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Abstract

A rapidly convergent exact expression for the time lag (also, �induction time�) of transient nucleation obtained by Shneidman and

Weinberg [J. Chem. Phys. 97 (1992) 3629] is used to evaluate the lag for clusters with up to 108 monomers. Asymptotic approxima-

tions to the exact expression are further advanced to provide explicit elementary expressions for the time lag in the Turnbull–Fisher

(TF) nucleation model in various domains of parameters. The difference between the TF time lag and the one of Zeldovich–Frenkel

nucleation equation is examined in detail. Transient nucleation flux and the number of nuclei are also discussed, and analytical

results appear to be in very good agreement with numerical solutions of the TF equations at large sizes, as reported by Granasy

and James [J. Chem. Phys. 113 (2000) 9810].

� 2005 Elsevier B.V. All rights reserved.

PACS: 64.60.Qb
1. Introduction and background

Among the vast scope of scientific interests of Mike
Weinberg an important place was occupied by the topic

of time-dependent nucleation. He had an unmatched

understanding of all aspects of this problem, from

experimental implications to very refined analytics,

always with a strong emphasis on the simplicity of the

final results. Examples include corrections to Kolmogo-

rov–Avrami expression, nucleation and crystallization

upon rapid heating, evaluation of the nucleation barrier
and crystal-to-melt interfacial tension from transient

nucleation data, etc. The problem of time lag (�induction
time�), which attracted Mike�s attention in early 90s, was

of special status in the nucleation theory and its solution

allowed to bring together several previously unrelated

directions.
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In the crystallization context the standard classical-

type nucleation picture is due to Turnbull and Fisher

(TF) [1]. Theoretical studies related to the time-depen-
dent aspects of the problem are driven by experiments

in silicate glasses [2–6], amorphous thin films [7,8],

nucleation and growth of quantum dots [9], etc. Numer-

ical solutions of the TF equations are also available

[8,10,11]. Other models, such as the �Zeldovich–Frenkel�
(ZF) or the Becker–Döring (BD) equations are also dis-

cussed for condensed systems, but more typically those

models are associated with condensation of dilute
vapors.

In Ref. [12] it was shown that exact expressions for

the time lag can be cast in terms of rapidly conver-

gent sums. In the limit of a high nucleation barrier

in case of the TF model the exact sums were also

evaluated asymptotically. Here the barrier- and size-

dependences could be separated, and the latter was

expressed in terms of growth/decay integrals, �dR/
v(R), R being the radius of a nucleus and v(R) the

�deterministic growth rate� (see Section 1.2 for a more
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precise definition). The general expression was similar

to the one following from the matched asymptotic

solution of the ZF and BD equations [13,14], but with

a different v(R) appropriate for the TF model [15].

Also, in contrast to the ZF case where due to a very

simple v(R) the integrals could be expressed in elemen-
tary functions, the general TF expression could not be

further simplified. From a practical point having to

evaluate an integral can represent a serious obstacle

in application of the results, and, the very fact that

solutions to the discrete nucleation equations exist re-

mained mostly unknown. The matched asymptotic

solution of the ZF equations had more applications

[4,8,11], but since the standard model is the TF one
it could be extremely important to quantify the diff-

erences.

For the time lag, the difference between the TF and

the ZF predictions at the critical size can be evaluated

[12], but is typically small [16,17] and anyway is mostly

of academic interest. The situation is less simple in the

growth region which is more relevant to experimental

measurements.
As far as one considers modest values of the size R in

the growth regime (say, 2–3R*), the solution to the ZF

model [14] can provide a reasonable starting approxi-

mation [12,17]. Indeed, independent numerical studies

of the full transient problem [8] confirmed the accuracy

of elementary expressions. At the same time if one pro-

ceeds to the region of larger R, even minor differences in

the growth rates accumulate in the growth time, and the
difference in the transient solutions for the ZF and TF

models becomes noticeable. As a temporal remedy

one could still use the ZF solution, adjusting only the

term associated with growth of large particles to its

TF value [18]. This allowed to describe transient solu-

tions for R[ 5R*. The possibility to check large sizes

at the time was limited by the amount of equations

which could be solved (and which should exceed (R/
R*)

3n* with n*, the critical number, being of the order

of several tens). With rapid advance in computer power,

however, Granasy and James [11] were able to solve up

to 200000 equations which allowed them to consider

sizes up to 20 R*. At such sizes they observed minor

deviations between their data and the interpolating

expression [18].

The intent of the present study is to clarify the struc-
ture of the time lag in the TF model at very large R

when the difference from the ZF case becomes appre-

ciable. From an analytical point having an additional

large parameter simplifies the treatment, and indeed

often leads to elementary expressions. Exact data are

used to monitor the accuracy of the approximations.

Transient curves are also evaluated. For the TF model

the difference with the data by Granasy and James
disappears at least within the reported limits of

accuracy.
1.1. Main parameters of the nucleation equation

The general master equation of the nucleation prob-

lem has the form

dfn=dt ¼ jn � jnþ1; jn ¼ bn�1fn�1 � anfn. ð1Þ

Here fn is the density of nuclei which contain n mono-

mers, and jn is the flux in the n-space. The gain and loss

coefficients are connected through the minimal work,

W(n), which is required to form a nucleus via the de-

tailed balance condition

an ¼ bn�1 expf½W ðnÞ � W ðn� 1Þ�=Tg: ð2Þ

(Boltzmann constant is taken as 1.) The (quasi)equilib-

rium distribution, which would correspond to a zero

flux, is given by f eq
n ¼ f1 expf�W ðnÞ=Tg. Maximum of

the work W is achieved at the critical number n = n*.

The boundary conditions are taken as f ðnminÞ ¼
f eq
n ðnminÞ at some small nmin � n*, while fn ! 0 for

n ! 1.

In the Turnbull–Fisher model one has [10]

bn / n2=3 expf½W ðnÞ � W ðnþ 1Þ�=2Tg. ð3Þ
Within the classical approach the work W is taken as

W ðrÞ ¼ W �ð3r2 � 2r3Þ; r ¼ ðn=n�Þ1=3 ð4Þ
withW* corresponding to the barrier to nucleation and r

being the dimensionless �radius�. It is assumed that W* is

large compared to T and

� ¼ � 1

T
d2W
dr2

����
�

� ��1=2

¼ 6W �

T

� ��1=2

� 1; ð5Þ

determines the main small parameter of the nucleation

problem. [To avoid confusion with notations, note that

in previous publications we used � which differs by a

constant]. There is also another small parameter, namely
the inverse of the critical number n�1

� . For simplicity of

the discussion, we assume that a combination of the two

a ¼ 2
W �

Tn�
¼ 1

3n��2
; ð6Þ

remains finite for � ! 0 or n* ! 1, but otherwise a can

be large or small compared to unity. Note that finite dif-

ference in Eq. (1) can be replaced by derivatives (which

would make it the Zeldovich–Frenkel equation) when

a ! 0, so the latter plays the role of a �discreteness
parameter� [12].

1.2. Growth rate

The deterministic growth rate, _n, is introduced from

the condition that for a smooth function fn in Eq. (1),

the flux jn should approach the drift flux, _nfn. Further,
this rate is also �macroscopic�, in the sense that changes
in n by ±1 should result in only minor effects, and finite
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differences of �smooth� functions are replaced by deriva-

tives. In terms of r one has

vðrÞ ¼ _n=ð3n1=3� n2=3Þ. ð7Þ

The growth rate changes sign at the critical size, and

the main time scale [19] can be defined as

s�1 ¼ dvðrÞ
dr

����
�
’ b�=ð9n2��2Þ. ð8Þ

The ZF growth rate is given by

svZFðrÞ ¼ 1� 1=r � fðrÞ; ð9Þ
and the dimensionless function f(r) will play an impor-

tant role in further discussion. Alternatively, the TF rate

is given by Kelton and Greer [15]

vðrÞ ¼ 2

as
sinh½af=2�. ð10Þ

According to Zeldovich [19] the same time scale s
which enters into the growth rate also determines the

pre-exponential of the steady-state nucleation rate

js ’
3�n�
s

ffiffiffiffiffiffi
2p

p f1 exp �W �

T

� �
. ð11Þ

The above expression is asymptotic, valid for � � 1
and �n* � 1. Similar requirements will be assumed in

the time-dependent case discussed below. An exact

steady-stateflux jes (withveryclosenumerical values) is also

available due to Farkas [20] and is given in Appendix A.

1.3. The transient solution

The full transient problem can be treated asymptoti-
cally, but not exactly. The matched asymptotic: solution

of the nucleation equation [13,14] gives the flux

jðr; tÞ=js ¼ expf� exp½ðtiðrÞ � tÞ=s�g ð12Þ
with �incubation time�

tiðrÞ ¼ tdecð1� �; 0Þ þ tgrð1þ �; rÞ. ð13Þ
Here tdec and tgr are positive decay and growth times,

respectively with indicated initial and finite sizes (i.e. the

integrals �dr/v(r) with indicated integration limits). As a

reference, we will be using the elementary ti(r) for the ZF

equation [14]

tZFi ðr; �Þ ¼ s r � 2þ lnðr � 1Þ þ ln
1

�2

� �� �
. ð14Þ

Separation of the barrier-dependent term is typical,

but otherwise the r-dependence is specific for the model

considered. Strictly speaking, Eq. (12) was derived for
the ZF and the BD cases [13,14], and the TF model,

which has less smooth coefficients bn could require a

more careful analysis. At the moment, however, there

seems to be no reasons to disbelieve this equation, in

particular because it predicts a time-lag (see next sec-
tion) which is consistent with the exact expression [12].

Thus, below we focus on the more accurate evaluation

of ti, appropriate for the TF case, otherwise relying on

Eq. (12) for the transient shape.

In case nmin, which locates the lower boundary,

makes a noticeable fraction of n*, the incubation time
is reduced by the corresponding decay time

tiðr; rminÞ ¼ tiðrÞ � tdecðrminÞ ð15Þ
with rmin = (nmin/n*)

1/3<1. In the ZF case one has

tZFdecðrminÞ=s ¼ � lnð1� rminÞ � rmin ð16Þ
but for discrete models tdec cannot be evaluated in ele-

mentary functions and approximations will be discussed

later in the paper. Detailed numeric studies of the effects
of the lower boundary for the Becker–Döring equation

have been performed by Shizgal and Barret [21] in terms

of the time-lag, and results are well reproduced by Eq.

(15) [12]. In what follows, we will refine the general

expression for tdec, and propose some elementary

approximations for the TF model.

1.4. The time lag

The time-lag is defined as

tLðrÞ ¼ lim
t!1

ft � qðr; tÞ=jsg; qðr; tÞ ¼
Z t

0

jðr; tÞdt. ð17Þ

Eq. (12) predicts the following relations for the number

of nuclei [14]

qðr; tÞ ¼ sjsE1 exp � t � tiðrÞ
s

� �� �
ð18Þ

(with E1 being the first exponential integral [22]) and the

time lag is given by Shneidman [14]

tLðrÞ ¼ tiðrÞ þ cs; c ¼ 0.5772 . . . ð19Þ

with c being Euler constant. The above relations are

asymptotic, valid for a high barrier and the size r in

the growth region, (i.e. r � 1 � �). An exact time lag

teL of Ref. [12] is given in Appendix A.

1.5. Experimental meaning of parameters

Since, unlike js the transient flux j(r, t) depends on re-

duced size r, experimental meaning of this parameter

should be clarified. If R* is the radius of the critical

nucleus, in one-step annealing experiments R = rR*

corresponds to the lowest detectable size, usually
much larger than R*. Similarly, the distribution of

nuclei over sizes, as observed, e.g., in the TEM studies

of amorphous thin films [7,8] corresponds to

R�1
� jðr; tÞ=vðrÞ.
In two-step annealing R is the critical size at the

higher (development) temperature if heating between

the two stages is fast. There has been some confusion
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in literature regarding to what happens for a finite heat-

ing rate [23]. Most likely, the above transient expressions

will remain valid in that case as well, but R will have a

meaning of the �survival size� [24], i.e. the smallest size

which will grow after heating is completed.
2. Analytical and computational methods

2.1. General

It is convenient to express the incubation time as a

correction to the elementary expression for the ZF equa-

tion, tZFi in Eqs. (14)–(16):

tiðr; �; aÞ ¼ tZFi ðr; �Þ þ dtiða; rÞ; ð20Þ

dti, which is independent of the barrier, is given by

1

s
dtiða; rÞ ¼ F½fðrÞ� þF½fðrminÞ� ð21Þ

with

F½f� ¼
Z f

0

df

ð1� fÞ2
1

sv
� 1

f

� �
. ð22Þ

The same correction can be used for the time lag, due

to Eq. (19). Note that Eq. (13) is singular for � ! 0 since

both tgr and tdec diverge near r = 1. However, the ZF

approximation to the growth rate, Eq. (10), takes care

of this singularity and the integrand in Eq. (21) remain

finite near the critical size, which corresponds to f = 0.
For r � 1 one can keep only the divergent parts of

the integral as f ! 1, which gives

1

s
dtiða; rÞ ¼ r½F ðaÞ � 1� þ ln r½GðaÞ � 1� � 2þ DðaÞ.

ð23Þ

Here D(a) is a constant which is defined to be zero in

the ZF limit a ! 0, while F and G follow from the

expansion of the growth rate at large r:

F ðaÞ ¼ a
2 sinhða=2Þ ; GðaÞ=F ðaÞ ¼ ða=2Þ cothða=2Þ:

ð24Þ
(Similar terms appear when describing the transient

nucleation corrections to the Kohnogorov–Avrami

expression for the crystallized volume fraction [25].)

The value of the constant D(a) is given by an integral

DðaÞ ¼
Z 1

0

dr
1

jfðrÞj
fðrÞ
svðrÞ � 1

� �
� ðF ðaÞ � 1Þ

�

�GðaÞ � 1

r þ 1

�
; ð25Þ

which converges near r = 1, as well as for r ! 1, albeit

not too fast.
2.2. Expansion in Bernoulli numbers: moderate

discreteness effects

For small values of jafj the inverse growth rates can

be expanded around the ZF expression as

1

sv½f� ¼
1

f
þ
X1
k¼2

akbkf
k�1; jafj < 2p. ð26Þ

The coefficients bk are expressed through Bernoulli

numbers, B22
k , as

bk ¼ �Bkð1� 21�kÞ=k!. ð27Þ
For reference, b2 = �1/24, b4 � 0.001215, b6 � =

�3.2 · 10�5, and all bk with odd k are zero.

The correction to the ZF time-lag can be obtained

using the term-by-term integration. The result for the
(k + 1)st term in the sum (kP 4) will contain a regular,

polynomial part

pkþ1ðfÞ ¼
Z f

0

zk � 1þ kð1� zÞ
ð1� zÞ2

dz ¼
Xk�1

m¼1

m
k � m

fk�m;

ð28Þ
and two terms which diverge as f! 1, respectively, as 1/

(1 � f) and (for k > 1) as ln(l � f). Summation of the

diverging terms can be performed in all orders in a,

resulting in

F½f� ’ f
1� f

ðF ðaÞ � 1Þ þ ðGðaÞ � 1Þ ln 1

1� f

þ
X1
k¼4

akbkpkðfÞ ð29Þ

with F(a) and G(a) given in Eqs. (24). This gives the size-

dependence of the incubation time at arbitrary (not nec-

essarily large) size r > 1. Note the absence of polynomial

corrections in the lower orders in a, and the first of those
contribution is a4b4p4(f) ’ (a/5.36)4[2f + f2/2]. In the

growth region with 0<f(r)<1 such corrections arc

exceptionally small (in practice, negligible) at a [ 1,

and deviation from the ZF size-dependence is mostly

determined by the first two terms in Eq. (29). At the

same time, when evaluating the decay integral the

expansion in Bernoulli numbers is applicable only for

an �elevated bondary� (see below) since otherwise f has
large negative values, and the condition in Eq. (26)

can be violated. This will not change the size-depen-

dence but will affect the constant D in Eq. (23) and will

be discussed later in the paper.

2.3. Strong discreteness effects, a � 1

Here it is more convenient to start with Eq. (13)
since correction to the ZF expression is not small any-

more. The decay part of ti can be expanded in terms

of 1/a
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tdecð1� �Þ ¼
Z 1

a�=2

dz

ð1þ 2z=aÞ2 sinhðzÞ

¼ � ln tanh
a�
4

��� ���� p2

a
þOð1=a2Þ. ð30Þ

Evaluation of the growth integral in tgr(1 + �, r)
involves more elaborate asymptotic analysis. The inte-

gration region is divided into two domains, between
1 + � and some r0 which satisfies a condition 1/

a � r0 � 1 � 1, and between r0 and r � 1. In the first re-

gion a linearization of the argument of sinh[a/2 Æ (1 � 1/

r)] is possible with a resulting explicit evaluation of the

integral. In the second region, rP r0, one can use the

exponential approximation for the sinh(z) at large argu-

ments which, again, allows for an explicit evaluation of

the integral in terms of the exponential integral Ei. For
large values of a matching of the two regions is asymp-

totically smooth, leading to a result which is independent

of r0. Adding Eq. (30) gives the incubation time

tTFi ðr; aÞ ¼ �2 ln tanh
a�
4

��� ���þ rF ðaÞ � GðaÞEi
a
2r

	 


� p2

a
þ � � � . ð31Þ

The functions F(a) and G(a) are re-introduced for

consistency of notations, but strictly speaking, within

the accuracy of the treatment they should be replaced

by their large-a asymptotes.
If one further considers the limit of large sizes r � a/2

and expands the ln jtanhj function for �! 0, one recov-

ers the general form. Eq. (23), with the leading term in

the D(a) dependence given by

DðaÞ ’ 2þ 2 lnð4=aÞ; a � 1. ð32Þ
The first neglected correction is p2/a which is typically

not a small number, and indeed this asymptotic approx-

imation becomes accurate only for relatively large (and

in practice, not too realistic) values of a. Alternative

approximations will be discussed.

2.4. Interpolation for arbitrary a, and the limit a ! 0

One can approximate the TF growth rate as

1

svðrÞ ’
1

fð1þ f2b2Þ
; b ¼ qa

2p
. ð33Þ

At the moment, parameter q, which is close to 1, is

kept flexible and will be treated as an adjustable para-

meter. With q ¼ p=
ffiffiffi
6

p
� 1.28, Eq. (33) corresponds to

the [0/3] Padé approximation. Keeping only the leading

terms, one obtains

DðaÞ ’ a2 lnðaÞ=24; a ! 0. ð34Þ

This refines the earlier estimation [12] by including a
constant. Although formally valid only for small a ! 0,

the above asymptote remains acceptable for larger
a [ 1, reasonably describing the local shallow minimum

at a � 0.6, and slightly less accurately, the change of sign

near a � 1.

To interpolate for arbitrary a, we perform an explicit

integration for a general q which gives

F½b; f� � � b2f

ðb2 þ 1Þð1� fÞ
þ 2b3tan�1½bf�

ðb2 þ 1Þ2

� b2ðb2 � 1Þ
2ðb2 þ 1Þ2

ln
1þ b2f2

ð1� fÞ2
. ð35Þ

In principle, this function allows one to describe all

sizes in the growth region, as well as the decay region
with large negative f; the value of a can be arbitrary.

A way to systematically improve the accuracy will be

given in Appendix B.

For the constant D(a) in the main Eq. (23) one has

DðaÞ � qb2

2ð1þ b2Þ2
f4þ 4b2 � 2bpþ 4btan�1ðbÞ

� ðb2 � 1Þ ln½b2ðb2 þ 1Þ�g. ð36Þ

Non-rigorously, an extra factor q was included based

on comparison with exact numerics. It turns out that

q � 1.3. close to the Padé value, provides the best fit

and Eq. (36) describes the entire domain of a.

2.5. D(a) from exact time lag

One can use the exact expressions for the time-lag
and its connection with ti. Eq. (19), and define De(a) as

DeðaÞ ¼ teLðrÞ
s

� F ðaÞr � GðaÞ ln r � cþ 2; r ! 1.

ð37Þ

The difference in D(a) and De(a) is obvious since D(a)
depends on fewer parameters, namely on the ratio

a = 2W*/Tn*, while teL in De(a) depends on individual

values of W*/T and n*. Nevertheless, if the asymptotic

treatment is correct, i.e. if Eqs. (19) and (25) are valid,

the values of D and De must be close, while De(a) should

have a negligible dependence on W* (or, on n*) once a is

fixed.

2.6. Computational

The major computational effort was associated with

numerical evaluation of the time lag from the exact

Eqs. (A.2)–(A.4). We avoided an artificial cut-off at

some large N (replacing infinities in the summation lim-

its) which would restrict sizes to n<N, and which would

lead to an extremely long evaluations of the repeated
sums for n>106. Rather, a �computer infinity� was

achieved by adding terms until the sums no longer chan-

ged within prescribed accuracy. Due to rapid conver-

gence, changing the accuracy level from 10�6 to 10�16
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resulted only in a modest increase of computational time

and no significant change in the results. For n [ 105 the

Mathematica program could be used; a C program was

written to cope with larger values.

Another computational issue is evaluation of the

integral (25) to test the analytical approximations. The
integral converges slowly, and requires a delicate com-

pensation of potentially diverging terms. TheMathemat-

ica built-in numerical integration routine was used with

added recursion option, to account for the increased

accuracy requirements. A similar approach was used

when evaluating the integrals in Eq. (13) which logarith-

mically diverge for � ! 0 and which (in the growth case)

linearly diverge for r! 1.
3. Results

3.1. Exact evaluation of the lag and scaling of the results

As follows from previous discussion, the reduced

time-lag

~tLða; rÞ ¼
tL
s
� ln

6W �

T

� �
ð38Þ

is expected to be independent of the barrier, provided

the latter is large. This is illustrated in Fig. 1 where for

each a the corresponding barrier was doubled without

any significant change in the location of points. Such

data are also in good correspondence with the asymp-

totic Eqs. (13) and (19) which previously never were

tested at such large sizes. Note, however, that for larger

a a larger barrier is required to get the expected asymp-
totic behavior. Thus, from a practical point, the results

for a = 8 are formal since nucleation at such high barri-

ers is unrealistic. From a computational point, the most

elaborate was verification of the ZF limit at small a.
4 6 8 10

r

2

4

6

8

re
du

ce
d 

la
g

Fig. 1. Barrier-independent part of the time lag, ~tL. Eq. (38) as a function of r

on an intermediate (left figure) and large (right figure) scales, respectively. In e

Eq. (14) for a! 0. The two other lines are from general asymptotic Eqs. (1

Symbols are from Eq. (38) using exact results for teL for a = 0.4 (which is indi

W
*
/T were chosen as 20 and 40 (a = 0.4), 40 and 80 (a = 4), 80 and 160 (a =
Here, with the critical size n* = 200 values of n over

108 had to be considered for r close to 80, as in Fig. 1.
3.2. Analytic approximations

The general asymptotic expression for the incubation
time, Eq. (13) (solid lines in Fig. 1) can be approximated

at large sizes r � 1 as

1

s
tiðr; �; aÞ ’ F ðaÞr þ GðaÞ ln r þ ln

r � 1

r

þ ln
6W �

T

� �
� 2þ DðaÞ. ð39Þ

The time lag differs by a constant, as in Eq. (19). The

terms F(a) and G(a) are related, respectively, to size-
independent growth rate of large nuclei and to curva-

ture-dependent corrections [14] and are given in Eqs.

(24). The logarithmic dependence on the barrier is due

to contribution of near-critical sizes. The small term

D(a), on the other hand, is sensitive to the entire domain

of sizes and, in a general case, requires a more elaborate

asymptotic analysis. Strictly speaking, the term

ln[(r � 1)/r] is small for r � 1, but it ensures the proper
ZF limit (small a) at arbitrary r>1 which broadens the

practical domain of applicability.

Note the asymptotic separation of the dependences

on the main three dimensionless parameters, r, W*/T,

and a, with the barrier-dependence being the same as

in the ZF case. All functions which enter Eq. (39) are

elementary, although the dependence D(a) at intermedi-

ate a is rather cumbersome, as in Eq. (36). Nevertheless,
as long as D is a function of a single parameter, it can be

easily interpolated. D(a) is shown in Fig. 2 together with

the large- and small-a asymptotes and the interpolating

Eq. (36). Symbols were obtained from Eq. (37) with

r = 100.
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for different values of the �discreteness parameter� a � 2W

*
/Tn

*

ach of the figures the upper line represents the Zeldovich–Frenkel limit,

3) and (19) with a = 4 (middle line) and a = 8 (lower line) respectively.

stinguishable from the ZF limit), a = 4 and a = 8. The reduced barriers

8): in each case n
*
was selected to provide the indicated a.
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Fig. 2. The barrier- and size-independent part of the incubation time,

D(a) in Eq. (39). Solid lines – from Eq. (25), symbols – from exact time-

lag. (In the latter case two different pair of values for the barrier W
*
/T

and the critical number n
*
were considered at each value of a, with

resulting minor scatter at large a.) Dashed lines are corresponding

asymptotes at small a, Eq. (34) and large a. Eq. (32), respectively. The

interpolating dotted line is Eq. (36).
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The dependence of D(a) is rather sophisticated, being

negative at very small a. then passing through a shallow
minimum near a � 0.6, and changing sign near a � 1. A

maximum D(a) � 1. is achieved near a � 7.6. Approxi-

mately, one could write

DðaÞ � 1þ da=34� ðda=4.4Þ2 � ðda=6Þ3;
da ’ a� 7.6;

ð40Þ

which is valid for 1 [ a [ 10, and covers the domain of

practical interest [10,11]. However in the quest for sim-

plicity and due to relative smallness of D (and the oppo-

site, often comparable contribution of the lower

boundary), in some applications it can be reasonable

to neglect its value.

For af(r)� 2p, accuracy of describing the size-
dependence can be systematically improved by including

into Eq. (39) higher-order corrections, as in Eq. (29). In

practice, validity of the approximation is manifested by

the relatively small values of the corrections to the start-

ing ZF expression, and by the diminishing contribution

of terms with higher powers of a. Most of numerical

studies, typically carried out for r [ 2, e.g. the one by

Kelton et al. [10], are expected to be within this domain.
The study of Granasy and Games [11] at larger r, with

af [ 3.5, could require a few extra terms in the expan-

sion, but the main approximation (39) works here rea-

sonably accurately, as will be discussed below, and

within the reported scale of data in Ref. [11] it could

be hard to look for further improvements.

3.3. The effect of lower boundary

As mentioned, placing the lower boundary at a finite

rmin reduces ti(r) by an r-independent constant, deter-

mined by the �decay time�, tdec(rmin). This modifies the

constant in Eq. (39):

DðaÞ ! DðaÞ � tdecðrminÞ. ð41Þ
Using Eqs. (19) and (A.5) one has

tdecðrminÞ ’ �
Xnmin

n¼1

1= _n. ð42Þ

Eq. (42) is valid for any rmin in the decay region (un-

less rmin is directly placed into the near-critical domain

with 1 � rmin [ �, which does not make much sense).
In the ZF case the discrete sum should be replaced by

an integral with a zero lower limit, leading to Eq. (16).

We recommend to use Eq. (42) for practical estima-

tions, since evaluation of the sum is straightforward

and typically involves less than ten terms. In order to

get some analytical insight, one should distinguish be-

tween a �low� and an �elevated� boundary, depending

on the value of �af(rmin).
For a large �af(rmin), the boundary is �low�, and even

if a finite rmin is considered, the effect of such a boundary

in the discrete models will be insignificant and much

smaller than in the ZF case. More accurately, the lower

bound of the estimation for the decay time is given by

the last term in Eq. (42), i.e.

tdecðrminÞJ � 1= _nmin. ð43Þ

For an upper bound, one can multiply the estimation

by 1/(1 � exp(�a/6nmin)).

In the opposite limit of small �af(rmin) (more pre-

cisely, �af(rmin) � 2p), one has an �elevated� boundary.
Since rmin is proportional to the cubic root of nmin, the

boundary can be �elevated� already for rather modest

values of the latter. One can check that even for nmin = 2
most of the simulation studies [10,11] (typical a [ 4) fall

into that domain, and larger nmin, with still smaller

�af(rmin), are often considered. The difference from

the ZF model with non-negligible lower boundary,

Eqs. (14)–(16), is minor. The first correction is given

by

dtð1Þi ða; r; rminÞ ’ ðF ðaÞ � 1Þðr þ rmin � 2Þ
þ ðGðaÞ � 1Þ lnðrrminÞ; ð44Þ

with r>1 and a/2p [ rmin<1. Note that the coefficients

F(a) � 1 and G(a) � 1 equal, respectively, 	a2/24 for

small a. The next correction

dtð2Þi ’ a
5.36

	 
4

5� 3
1

r
þ 1

rmin

� �
þ 1

2

1

r2
þ 1

r2min

� �� �
ð45Þ

is expected to be small within the domain of applicabil-

ity, but can be useful in order to check the accuracy.

Note the dominant contribution of rmin compared to r.

Higher order corrections in a can be systematically
obtained from the expansion in Bernoulli numbers, as

in Eqs. (21) and (29), with dti in Eq. (20) given by

dti ¼ dtð1Þi þ dtð2Þi þ � � �.
The above Eq. (44) is the second main analytical

result of this paper. It can be used as an alternative to
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Eq. (39) when the boundary is elevated and the reduced

size r in the growth region is not necessarily large.

3.4. Transient nucleation curves

Once the incubation time is accurately predicted, one
expects that the entire transient behavior also will be

reproduced. Figs. 3 and 4 compare, respectively, the

transient flux, Eq. (12) and the number of nuclei, Eq.

(18). with results by Granasy and Jarnes [11] for rather

strong discreteness effects, a � 3.5. The correspondence

is good within the reported limits of accuracy. Note,

that not only large, but also intermediate values of

r = 2 and r = 5 are well described by Eq. (39). The effects
of lower boundary were neglected, but this was partly

compensated by the neglect of the constant D(a) in

Eq. (39) and would be bearly noticeable in the scale of

Figs. 3 and 4.
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Fig. 3. The reduced nucleation flux, j(r, t)/js as function of reduced

�time�, t/s, for different values of reduced �radius� r = R/R
*
. From left to

right: r = 2, 5, 10, 15 and 20. Symbols – numerical results by Granasy

and James [11]. Lines – Eqs. (12) and (39). No matching parameters

were used.
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Fig. 4. Reduced numbers of nuclei q(r, t)/js for different r. Comparison

of Eqs. (18) and (39) with data by Granasy and James. Parameters and

order of curves same as in Fig. 3.
In the numerical studies of Kelton et al. [10]. the

lower boundary was placed, approximately at n*/2

(i.e., rmin 
 0.8), and in the growth region the transient

flux was reported at n = 2n* and n = 3n*. The values of

a were close to 4. Kelton�s results should be accurately

reproduced by Eq. (12) for the transient shape, together
with Eqs. (14)–(16), (20), and (44) for the incubation

time which take into account the lower boundary effects

(although we did not perform the actual comparison).

The leading TF correction, Eq. (44) in this case is small.

Also, when fitting transient data of Ref. [10], Wu [26]

suggested to use a log-normal curve, rather than a dou-

ble-exponential given by Eq. (12). It turned out, how-

ever, that for the parameters of interest the log-normal
shape and the one of Eq. (12) are virtually indistingish-

able [27], for which reason one can interpret Wu�s com-

parison in support of the latter.
4. Discussion

In the present work we demonstrated the possibility
of numerically exact evaluation of the time lag of tran-

sient nucleation at very large cluster sizes, up to 108

monomers. This significantly expands the domain of

sizes typically considered in direct numerical solutions

of the nucleation equations, and can serve as an accurate

test for those methods. Applications of the results to

analysis of experimental data also can be anticipated

since the latter, especially in case of one step annealing,
often characterize the transient behavior only by the

time lag.

Generally, the exact expression depends on several

independent dimensionless parameters, such as the re-

duced barrier W*/T, number of monomers in a cluster

n, critical number n*, etc. Those dependences are non-

trivial (cannot be scaled out), which can complicate

the analysis of experimental data. Nevertheless, asymp-
totically such dependences do separate from each other.

The simplest case, in which the Turnbull–Fisher and the

Zeldowich–Frenkel models are equivalent to each other,

corresponds to n* J W*/T � 1. Here the time lag de-

pends only on ln(W*/T) and on an elementary function

of the reduced radius r = (n/n*)
1/3, as in Eqs. (14), (19).

For smaller n* the logarithmic dependence on the barrier

still can be separated, but the remaining function of r
and a = 2W*/Tn* is non-elementary. Depending on the

desired level of accuracy, or on the domain of sizes of

interest, simple approximation which separate the r-

and a-dependences can be constructed. The main result

here is Eq. (39). which with D � 0 should be sufficient in

experimental context. When comparing with exact num-

erics one might add the more accurate values of the con-

stant D discussed above, and further subtract the
contribution of the lower boundary. In the latter case

the main result is Eq. (44) if the lower boundary is
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�elevated�. Systematic expansions for small and arbitrary

a are also discussed. Exact results can be used to moni-

tor the approximations at all levels.

Connection with the full transient nucleation

problem is given via Eq. (19), which relates the time

lag to the �incubation time� ti, and via Eq. (12) which
describes the transient shape or Eq. (18) which

describes the number of nuclei. Good correspondence

with available numerical data, as in Figs. 3 and 4 is

observed.
Appendix A. Exact results for the nucleation equation

With selected boundary conditions the exact steady-

state flux of Eq. (1) is given by

jes ¼ 1
X1
n¼nmin

ð1=bnf
eq
n Þ

,
. ðA:1Þ

The infinite summation limit is formal since the sum
rapidly converges beyond the critical size (and a finite

upper limit originally discussed by Farkas [20] will lead

to virtually identical results).

In the transient case one can get exactly the time lag.

Several forms of the exact expression are available in lit-

erature [12,21,28,29] but not all are suited for the study

of the region r� 1, e.g. due to the presence of exponen-

tially growing terms. We use the form [12] slightly mod-
ified to include arbitrary lower boundary at n = nmin.

Introducing for simplicity of notations.

cðm; nÞ ¼ b�1
m expf½W ðmÞ � W ðnÞ�=Tg;

and distinguishing the exact time-lag by a superscript �e�,
one has

teLðnÞ ¼
Xn�1

m¼nmin

Wm � js
X1

m¼nmin

W2
m expfW ðmÞ=Tg ðA:2Þ

with

Wn ¼
Xn�1

m¼nmin

cðm; nÞ; ðA:3Þ

for n 6 n* and

Wn ¼
X1
m¼n

cðm; nÞ; ðA:4Þ

for n>n*, respectively. Link with the asymptotic treat-

ment is established via a relation

Wn ’
1

j _nj ; jn� n�j � �n�. ðA:5Þ

This allows one [12] to recover the asymptotic Eqs.
(13) and (19).
Appendix B. A systematic expansion of the incubation

time at arbitrary a

Consider a series representation of the inverse growth

rate

1

svðrÞ ¼
1

fðrÞ þ 2b2fðrÞ
X1
k¼1

ð�1Þkk�2

1þ ½bfðrÞ=k�2
; b � a

2p

ðB:1Þ

with the first term corresponding to the ZF approxima-

tion. Using term-by-term integration, one obtains the

correction for the incubation time

1

2s
dtiða; rÞ ¼

X1
k¼1

ð�1ÞkF b
k
; fðrÞ

� �

þ
X1
k¼1

ð�1ÞkF b
k
; fðrminÞ

� �
; ðB:2Þ

where the function F½b; f� is defined in Eq. (35). Since

the terms have alternating signs, a good convergence is

expected.
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