~h,T!5max$Wmin
n ~h,T!,1<n<nmax% ~10!

will determine the nucleation barrier. Currently, the upper
bound of nmax517 is available. The value ofn with Wmin

n

5W* corresponds to the critical numbern* (h,T). Results
are shown in Fig. 2. Strictly atT50 and noninteger 1/2h the
critical size is identical to the one of Ref. 15, but forT.0
‘‘secondary’’18 values of the formm211 also appear, with
n* 517 being largest available number of this type. The left
boundary of the corresponding domain is unknown, except
for smallT where it borders withn* 521 ~dashed line in Fig.
2!. For higherT the map ofn* becomes very complex due to
a large amount of configurations competing for being the
‘‘critical one’’ with the borders between domains given by
straight lines in theh, T coordinates. Nothing special is hap-
pening atT5Tc5J multiplied by 2.269, although the ne-
glect of cluster-cluster interactions here is largely
unjustified—see Sec. IV—and the results should be treated
as formal.

An alternative to the saddle-point definition would be to
introduce an average

^W&n~h,T!58nJ~12h!2T ln (
k5kmin~n!

kmax~n!

wn
ke4Jk/T ~11!

and select a maximum of such values, similarly to Eq.~10!:

W̄* ~h,T!5max$^W&n,1<n<nmax%. ~12!

This approach was used to generate a two-dimensional map
of n* in Fig. 3. The situation is simpler compared to the
previous definition, but is still very rich, resembling a com-
plicated ‘‘phase diagram.’’ At smallT results are identical to
the microscopic definition ofn* since only the most compact
configurations~for eachn! contribute. At higherT other val-

ues of the critical size also appear, which is indicated by
branching of levels in lower Fig. 3. The dependences on both
h andT is monotonic~unlike Fig. 2 where only theh depen-
dence ofn* appears to be monotonic!.

C. The ‘‘nucleation theorem’’ and levels of constant
nucleation barrier

Within the classical nucleation theory, and if the interfa-
cial tension is independent of supersaturation, the derivative
of the barrier with respect to the difference of chemical po-
tentialsDm determines the critical number:

]W*
]Dm

52n* . ~13!

Such relations have been used in experimental literature,
e.g., Ref. 32 when evaluatingn* from the observed slope of
ln(I), I being the nucleation rate. More recently, see, e.g.,
Refs. 33–35 a more general validity had been attributed to
the above relation, raising its status to that of a nucleation
theorem.

In the Ising model the role ofDm is played by 8Jh ~this
follows from the analogy with lattice gas, e.g., Ref. 18 and
references therein!. The present treatment does not add new
insight into the generality of the theorem since the interfacial
tension in the standard Ising model is independent of field.
@With any of the above definitions, either in Eq.~9! or in Eq.
~11!, the h dependence is contained solely in the first term
and is linear inh, which immediately leads to Eq.~13!#.
However, due to the unusual structure ofn* , it is interesting
to observe how Eq.~13! actually works in the present case.

Sincen* is constant in a finite domain ofh andT, so is
the derivative of the barrier, i.e., theh dependence of the
barrier is piecewise linear at any fixedT. At the points where
there are multiple values ofn* ~as on the boundaries of
domains in Figs. 2 and 3, or at the ‘‘triple points’’! the de-
rivative ]W* /]h does not exist, or more precisely the barrier
has a cusp. With the increase of temperature and/or reduction
of field the cusps become more dense. Remarkably, the
above properties, as well as Eq.~13! are valid forboth the
saddle-point and averaged definitions of the critical cluster,

FIG. 2. Domains of constant critical numbern* from the saddle-point
definition—see text. Noninteracting clusters are assumed and temperature is
measured in the units ofJ. The boundaries of the 17-spin domain are tenta-
tive, and atT→0 the domain borders with the one withn* 521, which is
indicated by dashed line. The map is formal for higher temperatures where
the reduced nucleation barrier is small and cluster interactions cannot be
neglected.

FIG. 3. Same as in Fig. 2, but with an averaged definition of the critical
size—see Eq.~12!. The narrow unlabeled area extending toT50 between
the 7- and the 13-spin domains corresponds ton* 510. The higher-
temperature area between the three- and the five-spin domains corresponds
to n* 54, the area between the five- and seven-spin domain ton* 56, etc.
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despite the fact that the critical size and the barrier can be
quite different in the two cases. In other words, the nucle-
ation theorem does not help in selecting the correct barrier or
the critical size, but ensures their consistency with each
other.

The temperature derivative is slightly different for the
two definitions. In the saddle-point case one has

]W*
]T

52 ln wn
*

k* , ~14!

where the asterisk indicates the critical configuration. Again,
we note that within the domain ofh, T where the same con-
figuration remains critical, the derivative is constant. This,
together with Eq.~13! leads to simple expressions for the
lines of constant levels of the barrierW* or of the reduced
barrierW* /T,

dT

dh
52

8Jn*
ln~wn

*

k* !
, W* 5const ~15!

and

d~ ln T!

d@ ln En
*

k* ~h!#
51,

W*
T

5const. ~16!

The levels are composed of segments of straight lines. For
W* 5const the lines have the same slope within theh, T
domain corresponding to the same critical cluster. For
W* /T5const the slopes will vary depending on the value of
the const.

For the averaged definition one has a somewhat more
complex expression

]W̄*
]T

52Sn
*
~T!,

~17!

Sn~T!5
d

dT H T ln (
k5kmin~n!

kmax~n!

wn
*

k* e4Jk/TJ
with Sn being an analog of ‘‘entropy’’ for a subsystem con-
taining all clusters withn spins. In Eq.~15! Sn

*
(T) will

replace ln(wn
*

k* ) in the denominator. The levels are shown in

the top Fig. 4. SinceS1 , S2 , and S3 are temperature-
independent constants, the levels remain straight lines in the
corresponding domains~and sinceS150 the lines are verti-
cal in the domainn* 51). Cusps in the levels coincide with
the discontinuities ofn* , in accord with the nucleation theo-
rem, which also accounts for the increase of the density of
levels with increasingn* .

Similarly, for the levels ofW̄* /T5const[C one can
obtain

dT

dh
52

8Jn*
Sn

*
1C

. ~18!

For the domains ofn* 51, 2, 3 levels are straight lines—see
the lower Fig. 4.

D. Upper bound for the nucleation rate

One of the most important applications of the results
would be the estimation of the nucleation rate. Strictly
speaking, this requires consideration of the dynamics in or-
der to obtain the preexponential. However, some general
conclusions can be made if one intends to get only an upper
boundary of the rate. In doing so we will employ the electric
analogy of Ref. 18 which previosly proved efficient in evalu-
ating the lower boundary and in demonstration of the mono-
tonicity of the nucleation rate as a function ofh.

In the electric analogy the nucleation flux is treated as an
current through a complex network. Cluster configurations of
various shapes are ‘‘electric junctions,’’ while the transition
rates between each two configurations determine the corre-
sponding resistances~see below!. The nucleation rate is the
inverse of the total equivalent resistance of the network,
Re

21.
If only the lowest energy paths are considered, after

some transformations the network can be made equivalent to
a single linear chain18 with a resistance which exceedsRe .
This gave the lower bound of the rate. When estimating the
upper bound, the problem again will be reduced to a linear
chain but with a resistance which issmaller than Re . The
treatment is directly applicable to the standard nonconserved

FIG. 4. Levels of constant values of the barrierW̄* ~top figure! andW̄* /T
~bottom figure!, superimposed on the domains of constantn* ~as in Fig. 3!.
The boundaries of those domains determine the cusps in the levels ofW̄* ,
in accord with the nucleation theorem. Smaller values ofW̄* /T correspond
to shorter intervals of steady state nucleation~due to neglected interactions
between clusters!. In practice, conventional-looking nucleation is expected
for W̄* /T*8; for small barriers the results are formal.
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dynamics of Refs. 18, 20, and 21~or, to nonconserved dy-
namics of Refs. 22 and 23!, but can be useful for the less
studied Kawasaki dynamics as well.

For simplicity of notations we will keep then, k labeling
~although, in reality there are many distinct shapes with the

samen andk!. Let bn,n11
k,k8 be the transition rate from ann, k

class to an11, k8 class. Equivalently, the electric junctions
representing those classes are connected by resistors with18

Rn,n11
k,k8 5~bn,n11

k,k8 f n
k!21. ~19!

In order to estimate the lower bound on the total equiva-
lent resistance, we will perform several operations each re-
ducing its value. First, all junctions with identicaln will be
shorted. This turns the network into a series connection of
nmax subcircuits, each one with its own resistanceRn

e and
with the ‘‘true’’ equivalent resistance of the networkRe

>(nRn
e . For a fixedn each resistor in the corresponding

subcircuit is given by Eq.~19! and is in parallel to other
resistors with the samen. The equivalent resistance of the
subcircuit is

~Rn
e!215(

k,k8
1/Rn,n11

k,k8 . ~20!

Next, let us select a maximum for a givenn

bn
max5max$bn,n11

k,k8 ,k,k8% ~21!

and replace allbn,n11
k,k8 by this value. This will reduce every

individual resistance~or leave it unchanged!, so that

Rn
e>S bn

max(
k

f n
kD 21

5~bn
max!21 exp$^W&n /T%. ~22!

For the total equivalent resistance one thus obtains

Re[I 21>(
n

1

bn
max

expH ^W&n

T J .
1

bn
*

max
expH ^W&n

*
T J . ~23!

As shown in Refs. 20 and 21 once dynamics is specified,

the ratesbn,n11
k,k8 can be identified by a computer, which also

can select a maximum value. A human~less accurate estima-
tion! can be obtained in the following way, where we restrict
ourselves to nonconserved dynamics, such as the Glauber,
the Metropolis and the ‘‘lattice gas’’ dynamics discussed in
Refs. 18 and 20. Transition rates are the fastest~and sim-
plest! in the lattice gas dynamics, which thus can provide an
upper bound of the nucleation rate for the other two. Nor-

malization can be selected in such a manner thatbn,n11
k,k8 will

be just equal to the number of sites where a spin can be
added in order to convert to the new configuration. This
number should not exceed the perimeterPn

k ~we do not dis-
cuss here the possibility to fill up ‘‘holes’’ inside clusters,
since clusters with holes have a high energy and, at least at
moderateT do not have a significant effect on nucleation!.
The maximum perimeter isPn

kmin(n)
52n12, so that one has

I !~2n* 12!expH 2
^W&n

*
T J . ~24!

This is of course an overestimation, which is indicated by the
‘‘ !’’ sign. Typically, only selected sites on the surface of a
cluster contribute to transitions and, in addition, the replace-

ment ofbn,n11
k,k8 by its maximum value is definitely excessive

and is justified only by the possibility to treat the estimation
~23! as a rigorous one. Most likely, the estimation could be

substantially improved if the values ofbn,n11
k,k8 were replaced

by a maximum selected among the representative configura-
tions withk5k* and with perimeter closer to that of a com-
pact cluster, but such an intuitive estimation hardly can have
a status of an ‘‘upper boundary.’’

Currently, the lower-boundary estimations of the
rate18,20,21are expected to be closer to the actual values, al-
though they are more restrictive inh. The possibility of hav-
ing the lower and upper bounds for the rate is potentially
useful, both from a fundamental point and when predicting
the possible outcome of the Monte Carlo simulations.

IV. DISCUSSION

In the present study all cluster configurations withn
<17 were identified. The results can be used, e.g., when
adjusting the preexponential of CNT, as in Ref. 6, only for
much largern. Supposedly, this will substantially improve
the accuracy of the description, although an additional study
is required here.

Another potential application of the results is verification
of standard Monte Carlo~MC! schemes used to describe
nucleation and growth. One can check that forh<0 ~or for
small positiveh when nucleation still can be neglected and
for n,n* ), the observed equilibrium distributions are con-
sistent with the exact Boltzmann-type expressions given by
Eq. ~6!.

Once reliable domains of operation for a given MC
scheme are identified, one can obtain accurate expressions
for the nucleation rateI. Standardization ofI suggested ear-
lier ~when it tends to 1 in the region of instability,h.1)
~Refs. 18 and 20! also can be helpful in order to construct a
reliable map of I (h,T) by combined efforts of different
groups. Here we remind the reader that so far, even for most
common dynamics~Metropolis, Glauber, etc.! there exist no
nucleation maps, similar to those in Fig. 4 for the barrier,
part of the reason being insufficient reliability of the random
number generators or of the entire Monte Carlo schemes for
very rare events.~Notably, in many MC simulations the ab-
solute value ofI is not reported, but only its exponential
part.! Availability of analytical expressions forI (h,T) at
small T and moderate-to-highh,18,20,21as well as numerical
results obtained from dedicated MC algorithms,7 also will be
useful when constructing the ‘‘map.’’

When identifying the critical cluster, one is reminded
that there does not exist an exact definition for either the
‘‘critical number’’ n* or the ‘‘nucleation barrier’’W* . Both
quantities have an asymptotic meaning within the framework
of the CNT, hence the nonuniqueness of the way in which
they can be introduced from the exact equilibrium cluster
distributions.

Two possibilities were explored. The first resembles the
saddle-point definition of the critical cluster in multidimen-
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sional version of CNT, leading to an extremely complicated
map ofn* (h,T) as in Fig. 2. The second definition is closer
to the one-dimensional version of CNT, when an ‘‘average’’
cluster for eachn is constructed, and the critical one is se-
lected among those. The map ofn* (h,T)—Fig. 3—is sim-
pler, but still is very rich. It is worth noting that even con-
sideration of the full dynamic problem does not completely
resolve the issue of the critical cluster. As discussed in Refs.
18, 20, and 21 the observable is only the nucleation rateI,
while other characteristics, such as the barrier, the preexpo-
nential, etc., at least partly depend on conventions.

The complex structure and nonanalyticities of the depen-
dences highlights the potential difficulty of defining a physi-
cal ‘‘droplet’’—a one which would be consistent with the
Wulff construction ash→0. Most likely, additional averag-
ing over close values ofn is required here. Dynamics also is
expected to be important since, intuitively, one anticipates
that equilibration of a droplet should be faster than transi-
tions between droplets of different sizes.

For the barrier to nucleation only the averaged defini-
tion, which is easier for a human to follow, is depicted in Fig.
4. One should keep in mind, however, that depending on the
specific dynamics many configurations will not contribute to
nucleation, implying a higher barrier or, equivalently a small
preexponential of the nucleation rate. For example, at low
temperatures many of the lowest energy configurations result
in ‘‘blind alleys’’ 21 and do not contribute to nucleation. It is
remarkable, however, that at least within the studied domain
of n the optimal paths, as in Fig. 1 are consistent with the
standard Metropolis, Glauber, and also with Kawasaki dy-
namics since on every step the next configuration has either
one or two extra bonds, which can be achieved in any of the
cases when a single spin is added to a cluster. This means
that the barrier to nucleation is estimated reasonably, and
specification of the dynamics will have only a moderate ef-
fect, mostly altering the preexponential~unless the transition
dynamics is itself exponentially slow, as in Refs. 22 and 23!.

The usefulness of ‘‘thermodynamic’’ estimations of the
barrier, even with overcounting the configurations which
contribute to nucleation, is that they can provide one with the
upper bound in the estimation of the nucleation rate. This is
described in Sec. IV. In addition, having the bottom chart in
Fig. 4 is an important reminder of the asymptotic nature of
the problem considered, since interaction between clusters is
neglected. In reality, after a certain time the nucleated clus-
ters grow so large that they deplete the original pool of down
spins, and also can coalesce with each other. Not to add new
notations at this stage, we will denotef n

k(t) the time-
dependent kinetic distributions~leaving the originalf n

k for
the quasiequilibrium distribution!. Within the conventional
nucleation picture one requires~e.g., Ref. 18!

(
n51

` H n (
k5kmin~n!

kmax~n!

f n
k~ t !J !1. ~25!

Since this sum will diverge ast→`, there can be only a
finite interval of time when the above condition is justified.
The steady-state nucleation, as studied in CNT, exists only
within this interval, but also after the transient effects are

completed. The corresponding time scales are well separated
for W* /T@1, but in practice~say, in the context of Monte
Carlo simulations! it can be hard to achieve a separation
which is sufficient for an accurate measurement ofI. For
W* /T*8 the accuracy, somewhat arbitrary, can be consid-
ered ‘‘reasonable,’’ although an account for transient nucle-
ation effects can be a substantial improvement.8

Another limitation, less connected to the dynamics of a
system, is the condition that the subcritical nuclei should be
dilute, i.e.,

(
n51

n
* H n (

k5kmin~n!

kmax~n!

f n
kJ !1. ~26!

This is a weaker limitation than Eq.~25! since only subcriti-
cal terms contribute and since forn,n* one has f n

k(t)
' f n

k . Thus, if the condition~26! is valid, there will be a
well-defined, though possibly non-steady-state nucleation
stage in the system, with interaction between nuclei@indi-
cated by the violation of Eq.~25!# becoming important only
after subsequent growth.

Selecting some reasonably small number for the right-
hand side of Eq.~26! ~e.g., 0.01! would lead to a cusped line,
which is not shown in the lower Fig. 4 since it falls above the
W* /T58 level. An empirical way to test the importance of
interactions of subcritical nuclei would be to verify the ex-
ponential nature of theh dependence of the number of clus-
ters with a givenn.6

Finally, in connection with the computer-assisted de-
scription of the full nucleation dynamics using symbolic
computations20,21 one should note that the critical size~at
least in its averaged definition!, typically, becomes smaller
with increasing temperature, as in Fig. 3. This is good news,
implying that the amount of configurations which contribute
to nucleation, in fact, does not grow as rapidly as suggested
by Eq. ~7! @with n replaced, e.g., byn* (h,0)11] and that
such approaches can be applied to largerT and smallerh
than thought before.

V. CONCLUSION

In the present study more than 53108 configurations,
representing all possible shapes of clusters with 17 or less
spins were identified. Although future increase in computer
power will undoubtedly allow one to exceed these numbers,
the current values are already large enough to reveal certain
patterns in the field and temperature dependences of the criti-
cal cluster numbern* and the nucleation barrierW* . The
two latter quantities are related to each other by the nucle-
ation theorem, but otherwise there exists a flexibility in their
selection, as long as the nucleation rateI is defined unam-
biguously. Two major approaches to the definition ofn* and
W* were considered in detail with a rather different structure
of the correspondingh, T maps.
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