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The matched asymptotic �singular perturbation� treatment of the nucleation equation �V. A.
Shneidman, Sov. Phys. Tech. Phys. 32, 76 �1987�; 33, 1338 �1988�� is modified to include finite
heating rate effects, which follow the isothermal transient stage. Despite the complicated
mathematical structure of the discrete Becker-Döring equation, the obtained analytical solution is
shown to be accurate numerically. The described situation is typical for two-step annealing
crystallization studies and can lead to reinterpretation of some of the classical experiments. © 2007
American Institute of Physics. �DOI: 10.1063/1.2768032�

Theoretical interest in the problem of transient nucle-
ation can be traced to the early classical work of Zeldovich.1

The interest only grew over time due to the nontrivial math-
ematical structure of the underlying equations �especially if
taken in the discrete, “Becker-Döring” form2,3� and even to a
greater extent, due to novel challenges provided by experi-
ments. Specifically, effects of transient nucleation were
shown to be important in crystallization of silicate glasses
and amorphous silicon5 or during nucleation and growth of
quantum dots.6 The increased precision of modern molecular
dynamics7 and Monte Carlo8 nucleation studies also indi-
cated the inevitable presence of such effects, which extend
far beyond the original classical theory.9

Probably, the most detailed account for transient nucle-
ation in real-life experiments is provided by “two-step an-
nealing” studies,4 when a system is allowed to nucleate for
some time at a nucleation temperature TN, which is then
rapidly increased to a temperature TD where microscopic nu-
clei can be developed and counted. The derivative of their
number with respect to the nucleation time will determine
the quantity of the main interest, the nucleation rate or
“flux.”

Within the steady-state treatment interpretation of the
flux jst is straightforward: It should not depend either on the
nucleation time t or on the development conditions. With this
simplicity, however, only limited information about the prop-
erties of the microscopic nuclei can be revealed. A deeper
insight can be provided by the transient nucleation studies,
but in that case not only will the flux acquire a time depen-
dence but the development conditions will also have a sig-
nificant effect. Theoretical understanding is required here for
a proper interpretation of the experiments and, since the two-
step annealing is a state-of-the-art process for many indus-
trial glass-ceramic products, can be useful for applications.
The problem is also of a broader interest for the chemical
physics community, emphasizing the inherent connection be-
tween nucleation and growth and representing a new math-
ematical challenge in the general topic of time-dependent
nucleation.

The steady-state solution of the Becker-Döring equation
can be obtained either exactly10 or asymptotically1 for a high

nucleation barrier. The flux jst does not depend on size R
where it is observed. In the transient case a full exact solu-
tion is impossible, but still the flux can be obtained
asymptotically11,12 and efficient numerical solutions are also
available.13,14 In both types of approaches transient flux ex-
hibits a distinct R dependence. If, as commonly assumed in
interpretation of the classical experiments, the heating rate H
between the nucleation and the development stages is infi-
nitely fast, and the size R in the transient flux j�R , t� corre-
sponds to the critical size R* at the development temperature
TD. Dependence on TD is then used to extract further quan-
titative information, such as the interfacial tension between
the crystal nucleus and the melt �see, e.g., Ref. 15 and refer-
ences therein�. Recently, the assumption of infinite H was
questioned by Davis16 and was shown to lead to undercount-
ing of the number of nuclei. However, without consistent
analytical studies there remains a confusion in literature not
only with respect to quantitative interpretation of the effect
but also on the very status of transient nucleation in the
aforementioned classical experiments.17

The goal of this communication is thus to construct an
accurate expression for the transient flux as a function of the
subsequent heating rate H. As it turns out, results may or
may not be sensitive to TD depending on heating conditions.
Comparison with exact numerics will provide an indepen-
dent test of the analytical approach.

The singular perturbation solution to the Becker-Döring
equation can be obtained using a combination of matched
asymptotic and Laplace transformation techniques.11,12 In the
growth region R�R* the result is given by

j�R,t� = jst exp�− exp��ti�R� − t�/��� . �1�

Here, � is the “relaxation time,” the same as appears in the
preexponential of jst �Ref. 1� and defined through the deter-
ministic growth rate u�R� as �−1=du /dR at R=R*. The “in-
cubation time” ti�R� depends on off-critical u�R� and thus
depends on the selection of the model. In a general case one
has �P indicates the principal value of the integral, recall that
u�R� changes sign at R=R*� �Ref. 11�
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Here, W* is the barrier to nucleation and Boltzmann constant
is taken as 1.

Note that the solution is not sensitive to a specific form
of the general master equation of the nucleation problem, but
once jst has been evaluated, it depends only on the associated
growth rate u�R�. For example, in the continuous
“Zeldovich-Frenkel” �ZF� �Refs. 1 and 18� equation u�R� is
given by �u�R�=R*�1−R* /R�, which allows one to evaluate
the above integrals in elementary functions11

ti
ZF�R� = ��r − 2 + ln�6W*/T� + ln�r − 1��, r 
 R/R*.

�3�

For the discrete form of the master equation, with
Turnbull-Fisher selection of the coefficients, the growth rate
was given by Kelton and Greer.19 In the present notations,

u�R� =
2R*

a�
sinh�a

2
�1 −

1

r
	� , �4�

where a=2W* / �Tn*� is the “discreteness parameter”20 �the
ZF limit is recovered for a→0� and n* is the number of
monomers in the critical nucleus. When substituted into the
general equation �2� this growth rate leads to integrals which
cannot be simplified unless some assumptions are made
about the values of R and a.21

Nevertheless, in order to provide a compact and accurate
expression, which can be used later both for comparison with
exact numerics and, potentially, with experiment, one notes
that in two-step annealing, typical R only slightly exceeds
R*. For such R the growth rates u�R� and uZF�R� are close
and the major difference in incubation times comes from the
decay region R�R*,

ti�R�  ti
ZF�R� − ��C�a� − C�0�� , �5�

with C�0�=1. In the present study only a single nucleation
temperature will be used, with a�4.06 and C�a�−C�0�
�0.25. The neglected first size-dependent correction is given
by ��a2 /24��ln r−r+1�.

The remaining question, which is central in the study, is
to establish the meaning of size R in the above expression.
This requires consideration of growth/decay of nuclei during

heating; the growth rate u�R ,T� will also be a function of
temperature, which will be further indicated explicitly.

Consider a nucleus with size R�R*�TN� at the end of the
nucleation part of experiment. If, by the end of the heating
stage �when temperature reaches TD�, the nucleus is still
larger than R*�TD�, it will further increase its size during the
development stage and will be counted as “nucleated.” Oth-
erwise, the nucleus will decay. For a constant heating rate H
between the nucleation and the development stages the lim-
iting “survival size” Rs follows from the equation

dRs

dT
=

1

H
u�Rs,T� . �6�

This equation should be solved backward in time �tempera-
ture� with the initial condition Rs�TD�=R*�TD�. Once the so-
lution is obtained, the value Rs�TN� will determine the size R
in the transient solution discussed above. For simplicity, H
will be treated as constant, although at this stage of the treat-
ment that assumption is not crucial and qualitative conclu-
sions will remain valid as long as H changes little compared
to ln �.

Numerical values of Rs for different heating rates are
given in Table I; dimensional growth rates were selected as
approximately corresponding to lithium disilicate, a proto-
type nucleating system studied in great detail �parameters
will be given below�. However, before comparing the full
transient solution with numerics it could be instructive to
gain some additional insight into the structure of Rs.

Equation �6� with u�R , t� from Eq. �4� is equivalent to a
nonlinear Riccati equation, which is known to possess no
analytical solution.22 However, during most of the growth
process the size Rs remains close to the current value of
R*�T� �and during the initial low-temperature stage, when
that condition is not satisfied too well, nuclei practically do
not grow anyway�. This allows one to use a linearization,

u�Rs,T� � �Rs − R*�T��/��T� , �7�

and Eq. �6� can be solved.
Introducing a dimensionless “time,”

t̃ =
1

H
�

TN

T dT

�
, �8�

one obtains after some transformations

TABLE I. The survival size Rs at the end of nucleation annealing for different values of subsequent heating rate
H. The development temperature TD is 840 K with R* �TD��0.991 nm for selected parameters; the nucleation
temperature TN is 730 K with R* �TN��0.762 nm. The Turnbull-Fisher �TF� Rs corresponds to numerical
solution of Eqs. �6� and �4�. The approximate Rs is from Eq. �13�. The last row gives the crossover temperature
Tc as the solution of Eq. �11�.

H �K/s� 0.01 0.1 1 10 100 1000
TF Rs �nm� 0.774 0.802 0.848 0.910 0.973 0.989
Approximate Rs �nm� 0.767 0.794 0.840 0.901 0.961 0.982
Tc �K� 732.4 754.5 780.5 811 848 893
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Rs�TN� = R*�TN� + �
TN

TD dR*

dT
dT exp�− t̃� . �9�

Consider the limits. For H→� the value of t̃ approaches
zero, and one recovers the standard result Rs=R*�TD�. In the
more formal limit H→0 one has t̃→� with Rs→R*�TN�.

For further simplifications note that � rapidly decays
with temperature, in an exponential approximation,

t̃ � �− Hd�/dT�−1. �10�

For each temperature one can define a critical heating rate
Hc�T�= �−d� /dT�−1 with t̃�1, and the inversion of that defi-
nition gives a crossover temperature Tc for a given heating
rate H,

Hc�Tc� = H . �11�

The value of the integral in Eq. �9� depends mainly on
the relation between Tc and TD. For fast heating, with Tc

�TD, the value of t̃ remains small. The exponential in Eq.
�9� can be expanded, while the remaining integral is mainly
determined by the upper limit and can be calculated in ex-
ponential approximation,

Rs � R*�TD� −
1

H�
�d ln �

dT
	−2�dR*

dT
�

T=TD

. �12�

This provides a small negative correction to the conventional
expression.

To get an explicit dependence on the heating rate in the
intermediate region TN�Tc�TD the integral in Eq. �9� can
be evaluated by parts,

Rs�TN� = R*�TD�e−t̃d + �
TN

TD

R*�T�
dt̃

dT
e−t̃dT ,

with t̃d
 t̃�TD�. The integrand will have a broad maximum
near T=Tc. Switching to a new integration variable t̃ and
using the fact that in a narrow region its temperature depen-
dence is approximately exponential, one can write T�Tc

+ln t /b with b=−d ln � /dT at T=Tc. After linearizing R*�T�
near Tc and performing the integration, one obtains

Rs = R*�Tc��1 − e−t̃d� + R*�TD�e−t̃d

− � dR*

d ln �
�

T=Tc

�Ei�− t̃d� − e−t̃d ln t̃d − �� . �13�

Here, Ei is the exponential integral23 and � is Euler constant.
Since ln R* typically changes with temperature much slower
than ln �, corrections due to the last term in the above equa-
tions are small, with Rs being close to either R*�Tc� or to
R*�TD� depending on the value of t̃d.

Accuracy of this additional approximation is illustrated
in Table I, which also lists the values of crossover tempera-
ture Tc for selected parameters. The condition of “fast” heat-
ing, traditionally expected when analyzing annealing experi-
ments, corresponds to Tc�TD, which is realized only for
unrealistically high H.

In order to verify the accuracy of the obtained transient
flux, the nucleation master equation was solved numerically.

The effect of lower boundary, which is not included in Eqs.
�2� and �3� �see, however, Ref. 21� was minimized by placing
that boundary at the smallest n=1,n is the number of mono-
mers in a cluster. During isothermal nucleation stage the so-
lution followed the general outline by Kelton et al.13 In
Mathematica realization of the approach a matrix form of the
equations was used, similar to Ref. 9. After time t, the
“nucleation annealing time,” the isothermal part of the run
was terminated and the distribution of clusters served as ini-
tial conditions for subsequent heating. The nonisothermal
stage was described as a sequence of small isothermal steps
with temperature instantaneously increased at the end of each
step.19,24 More detail will be provided elsewhere.25

The nucleation flux was evaluated at n=n*�TD�. The in-
tegral of the flux gave the number of particles � by the end of
the heating stage. For a given heating rate the numbers
�1 ,�2 , . . ., were obtained for a collection of nucleation an-
nealing times t1 , t2 , . . ., and the resulting “experimental” flux
was defined as ��k−�k−1� / �tk− tk−1� with corresponding an-
nealing time t= �tk−1+ tk� /2. �This is not the most efficient
approach from a computational point but it mimics the real
experiment.4� Note that for a sufficiently slow heating � in-
cludes secondary nuclei formed during the heating stage.25

However, the number of such nuclei turns out to be indepen-
dent of the nucleation annealing time and will not affect the
derivative of � with respect to this time when evaluating the
flux.

Parameters which specify the Turnbull-Fisher nucleation
model, and which are close to those conventionally used in
describing lithium disilicate,26 were selected the same as in
Ref. 27 with T0 in the approximation for growth rate re-
placed by a correct value of 460.15 K.

Numerical results are shown by symbols in Fig. 1. Solid
lines represent Eqs. �1�, �3�, and �5�, with the size R given by
the Turnbull-Fisher survival size Rs �Table I�. A small non-
zero value of the analytical expression at t=0 for the slowest
heating serves as a reminder that this is an asymptotic rather
than an exact result, but otherwise the agreement is good,
and the account for the difference between the discrete �TF�
and the continuous �ZF� forms of the nucleation master equa-
tion is important. Neglect of the constant in Eq. �5� would

FIG. 1. Reduced transient flux j / jst�TN� as a function of reduced annealing
time t /��TN� for various values of the subsequent heating rate H. From left
to right �in K /s�: H=0.1, 1, 10, and �. Solid lines, analytical results; and
symbols, numerical solutions of the Becker-Döring equations. Parameters of
lithium disilicate with ��TN��20 min were used.
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lead to a noticeable shift of the curves in Fig. 1.
In summary, the first analytical expression for the tran-

sient nucleation flux as a function of postnucleation heating
rate �as in two-step annealing� has been obtained. Despite the
complicated mathematical structure of the underlying dis-
crete master equation, the solution is accurate, testifying to
the power of asymptotic approaches in the nucleation prob-
lem.

The heating rate dependence enters the solution through
a survival size Rs, which may or may not be close to critical
size at the development temperature. Generally speaking, in
order to achieve the level of accuracy shown in Fig. 1, Rs

should be evaluated numerically from the growth equation.
For practical applications linearization of the growth rate
�which allows one to integrate the growth equation in
quadratures� and subsequent evaluation of the integrals in
exponential approximation could be sufficient, giving an ex-
pression that is explicitly independent of the nucleation tem-
perature and of the development temperature if it exceeds a
certain crossover temperature Tc�H�.

With respect to interpretations of the classical, as well as
of more recent experimental data �which conventionally as-
sumed an infinite H�, the obtained results can significantly
alter the deduced temperature dependences of the critical size
and of the interfacial tension. Future progress here mainly
depends on one’s ability to control the magnitude of the heat-
ing rate.
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