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On the critical cluster in the two-dimensional Ising model:
Computer-assisted exact results
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For a nearest-neighbor Ising model on a square lattice all cluster configurations with 17 or fewer
spins are identified. In neglect of cluster-cluster interactions, critical sizes and barriers to nucleation
are obtained as functions of temperature and magnetic field for two alternative definitions of a
“critical cluster.” © 2004 American Institute of Physic§DOI: 10.1063/1.1814080

I. INTRODUCTION the field. Also, afT=0 the preexponential of the nucleation
. _ rate can be obtained both for strdfignd arbitrary fields' 8

From the early days of classical nucleation théory for several Glauber-type dynamics. Moreover, even at finite
(CNT) it was clear that one of its main restrictions COMes(alpeit small T the full expression for the nucleation rate,
from treating the nucleus as a macroscopic particle. In rea'ihcluding the preexponential, can be derived analytically
ity, a typical critical nucleus contains only a handful of [small T, arbitraryH (Refs. 18 and 18 or using symbolic
monomera, ~10', and recently several diverse eXperime”'computations[higherT, moderate-to-higH (Refs. 20 and
tal situations where the structure of a nucleus is qualitativel;Ql)]_ Non-Glauber dynamics also was considered recently
different from that of the stable phase were identifiéd. for strong field223

Another, even more serious limitation of CNT, already  The general difficulty in considering finite temperature
noted by Farkas in 1927Ref. 1) (see also Ref. Acomes  anqd weak fields is that an enormous number of cluster con-
from the fact that there is a macroscopically undeterminedigyrations can contribute to nucleation. Thus, in the full dy-
factor in the equilibrium distribution of clusters,  namic problem the nucleation rate can be evaluated only for
~exp{—W,/T} (Boltzmann constant is taken ag. Even if  rather modest values af, , currently <7 [which corre-
the critical nucleus is largey, >1, evaluation of the prefac- sponds toH=1 if T—0 (Ref. 15]. Already for the next
tor requiresn~1, where the minimal work to form an zeroT value ofn, =13 the full dynamics of cluster-cluster
n-monomer clusteiV, hardly can be any close to the bulk, ansitions is too rich and either some “pruning” of the
“surface plus volume,” value. nucleation paths is required in the symbolic analytical

On the other hand, the very fact that thes relatively treatment? or numerical approaches are to be ubed.
small, makes a nucleus an attractive object for computer | the present study exact low-temperature equilibrium
studies. For example, powerful equilibrium Monte Carlo cjyster populations at<17 are obtained with a breakdown
(MC) tools to describe a critical nucleus are being devela[)y energiegnumbers of bonds This can be of independent
oped, e.g., Ref. 5. Dynamic MC approaches allow one tqnterest, but will also permit to gain some insight into the
study the entire nucleation procés¥ for lattice systems of  strycture ofn, and W, at finite temperatures and weak
the Ising type. For such systems computers also provide fe|ds. Larger values of compared to Refs. 20 and 21 are
remarkable possibility of an exact description of clusters, ingchieved mostly at the expense of disregarding the dynamics
certain cases enabling crucial tests of more intuitive descripyf ¢juster-cluster transitions, increasing the number of con-
tions of nucleation or, on a more practical level, allowing onefjgyrations which can be identified. Fundamental difficulties
to test the MC method@vhich, typically do require an inde- rigorously definingn, andW, (which, within the CNT
pendent verifi cation due to the extreme rarity of the nuclegntext are asymptotic, rather than exact quanjites also
ation eventd. One also can hope to preserve the attractiveyighlighted. Once a definition of those quantities is specified,
features of CNT by using bulk values W/, but employing  however, theiH, T map can be constructed with the situa-

the exact data to adjust the prefactor in the equilibrium disyjon peing very rich compared to the zeFdimit of Ref. 15.
tribution, thus substantially improving the accurcy.

The two-di_men_sional Ising model \{vith external_fid+b| Il. THE MODEL
(“supersaturation” in the equivalent lattice-gas terminolpgy
provides the simplest, yet nontrivial example of a nucleating ~ Consider the standard Ising model with the total energy
system. Here the definition of a “cluster” is straightforward given by
for not too high temperatures, while availability of exact ex-
pressions for the interfacial tension allows one to specify the H= —JE ook~ HE gj. 1)
bulk limit of CNT (see Refs. 6 and 14 for the square and nn '
triangular lattice, respectively, and references theréiract HereJ>O0 is the interaction energy between two neighboring
finite-size expressions for the critical size and the bakiigr ~ spins,o==1 is the spin variabléand nn indicates summa-
are also available in the limif— 0 for arbitrary values of tion over all nearest-neighbor pairdhe system is assumed
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FIG. 1. Cluster energieE'; (left, in units of 43) and numbers of configu-
rationsw¥ (right) for different numbers of spins and bonds. Values ofEX
on the left are from Eq(3) with h=0.25. The upper boungstraight line
and the lower bound(cusped ling correspond tok=kq,(n) and k
=k™X(n), respectively. Degenerations of each staterfsrl7 are given in
the right part of figurgand in Table ) with solid lines connecting configu-
rations with identical number of spins=k,;,+1. Dashed lines in the left
figure show the path corresponding\td,;,, for T=1J (lower line) and T
=2J (upper ling, respectively.
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Critical cluster in the Ising model 11233
relative to the closest perfect square. If one defines

=[/n] (with [x] being the largest integer not to exceed
then

2(n—-m), n=m?
kK" n)=4 2(n—m)—1, m’+lsns=m’+m (5)
2(n—-m—1), m*+m+l<s<n<(m+1)=2

A typical arrangement of available energies is shown in
the left Fig. 1. The points shift in the vertical direction with
changing field; the upper line becomes horizontal For
=1/2. At h>1/2 one still can discuss conventional nucle-
ation (with n=1 corresponding to the critical cluster at 1/2
<h<1), but subsequent growth of nuclei will be different
since the interface becomes unstalfldn what follows,
however, we focus oh=<1/2.

Once the energies are known, the number dengigjes-

to be metastable, i.e., prepared with all spins originally point-siequilibrium distributions of noninteracting clusters can be
ing in one direction(down), while the external fieldH>0 determined as

prescribes an “up” orientation. Some standard spin flip dy- k " ok
namics should be kept in mind, although specification of the (N, T)=wn exp{ — E/T}. ©®
dynamics will not be required for most of the present study,The valueswk represent the total number of configurations

as long as the detailed balance is satisfied.

with given n and k. Evaluation of such numbers represent

A well-defined metastable state will persist for an expo-one of the primary goals of the present study.
nentially long time, except for formation of isolated clusters

containingn spins,k nearest neighbor pairdonds, and a

variety of shapes. The energies of formation, i.e., the differll. RESULTS

ence inH once a given cluster is formed, are given by
EX=2JPK—2nH (2)

A. Number of configurations

Results for the numberns are given in Table | and are

with Pﬁ being the perimeter of a cluster. Or, using a simpledepicted in the right part of Fig. 1. For a fixedhe number

geometric reIatiorPﬁ=4n—2k (see Ref. 180one has

EX(h)=8Jn(1—h)—4Jk, h=H/4J. 3

The minimal number of bonds for a givencorresponds
to a linear chain with

Kmin(N)=n—1. 4

Evaluation of the maximum number of bonki¥®{(n) is
slightly more elaborat&® and depends on the position of

of configurations monotonically decreases withwith the
rate of decrease being smaller near the smallest
Correctness of the numbers was verified by available

tabulated data for smai,?®> and by our earlier results ob-
tained in the studies of the dynamic nucleation proBfeth
(where all cluster configurations could be identified for
<9). To our knowledge, detailed data for largehave not
been reported previously, although cumulative data up to
=19 are availabf&€ and could be used for verification. It is

TABLE I. Numberswﬁ of distinct clusters witm spins andk nearest-neighbor bonds.

n/ k—n+1 0 1 2 3 4 5 6 7 8 9
1 1
2 2
3 6
4 18 1
5 55 8
6 174 40 2
7 570 168 22
8 1908 677 134 6
9 6473 2708 656 72 1
10 22202 10724 3008 482 30
11 76 886 42012 13 456 2596 310 8
12 268 852 163 494 58 742 13034 2086 151 2
13 942 651 633 748 250986 63 256 11789 1392 68
14 3329608 2448 760 1056 608 297 262 62 396 9354 864 22
15 11817 582 9436 252 4401192 1359512 317722 54908 7036 456 6
16 42 120 340 36 285 432 18173796 6095 764 1563218 303068 46 352 4748 218 1
17 150 682 450 139297 108 74496 544 26 922 156 7477928 1603984 276 464 36112 3010 88
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important to note that the computer effort involved in suchB. The critical cluster
computations increases rapidly withsince the number of
configurations grows faster than an exponential, as describe&ﬂ/ailable the most delicate operation is the definition of the
below. The evailab]e realizatighof the standard algorithih . “critical eluster." Note that the experimentally observable
can be casly mo'd|f|ed. to get cluster breakdown by energleauantity is the nucleation rate and there is certain flexibil-
(and in combination with modern computer powers result u

5 b ly obtain@dl. N hel h Fity when the “barrier” and the “preexponential” are
to n~20 can be currently obtain€. Nevertheless, the ap- ;nqqced® The same relates to the critical size. In con-

proac_h which was _ut|I|zed " tgl's work was closer to _the Onestructing the formal definition one could wish to be able to
used in the dynamic preble?ﬂ; this allowed for additional o6 the zerd limit!® and at the same time to remain
cross teSt'gg’ and detalls of the algorithm will be describe lose to conventional wisdom based on CNT where the criti-
elsewhere’ . . cal cluster either corresponds to the minimutone-
The total number of configurations far<17 can be dimensional formulationor the saddle pointmultidimen-
approximated by sional formulation of the quasiequilibrium distribution. A

Once the exact data for cluster distributions become

KmaX ) kinetic definition of the critical clustefwhich, within the
K__ 2 CNT has an equal chance to grow or decay at long tirises
k=kemin(N) Wn=expa+bn+crr) @ used in Monte Carlo studiédyut would require specification

of the dynamics and will not be considered in the present

with a=-1.731+0.50, b=1.15+0.12, and c¢=0.007 work. (To avoid confusion with terminology, note that non-
+0.001. Despite the small values of the positive coefficienttonventional kinetic definitions of a critical cluster were also
c, its presence is essential for an accurate estimation. Fauggested® with multiple values at a given pair df, T,
example, a pure exponential interpolation suggested in Refvhich also will not be considered hére
31 for n=10 would underestimate the number of the largest If n were the only argument of the quasiequilibrium dis-
configurations by more then two times if extrapolated to cur-ribution f,, then unambiguously, would determine the
rent values ofn. Note, however, that the main intent of ap- minimum of this distribution. This is possible, however, only
proximation (7) is to estimate the amount of computer re-for n, <3 when clusters have no excited statesd the
sources required for a largar. Otherwise, for physical Becker-Daing type description of nucleation is accur&je
applications one requires individual estimations for differentFor larger clusters there is an additional paramé&téand
energies and most of the higher-energy configurafiaféch ~ many shapes with the sanmeand k), and there are more
give a major contribution to the sufi)] will effectively not  choices. Ideally, one would wish to identify a “saddle-point”
contribute for any reasonable temperature being far awagonfiguration, but without specifying the dynamies, with-
from the nucleation path, as in the left part of Fig. 1. out introducing some formal metrics in the k space this

From the right part of Fig. 1 one can see that as a funceannot be uniquely done even if the energy landscape is
tion of k logarithms of the numbers of “open” configurations known. Since the present study is restricted to equilibrium
(with few bonds compared to the most compact clyster  properties, two alternatives will be discussed.
crease approximately linearly. That is, one could draw near-  First, a “microscopic” definition can be introduced,
straight lines(not shown in the figurethrough configura- which for a givenn identifies a maximuni',ﬁ among all pos-
tions with k., bonds, withk,,,+1 bonds, etc. This would sible k, and then a minimum among such distributions is
allow one to make a crude estimationwf for the numbers  selected. This definition will be the closest to the saddle-
of excited configurations at>17. On the other hand, the point one. Alternatively, a thermodynamically averaged dis-
most compact configurations, which will not appear in thoseribution can be constructed for eadh and then a similar
extrapolationgor the few first excited states which will be minimum can be identified(The latter case, most likely
given inaccuratelycan be obtained exactly since those statesnakes sense if there is an equilibration mechanism among
have a modest number of configurations even for large different configurations with the sanme as in the Kawasaki
The latter approach was used, e.g., for the number of thdynamics, but it also allows one to come up with an upper
most compact configurations of a 21-spin clust ﬁ bound for the nucleation rate in a more general case, as will
=187, which will be used below when estimating the critical be discussed later in the paper
size. The necessity of considering largstems from the fact Let us introduce
that small clusters might not reveal a general pattern either in
the structure of the nucleation paths or in the field and tem-
perature dependences of . Indeed, atT—0 the critical Wﬁ(h,T)zEﬁ(h)—TInwﬁ. (8)
number has the valuag, =m?+m+1 with m=0,1,2,...1°
The n, =7 is the first value where the nucleus can have
excited stategsand where the degeneracy of the lowest enqp the microscopic definition the smallest valueWf for a
ergy state leads to branching of the nucleation pith$he  fived n is given by
next valuen, =13 (smaller field was already beyond the
previous computational possibilities. The low-temperature
boundary of then, = 13 domain is determined by, = 17_ W™ (h,T)=8Jn(1—h)—max4Jk+T In(wﬁ),
(see below, for which reason clusters with up to 17 spins
were considered in the present study. Kmin(N) <k=k™{(n)}. 9
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h FIG. 3. Same as in Fig. 2, but with an averaged definition of the critical

. = . size—see Eq(12). The narrow unlabeled area extendingTte 0 between
FIG. 2. Domains of constant critical number, from the saddle-point e 7. and the 13-spin domains correspondsnio=10. The higher-

definition—see text. Noninteracting clusters are assumed and temperaturet'g.mperature area between the three- and the five-spin domains corresponds
measured in the units df The boundaries of the 17-spin domain are tenta- to n, =4, the area between the five- and seven-spin domain, te6, etc
<=4, , etc.

tive, and atT—0 the domain borders with the one with =21, which is

indicated by dashed line. The map is formal for higher temperatures where

the reduced nucleation barrier is small and cluster interactions cannot bges of the critical size also appear, which is indicated by

neglected. branching of levels in lower Fig. 3. The dependences on both
h andT is monotonic(unlike Fig. 2 where only thé depen-

N dence ofn, appears to be monotonic

A collection of Wy, for a given pair ofh andT represents a

“path” as in the left Fig. 1. The largest value ¥y, on this  C. The “nucleation theorem” and levels of constant

path nucleation barrier
W, (h,T)=maxWn,,(h,T),1sn<n ¢ (10 Within the classical nucleation theory, and if the interfa-
cial tension is independent of supersaturation, the derivative

will determine the _nucle{mon barrier. Currently_, the nupperof the barrier with respect to the difference of chemical po-
bound ofnn,=17 is available. The value af with Wy, , . " i
tentialsAu determines the critical number:

=W, corresponds to the critical numbar, (h,T). Results

are shown in Fig. 2. Strictly &f=0 and noninteger 12the oW,
critical size is identical to the one of Ref. 15, but for-0 A =M (13
“secondary™® values of the formm?+1 also appear, with

n, =17 being largest available number of this type. The |eﬁSuch relations have beeq used in experimental literature,
boundary of the corresponding domain is unknown, excepf-d-» Ref- 32 when evaluating, from the observed slope of
for small T where it borders witl, =21 (dashed line in Fig. (). | being the nucleation rate. More recently, see, e.g.,
2). For higherT the map o, becomes very complex due to Refs. 33—-35 a more general validity had been attributed to
a large amount of configurations competing for being thdhe above relation, raising its status to that of a nucleation
“critical one” with the borders between domains given by theorem.

straight lines in thén, T coordinates. Nothing special is hap- !N the Ising model the role ol is played by 8h (this
pening atT=T,=J multiplied by 2.269, although the ne- follows from the .analogy with lattice gas, e.g., Ref. 18 and
glect of cluster-cluster interactions here is |arge|yreferences thereinThe present treatment does not add new

unjustified—see Sec. IV—and the results should be treatel{psight into the generality of the theorem since the interfacial
as formal. tension in the standard Ising model is independent of field.

An alternative to the saddle-point definition would be to [With any of the above definitions, either in E§) or in Eq.
introduce an average (12), _the_h dep_endenc_e is conta|_ned solely in the first term
and is linear inh, which immediately leads to Eq13)].
k"(n) However, due to the unusual structurengf, it is interesting
(W)p(h,T)=8nJ(1—h)-Tin > wke®¥T (11 o observe how Eq13) actually works in the present case.
K=Kmin() Sincen, is constant in a finite domain d&fandT, so is
* )
and select a maximum of such values, similarly to Bd): the derivative of the barrier, i.e., the dependence of the
— barrier is piecewise linear at any fix@dAt the points where
W, (h,T)=max{(W),,1sn<np.. 12 there are multiple values afi, (as on the boundaries of
This approach was used to generate a two-dimensional maomains in Figs. 2 and 3, or at the “triple poinjsthe de-
of n, in Fig. 3. The situation is simpler compared to the rivative W, /dh does not exist, or more precisely the barrier
previous definition, but is still very rich, resembling a com- has a cusp. With the increase of temperature and/or reduction
plicated “phase diagram.” At small results are identical to of field the cusps become more dense. Remarkably, the
the microscopic definition afi, since only the most compact above properties, as well as Ed.3) are valid forboth the
configurationgfor eachn) contribute. At highefT other val-  saddle-point and averaged definitions of the critical cluster,



11236  J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 V. A. Shneidman and G. M. Nita

despite the fact that the critical size and the barrier can be
quite different in the two cases. In other words, the nucle-
ation theorem does not help in selecting the correct barrier or
the critical size, but ensures their consistency with each
other.

The temperature derivative is slightly different for the -
two definitions. In the saddle-point case one has

IW,, o
T In Wh (149

where the asterisk indicates the critical configuration. Again,
we note that within the domain &f, T where the same con-
figuration remains critical, the derivative is constant. This,
together with Eq.(13) leads to simple expressions for the
lines of constant levels of the barrigv, or of the reduced
barrierw, /T,

dT 8Jn, W ) (15
_— = =cons -
dhnwl)" T
and
d(InT W,
(InT) 1, T*=const. (16)

dlinEX ()]

The levels are cpmposed of segments of strgight lines. FQ{IG. 4. Levels of constant values of the barr@; (top figure andV_V* IT
W, =const the lines have the same slope within ReT  (bottom figure, superimposed on the domains of constaptas in Fig. 3.
domain corresponding to the same critical cluster. FoiThe boundaries of those domains determine the cusps in the levels pf

W, /T=const the slopes will vary depending on the value ofin accord with the nucleation theorem. Smaller valueS\Qf/T correspond
the const to shorter intervals of steady state nucleatidne to neglected interactions

between clustejsIn practice, conventional-looking nucleation is expected

For the averf_:lged definition one has a somewnhat mor%r W, /T=8; for small barriers the results are formal.
complex expression

aT* = _Sn*(T)a D. Upper bound for the nucleation rate
(17) One of the most important applications of the results
k™) would be the estimation of the nucleation rate. Strictly
S\(T)= a7 Th > wﬁ* g?IT speaking, this requires consideration of the dynamics in or-
k=Kmin(n) der to obtain the preexponential. However, some general

conclusions can be made if one intends to get only an upper
boundary of the rate. In doing so we will employ the electric

N analogy of Ref. 18 which previosly proved efficient in evalu-
replace |”Wkn*) in the denominator. The levels are shown in ating the lower boundary and in demonstration of the mono-
the top Fig. 4. SinceS;, S,, and S; are temperature- tonicity of the nucleation rate as a function taf

independent constants, the levels remain straight lines in the In the electric analogy the nucleation flux is treated as an
corresponding domain@nd sinceS; =0 the lines are verti- current through a complex network. Cluster configurations of
cal in the domaim, =1). Cusps in the levels coincide with various shapes are “electric junctions,” while the transition
the discontinuities of,, , in accord with the nucleation theo- rates between each two configurations determine the corre-
rem, which also accounts for the increase of the density o§ponding resistancesee below. The nucleation rate is the

with S, being an analog of “entropy” for a subsystem con-
taining all clusters withn spins. In Eqg.(15) Sn, (T) will

levels with increasingn, . . inverse of the total equivalent resistance of the network,
Similarly, for the levels ofW, /T=const=C one can R;l.
obtain If only the lowest energy paths are considered, after
some transformations the network can be made equivalent to
d_T_ B 8Jn, 18 a single linear chaflf with a resistance which exceeés .
dh Sh, +C’ (18 This gave the lower bound of the rate. When estimating the

upper bound, the problem again will be reduced to a linear
For the domains of, =1, 2, 3 levels are straight lines—see chain but with a resistance which ssnallerthanR.. The
the lower Fig. 4. treatment is directly applicable to the standard nonconserved
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dynamics of Refs. 18, 20, and Zir, to nonconserved dy- This is of course an overestimation, which is indicated by the
namics of Refs. 22 and 23but can be useful for the less “ <" sign. Typically, only selected sites on the surface of a
studied Kawasaki dynamics as well. cluster contribute to transitions and, in addition, the replace-

For simplicity of notations we will keep the, k labeling  ment of g&X . ; by its maximum value is definitely excessive
(although, in reality there are many distinct shapes with theynd is justified only by the possibility to treat the estimation
samen andk). Let Bﬁ:‘fwl be the transition rate from am k  (23) as a rigorous one. Most likely, the estimation could be

class to an+1, k’ class. Equivalently, the electric junctions sypstantially improved if the values ggﬁhﬁﬂ were replaced
representing those classes are connected by reSiStOl'Jé with by a maximum selected among the rebresentative Conﬁgura_
Rk’ ~( kK gy -1 19 tions withk=k* and with .peri.rrlleter c!ose'r to that of a com-
mn+1= (Bun+afn) (19 pact cluster, but such an intuitive estimation hardly can have

In order to estimate the lower bound on the total equiva Status of an “upper boundary.”

lent resistance, we will perform several operations each re- el%%rzel”“yv the lower-boundary estimations of the
ducing its value. First, all junctions with identicalwill be "3t are expected to be closer to the actual values, al-

shorted. This turns the network into a series connection of?0ugh they are more restrictive im The possibility of hav-
Nimax SUBCIrCUits, each one with its own resistariRg and ing the lower and upper bounds for the rate is potentially
with the “true” equivalent resistance of the netwoiR, useful, both from a fundamental point and when predicting
>3 ,Re. For a fixedn each resistor in the corresponding the possible outcome of the Monte Carlo simulations.
subcircuit is given by Eq(19) and is in parallel to other

resistors with the samma. The equivalent resistance of the |v. DISCUSSION

subcircuit is ) . .
In the present study all cluster configurations with
(Re)’le LRKK (20 s}? were identified. The_results can be_ used, e.g., when
n e nn+1- adjusting the preexponential of CNT, as in Ref. 6, only for
’ much largern. Supposedly, this will substantially improve
Next, let us select a maximum for a given the accuracy of the description, although an additional study
max K ) is required here.
no=maxByn1, Kk} (21) Another potential application of the results is verification
K/ of standard Monte CarldMC) schemes used to describe

and replace alBy ', by this value. This will reduce every

o : ; nucleation and growth. One can check thatliezO (or for
individual resistancéor leave it unchangedso that

small positiveh when nucleation still can be neglected and
for n<n,), the observed equilibrium distributions are con-

-1
Ré= ,Bnmaxg fﬁ) =(Br " Lexp(W),/T}. (22)  sistent with the exact Boltzmann-type expressions given by
Eq. (6).
For the total equivalent resistance one thus obtains Once reliable domains of operation for a given MC

scheme are identified, one can obtain accurate expressions
1 (W), 1 (W, for the nucleation raté. Standardization of suggested ear-
Bmaxex T >I8maxex . (23
n n*

R=1"'=2

= T lier (when it tends to 1 in the region of instabilitii>1)

(Refs. 18 and 2Palso can be helpful in order to construct a
As shown in Refs. 20 and 21 once dynamics is specifiedi€liable map ofI(h,T) by combined efforts of different
groups. Here we remind the reader that so far, even for most

kK . Lo .
the ratesBy ., can be identified by a computer, which also common dynamicéMetropolis, Glauber, etgthere exist no

can select a maximum value. A hum@dess accurate estima- . e ST :
é nucleation maps, similar to those in Fig. 4 for the barrier,

tion) can be obtained in the following way, where we resrict art of the reason being insufficient reliability of the random

ourselves to.nonconser‘\‘/ed. dynamnlcs, such as.the Glaupél)rumber generators or of the entire Monte Carlo schemes for
the Metropolis and the “lattice gas” dynamics discussed in

Refs. 18 and 20. Transition rates are the fastestl sim- very rare eventsiNotably, in many MC simulations the ab-

. . ) . . solute value ofl is not reported, but only its exponential
plesd in the lattice gas dynamics, which thus can provide an o . :
. part) Availability of analytical expressions fot(h,T) at
upper bound of the nucleation rate for the other two. Nor- . 180021 .
small T and moderate-to-high,~“>“*as well as numerical

malization can be selected in such a mannerﬂﬁ#pll will yesults obtained from dedicated MC algorithfradso will be
be just equal to the number of sites where a spin can bgsefy| when constructing the “map.”

added in order to convert to the new configuration. This  \when identifying the critical cluster, one is reminded
number should not exceed the perime®§r(we do not dis-  that there does not exist an exact definition for either the
cuss here the possibility to fill up “holes” inside clusters, «critical number” n, or the “nucleation barrier'W, . Both
since clusters with holes have a high energy and, at least g{;antities have an asymptotic meaning within the framework
moderateT do not have a significant effect on nucleation of the CNT, hence the nonuniqueness of the way in which
The maximum perimeter iE’Emi”(n):ZnﬂLZ so that one has  they can be introduced from the exact equilibrium cluster
distributions.
|<(2n +2)exp{ B <W>“*] _ Two p_ossibili_ti_e_s were explo_r_ed. The firs'F reserr_lb_les the
* T saddle-point definition of the critical cluster in multidimen-

(24)
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sional version of CNT, leading to an extremely complicatedcompleted. The corresponding time scales are well separated
map ofn, (h,T) as in Fig. 2. The second definition is closer for W, /T>1, but in practice(say, in the context of Monte

to the one-dimensional version of CNT, when an “average”Carlo simulations it can be hard to achieve a separation
cluster for eachn is constructed, and the critical one is se-which is sufficient for an accurate measurement.ofor
lected among those. The map of (h,T)—Fig. 3—is sim- W, /T=8 the accuracy, somewhat arbitrary, can be consid-
pler, but still is very rich. It is worth noting that even con- ered “reasonable,” although an account for transient nucle-
sideration of the full dynamic problem does not completelyation effects can be a substantial improvenfent.

resolve the issue of the critical cluster. As discussed in Refs.  Another limitation, less connected to the dynamics of a
18, 20, and 21 the observable is only the nucleation Irate system, is the condition that the subcritical nuclei should be
while other characteristics, such as the barrier, the preexpahlute, i.e.,

nential, etc., at least partly depend on conventions.

* km
The complex structure and nonanalyticities of the depen- < n gn) kb q (26)
dences highlights the potential difficulty of defining a physi- n=1 | k=koo(m) " '

cal “droplet”"—a one which would be consistent with the This | ker limitation than E€25) si | beriti
Wulff construction ash— 0. Most likely, additional averag- IS IS a weaker imitation than @5) since only su kcrl -
cal terms contribute and since for<n, one hasf(t)

ing over close values af is required here. Dynamics also is
g . y ~fX. Thus, if the condition(26) is valid, there will be a

expected to be important since, intuitively, one anticipates

that equilibration of a droplet should be faster than transi\Vell-defined, though  possibly non-steady-state nucleation

tions between droplets of different sizes stage in the system, with interaction between nufiedli-
For the barrier to nucleation only the averaged defini-Cated by the violation of Eq25)] becoming important only

tion, which is easier for a human to follow, is depicted in Fig. after subsgquent growth. .
4. One should keep in mind, however, that depending on the Sel_ectlng some reasonably small number for the_rlght-
specific dynamics many configurations will not contribute toh";‘]r?dhs_IOle of qu(ZG) _(e.g., I().Olwlguldéllegd to_afcllljspid Ilner,]
nucleation, implying a higher barrier or, equivalently a small"V "/: '_S n?t S Iown In t g_OV\I/er '9. smci |t_a s above t fe
preexponential of the nucleation rate. For example, at IOV\_W* T__8 ev? ) Ag e_mp':'ca \INE.ly to '?zskt)t € |mp<_)rtaﬂce °
temperatures many of the lowest energy configurations resu'I'?teracF'onS of subcritical nuclei would be to verify the ex-
in “blind alleys” 2! and do not contribute to nucleation. It is ponen_tlal nature o;‘ théa dependence of the number of clus-
remarkable, however, that at least within the studied domaiﬁersgylth”a givem. , th th isted d
of n the optimal paths, as in Fig. 1 are consistent with the ~'Nal, I connection with the computer-assisted de-
standard Metropolis, Glauber, and also with Kawasaki dy_scrlptlon of the full nucleation dynamics using symbolic
mputation&?! one should note that the critical sizat

namics since on every step the next configuration has eith o o .
one or two extra bonds, which can be achieved in any of th east in its averaged definitipntypically, becomes smaller

cases when a single spin is added to a cluster. This meaﬁ%’th increasing temperature, as in Fig. 3. This is good news,

that the barrier to nucleation is estimated reasonably, anﬁnplying that the amount of configurations WhiCh contribute
specification of the dynamics will have only a moderate ef 10 nucleat|0n,. In fact, does not grow as rapidly as suggested
fect, mostly altering the preexponentiahless the transition by Eq. (7) [with n replaced, €9, by, (h,0)+ 1] and that
dynamics is itself exponentially slow, as in Refs. 22 angd 23 such approaches can be applied to largeand smallerh

The usefulness of “thermodynamic” estimations of the than thought before.
barrier, even with overcounting the configurations which
contribute to r?ucleation., is that they can provi.de one with_ th.ev' CONCLUSION
upper bound in the estimation of the nucleation rate. This is
described in Sec. IV. In addition, having the bottom chart in  In the present study more thanx3.0® configurations,
Fig. 4 is an important reminder of the asymptotic nature ofrepresenting all possible shapes of clusters with 17 or less
the problem considered, since interaction between clusters &pins were identified. Although future increase in computer
neglected. In reality, after a certain time the nucleated cluspower will undoubtedly allow one to exceed these numbers,
ters grow so large that they deplete the original pool of dowrthe current values are already large enough to reveal certain
spins, and also can coalesce with each other. Not to add nepatterns in the field and temperature dependences of the criti-
notations at this stage, we will denoﬁ(t) the time- cal cluster numben, and the nucleation barriai/, . The
dependent kinetic distributiondeaving the originalfﬁ for  two latter quantities are related to each other by the nucle-
the quasiequilibrium distribution Within the conventional ation theorem, but otherwise there exists a flexibility in their

nucleation picture one requirés.g., Ref. 18 selection, as long as the nucleation rates defined unam-
biguously. Two major approaches to the definitiomgfand
> K™ ®(n) W, were considered in detail with a rather different structure
> in X floy(<t (25  of the corresponding, T maps.
n=1 | k=Kpin(n)

S_lr_wce_ this sum v_v|Il diverge as—«, there can pe _only_a ACKNOWLEDGMENT

finite interval of time when the above condition is justified.
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