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A lattice gas with non-conserved spin flip dynamics (of both non-Glauber and
Glauber types) is considered at T ° Tc, the critical temperature. For arbitrary
supersaturation, S, a general expression for the inverse of the nucleation rate
along the lowest energy path is derived. The exponential part is identical to the
one by Neves and Schonmann [Commun. Math. Phys. 137:20 (1991)]. The
preexponential can be expressed in terms of elliptic theta-functions for small S,
and in the limits, respectively, of S ± T/f or S ° T/f ( − f being the nearest-
neighbor interaction energy), elementary versions of the general expression are
further obtained. The preexponential has a smooth component, as well as
small-scale modulations which are approximately periodic in the inverse super-
saturation. For S ° T/f, the smooth part is proportional to `S, in contrast to
the zero-T limit where it is linear in S. The latter limit becomes apparent only at
extremely low temperatures which are cubic in S.
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1. INTRODUCTION

Metastable states are a common phenomenon in physics, ranging from con-
densed matter (1–3) to cosmological(4) systems. Nucleation is a typical mecha-
nism for decay of a metastable state via fluctuational formation and growth
of nuclei of the stable phase. Developments in nucleation theory deepen one’s
understanding of the general rules which govern such processes and, poten-
tially, allow one to increase control over metastability in specific applications.

As a rule, for any given metastable system the starting point of a
nucleation description is evaluation of the nucleation barrier, Wg, as
suggested by Gibbs. Once Wg is known, one obtains the exponential part of



the nucleation rate, as first shown by Volmer and Weber. (5) Further speci-
fication (5) comes with the evaluation of the prefactor to the exponential
expression. In some systems, such as glass-forming melts, this prefactor can
compete with the exponential term. In most other cases the exponential
term is dominant. Nevertheless, it is still the prefactor which distinguishes
the fine detail in kinetics of specific systems and without which a theory is
incomplete, while comparison with experiment, including simulations, can
be ambiguous. One of the best illustrations of the importance and com-
plexity of the prefactor issue could be the ‘‘Lothe–Pound paradox’’ (6) in
vapor condensation (for discussion of the paradox see, e.g., ref. 7).

In real systems inevitable inaccuracies in Wg can blur the preexponen-
tial, leaving open questions with respect to its absolute values and depen-
dences on temperature and supersaturation. In this context, the interest in
Ising-type lattice models stems from the fact that Wg for such systems, and
thus the exponential, can be evaluated exactly, allowing one to focus on the
more delicate prefactor. The limits where Wg can be obtained include either
small supersaturation, S, (‘‘field’’ in magnetic terminology), or small tem-
perature T. In the former case the nucleus is macroscopic, and its shape as
well as the value of Wg can be determined from the Wulff droplet con-
struction both for the two-dimensional square (8) and the hexagonal (9) latti-
ces. For small T, on the other hand, only the lowest energy configurations
need to be considered, which simplifies the evaluation of Wg.

At higher temperatures non-classical preexponentials were considered
in refs. 10–13. Large scale Monte Carlo simulations (14, 15) and numerical
transfer matrix methods (16) seem to confirm the theoretical predictions,
although such simulations are necessarily restricted to larger supersatura-
tions (to ensure a reasonably moderate Wg), and the question of precise
identification of the preexponential with any of the classical or non-classi-
cal expectations remains open. (17)

In the opposite limit T Q 0, the barrier Wg for a square lattice can be
obtained for arbitrary field. (18) The nucleus here is composed of a finite
number of spins, and does not have to follow the Wulff construction. (19)

The preexponential of the nucleation rate at T=0 was considered analyti-
cally for Glauber spin-flip dynamics in ref. 20 at large supersaturations.
Results pointed towards a discontinuity at a relatively strong field, equiva-
lent to S=1/2 in present notations. Similar discontinuities were later
anticipated for Metropolis dynamics in another mathematical study (21) for
smaller S, again with excluded even integer values of 1/S. Special values of
S were considered in simulations using the technique of Monte Carlo with
absorbing Markov chain algorithms. (22, 23)

The case of T > 0 and arbitrary, though not too small S, was studied
analytically (partly, with the use of symbolic computations) in ref. 24 for
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another, lattice gas dynamics which is somewhat different from Glauber’s,
as described in the next section. Sharp peaks were found in the pre-expo-
nential at integer 1/2S=1 and 1/2S=2. More recently (25) a similar struc-
ture of the pre-exponential was observed for Glauber dynamics as well
using the aforementioned simulation technique.

The present goal is to study the domain of small T at arbitrary fixed S.
In a sense, the treatment is complementary to the one in ref. 24 where
restrictions on temperature were more relaxed, while S was limited from
below by 1/6. A useful electric analogy will be introduced, which allows
one to visualize the nucleation flux as an electric current flowing in a
network of variable resistors, and which simplifies calculations. Results will
be obtained analytically, without the use of symbolic computations, and
both lattice gas and Glauber dynamics will be considered.

The paper has the following structure. In the Background section the
model and the basic notations are introduced. The minimal work required
to form a cluster of n particles is shown to exhibit two types of maxima as
a function of n: the primary maxima, which generally determine the barrier
Wg, identical to the one by Neves and Schonmann, (18) and the secondary
maxima which can compete with Wg under special circumstances. The
dynamics for particle creation and annihilation is also described in that
section.

In Section 3 kinetic equations for evolution of the cluster number
densities are presented, starting with the conventional approach (5) (which is
valid as long as the nucleation path does not branch), and then generalizing
it to include the multiplicity of cluster shapes and branching of paths. An
electric analogy (to be used later) is also introduced here.

In Section 4 the pre-exponential is defined, and the limit T=0 is con-
sidered. Earlier results are generalized for smaller S for both lattice gas and
Glauber dynamics. Much of the required reduction of the ‘‘electric
network’’ can be completed at this stage, simplifying further treatment.

In Section 5 results are extrapolated to T > 0, giving the upper bound
for the preexponential, and asymptotes are evaluated for various relations
between S and T. Section 6 contains the discussion.

2. BACKGROUND AND OUTLOOK

2.1. The Model

Consider a standard two-dimensional lattice gas, as described, e.g., in
ref. 26. The interaction potential between two particles has a value of − f

(with a positive constant f) if particles are nearest neighbors, and is zero
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otherwise. For sufficiently large negative values of the chemical potential m,
the lattice gas will represent a dilute mixture of mostly single-particle clus-
ters with a few clusters of larger size.

Let us characterize a class—(clusters which can be made identical by
rotation, translation or reflection) by a running index k, with k=0 corre-
sponding to an empty site. The equilibrium number density of such clusters
can be written as

feq
k =wk exp{[n(k) m+fb(k)]/T} (1)

with n(k) and b(k) being, respectively, the number of occupied sites (‘‘par-
ticles’’) and nearest-neighbor pairs in a cluster. The integer number wi [ 8
relates to rotational and reflectional symmetry of a cluster, with wi=1 for
a perfect square or an empty site. Equation (1) follows from the grand
canonical distribution when interaction between clusters can be neglected—
see, e.g., the discussion in ref. 27.

Consider now the chemical potential as the control parameter of the
system. For large compact clusters one has for the number of nearest
neighbors b(k) % 2n(k), excluding the surface effects. Thus, for m < m0

— − 2f the density of large clusters is exponentially small, corresponding to
the gas phase. Conversely, for m0 < m < 0 the lattice gas is metastable and
will tend to nucleate the liquid phase once a dynamics is added to the
system. Formally, metastability is indicated by the divergence of feq

k for
clusters close to a compact shape with n(k) Q .; a rather careful definition
of ‘‘restricted ensembles’’ is required if one intends to treat the problem
rigorously. (28) Physically, the distributions are expected to be close to feq

k

only for cluster smaller than some ‘‘critical size’’ (to be specified below), for
which reason distributions feq

k are often called ‘‘quasi equilibrium’’ in
nucleation literature.

Let us define a dimensionless supersaturation

S=(m − m0)/2f (2)

The domain of metastability discussed above corresponds to 0 < S < 1 and
will be of the main interest for the present study. Larger S lead to an
‘‘unstable’’ gas where feq

k looses physical meaning even for a single-particle
cluster, since the number of such clusters would exceed the number of
empty sites. It turns out, however, that once the kinetic equations are for-
mulated, crossing to S > 1 becomes less dramatic (it is just that nucleation,
usually associated with crossing of a barrier, will be replaced by a simpler
unhindered creation of particles), and formally at least, this region can be
considered within the general scheme.
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Using a simple geometric relation for the perimeter of a cluster

P=4n − 2b (3)

(the argument k will be dropped when no confusion can occur), one can
re-write feq

k in a more familiar form as

feq
k =wk exp( − Wk/T) (4)

with

Wk=f(P/2 − 2Sn) (5)

being the ‘‘work’’ required to create a cluster of a given class, and f/2
playing the role of the zero-temperature interfacial tension.

2.2. Energies of Cluster Formation

In the low temperature limit of main interest will be compact clusters,
with the smallest perimeter P for a given n. The easies way to obtain a
representative for each n is to start with a single particle and to add sub-
sequent particles in a ‘‘spiral.’’ Resulting clusters are always close to rec-
tangular with possibly one incomplete layer. For clusters which are not
complete rectangles the perimeter does not change when a particle is added.
Otherwise, the perimeter is increased by 2 when a new layer has to be
started.

More specifically, if the number of particles n is located between two
perfect squares

m2 [ n < (m+1)2 (6)

the perimeter of any compact cluster can have only three possible values

Pn=˛4m , n=m2

4m+2 , m2+1 [ n [ m2+m
4m+4 , m2+m+1 [ n < (m+1)2

(7)

The work W thus becomes a piecewise linear function of n, as in Fig. 1.
There are two types of maxima. The primary maxima (‘‘p’’) correspond to

np=m2+m+1, Wnp
=f{2m+2 − 2Snp} (8)
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Fig. 1. Reduced ‘‘work’’ Wn/f as a function of the number of particles n in a cluster for
S=0.09. Note two types of local maxima—the primary at n=np, Eq. (8), and the secondary
at n=ns, Eq. (9). The absolute primary maximum determines the critical size and the barrier
to nucleation.

(which is an m by m+1 rectangle with one extra particle on the longer
side). The secondary (‘‘s’’) maxima are

ns=m2+1, Wns
=f{2m+1 − 2Sns} (9)

which is a square with one extra particle on any side. In both cases m can
be any natural number. These two types of extremal classes will be of the
main interest since, under appropriate supersaturation, they can turn
‘‘critical,’’ with the corresponding value of W determining the barrier to
nucleation.

The critical value of m is given by

mg=[1/2S] − 1 (10)

with [x] representing the smallest integer larger than x (note that this
definition of [x] differs by 1 from the one used in ref. 24). The number of
particles in a critical cluster, ng, and Wg—the barrier to nucleation at T=0,
are determined by Eq. (8) evaluated for m=mg. Similar expressions for ng
and Wg are well known in mathematical literature. (18) Note, however, that
for an integer 1/2S two primary and one secondary maximum will have
identical values. This will play an important role in the kinetics described
below.

2.3. Dynamics and Cluster Kinetics

Let new gas particles be allowed to enter the system with a rate em/T,
i.e., dt em/T is the probability for a particle to appear at any empty site
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during an infinitesimal interval dt. An existing particle disappears with
probability dt exp( − f Db/T) with Db \ 0 being the reduction in the
number of nearest neighbors. (A more detailed description of a similar
dynamics, as well as references to crystallization applications and Monte
Carlo realizations can be found in refs. 17 and 29). To simplify notations,
one could rescale time to get a unit rate for injection of particles, with
exp[ − (m+f Db)/T] being the rate with which particles disappear.

A cluster from class i can randomly gain a particle and change class to
k with n(k)=n(i)+1. The probability of this event in a time interval dt is
given by bi, k dt, and the gain rate, bi, k can have a value 0, 1, 2, 4, or 8,
depending on geometry.

The rate of a reverse process—transition to a lower class via loss of a
particle—is given by

ai, k=exp 3 f

T
1Pk − Pi

2
− 2S24 , i < k (11)

This satisfies detailed balance

bi, k feq
i =ai, k feq

k (12)

More complex processes, such as breaking of a cluster into two parts, will
have a negligible effect at low temperatures. (30)

2.4. Glauber Dynamics

In Glauber dynamics the energies of cluster formation are expected to
be identical to those introduced above. The difference comes through the
transition rates which are related to those in lattice gas dynamics by

bG
i, k=bi, k

1
exp{(Wk − Wi)/T}+1

(13)

The loss rates, aG
i, k, will not be required since they automatically recovered

from detailed balance. Similarities of the correction factor with the one
encountered in Fermi statistics are obvious, and indeed under certain
assumptions Glauber dynamics can be deduced from a quantum hamilto-
nian with each spin coupled to a fermionic heat bath. (25, 31)

In the nucleation context, note that the correction factor rapidly oscil-
lates with n between a value close to 1 for a favorable transition with
Wk < Wi and an exponentially small value in the opposite case. This adds
certain extra features to the Glauber case compared to the lattice gas
dynamics where the gain rates bi, k change moderately, between 1 and 8.
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In Metropolis dynamics (MD) the sum of the two terms in the
denominator in Eq. (13) is replaced by their maximum. The MD is identi-
cal to the lattice gas dynamics discussed above for ‘‘downhill’’ transitions
with Wk < Wi (which are less important for the nucleation problem), and
for ‘‘idle’’ transitions with Wi=Wk, which are encountered only for S=1
and S=1/2 between the smallest clusters. Otherwise, the MD is asymptot-
ically close to the Glauber dynamics for all transitions with Wk ] Wi, and
except for the two aforementioned values of the supersaturation, the
nucleation predictions of the two dynamics are expected to be identical at
T Q 0.

3. THE KINETIC EQUATIONS

3.1. Conventional Nucleation Kinetics

In the standard approach (5) all clusters (‘‘droplets’’) are assumed to
have similar shapes and can be characterized by a single parameter n, the
number of particles (which, in the present context can also be identified
with the class index, k). Nucleation is then treated as a one-dimensional
random walk in the n-space. The master equation for the kinetic distribu-
tion of clusters fn with fluxes jn can be written as

dfn

dt
=jn − jn+1, jn=bn − 1, n fn − 1 − an − 1, n fn (14)

With the neglect of depletion of small clusters (which happens on expo-
nentially large time scales), the left-hand boundary condition can be taken
as f0=1, similarly to refs. 5. The right-hand boundary condition is taken
as fn Q 0 for n Q ..

Equations (14) are usually referred to as the ‘‘Becker–Döring’’ equa-
tions, although various closing conditions are often implied (see the
analysis in ref. 32). For f0 — 1, a steady-state distribution, f st

n , will be
established which corresponds to an n-independent flux with a value I
being the ‘‘nucleation rate.’’ Detailed balance allows to exclude one group
of kinetic coefficients in Eq. (14), leading to a recurrence relation f st

n /feq
n =

f st
n+1/feq

n+1+I/(bn, n+1 feq
n ). With the aforementioned right-hand boundary

condition this gives f st
n /feq

n =I(1/bn, n+1 feq
n +1/bn+1, n+2 feq

n+1+ · · · ). From
the left-hand boundary condition one then determines the value of I:

I−1=
1

b0, 1
+

1
b1, 2 feq

1

+
1

b2, 3 feq
2

+ · · · (15)
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Fig. 2. The lowest-energy nucleation path for clusters with less than 10 particles. Note
branching starting from n=6. In the electric analogy clusters are ‘‘junctions’’ while connect-
ing arrows are ‘‘resistors.’’

which, with somewhat different notations, can be traced to the work of
Farkas. (5) The sum rapidly converges beyond the critical size ng, where the
equilibrium distribution feq

n starts to increase.
General properties of the time-dependent Becker–Döring equations at

large times are considered in ref. 32. For intermediate times, which are
smaller than the lifetime of a metastable state, a matched asymptotic tran-
sient solution also can be constructed, (33) which allows one to trace the
establishment of the steady-state regime (see also a more recent ref. 34).
The multidimensional version of Eq. (14) described in the next section,
however, is much more complex, and at the moment only steady-state
solutions will be discussed.

A succession of the lowest energy configurations for the present
problem is shown in Fig. 2. For larger supersaturations S > 1/4, when the
critical size falls into the nonbranching part of the path, the conventional
approach should provide an excellent approximation at small temperatures,
provided one uses exact, rather than phenomenological(5) expressions
for feq

n . For S < 1/4, however, the critical size falls into the branching
part of the nucleation path. That means that several distinct shapes
with the same n should be considered, which requires a generalization of
Eqs. (14).

3.2. Generalized Becker–Döring Equations

For each class k \ 1 one can define the ‘‘incoming’’ and ‘‘outgoing’’
fluxes, I+

k and I−
k , respectively:

I+
k =C

i
{bi, k fi − ai, k fk}

I−
k =C

i
{bk, i fk − ak, i fi}

(16)
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Summation runs over all classes with either n(i)=n(k) − 1 for the incoming
fluxes, or with n(i)=n(k)+1 for the outgoing fluxes. The time-dependence
of cluster densities is then given by

dfk

dt
=I+

k − I−
k (17)

These equations are valid as long as the fraction of the lattice sites
occupied by the gas particles is small, i.e.,

C
k

n(k) fk ° 1 (18)

Violation of the above inequality could mean non-negligible effects of
cluster-cluster interactions, which are not included in Eqs. (16) and (17).

With restrictions imposed by Eq. (18), the left-hand boundary condi-
tion is f0=1. This is similar to conventional picture since there is no
branching in that part of the nucleation path. The right-hand boundary
conditions can be taken as fk Q 0 for n(k) Q .. One expects that, asymp-
totically, the nucleation rate will be not too sensitive to the precise location
of the absorbing boundary (for example, one could place it at some large,
but finite nup), although an explicit demonstration of this insensitivity could
be extremely challenging.

With the above selection of boundary conditions, one expects the
existence of a steady-state solution, similarly to the Becker–Döring case. (32)

Physically, such a solution makes sense as long as the inequality (18) holds,
which implies exponentially weak limitations on time for an exponentially
small nucleation rate.

To strengthen connection with the conventional picture, one can
introduce a total number of clusters with n particles, Fn=; k fk (where
summation is over all k with n(k)=n) and a similar integral flux Jn=
; k I+

k . From Eqs. (16) and (17) one obtains

dFn

dt
=Jn − Jn+1 (19)

The steady-state nucleation rate I is the integral flux Jn at any size. Other-
wise, similarity with Eq. (14) is formal since the fluxes Jn cannot be
expressed through Fn and Fn − 1.

Once Eqs. (17) are treated as exact ones (i.e., the inequality (18) is dis-
regarded and the boundary conditions are fixed), one does not expect any
dramatic modifications in the solution beyond the original metastable
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domain 0 < S < 1. In particular, at T > 0 the solution should be a contin-
uous function of S at S=1, and lead to a finite value of I Q b0, 1 for
S Q .. The physical interpretation, of course, is very different since for
S > 1 there is no barrier to nucleation and, rather than being a ‘‘nucleation
rate,’’ I has the meaning of a rate with which particles enter the system. If
one does invoke the inequality (18), the duration of such a solution
becomes extremely short, for which reason the region S > 1 will be only of
formal interest.

3.3. Electric Analogy

Consider Fig. 2 as a conducting path with classes being treated as
electric junctions with voltages Vk=fk/feq

k . Arrows which connect two
classes i and k are ‘‘resistors’’ Rik. If, for i < k and n(i)=n(k) − 1, one
defines

Rik=1/bi, k feq
i (20)

then the partial fluxes jik=bi, k fi − ai, k fk can be treated as ‘‘currents’’

jik=(Vi − Vk)/Rik (21)

This is the ‘‘Ohms law.’’ The incoming and the outgoing fluxes for a class k
are given, respectively, by I+

k =; i jik and I−
k =; i jki. The steady state

condition for Eq. (17), I+
k =I−

k , is then the ‘‘junction rule.’’
Since the total voltage difference in the circuit is V0=1, the total

current I, which is the nucleation rate, is the inverse of the equivalent
resistance. For a non-branching path, resistances are in series and just add
up, which leads to Eq. (15). For branching, ‘‘Kirchoffs equations’’ are to be
solved. Solution can be quite elaborate if all configurations are taken into
account, and can be completed only for sufficiently large supersaturations
(relatively small nup). (24) In the lowest energy description, however, one has
to deal only with additional simple series-parallel connections as in Fig. 2.
Such connections can be be replaced by single branches with known
equivalent resistance, restoring the one-dimensional structure of the
problem.

4. THE PRE-EXPONENTIAL, AND THE LIMIT T Q 0

Following ref. 24 let us define the pre-exponential A from the known
zero-T barrier, and from the nucleation rate I, which is yet to be cal-
culated:

I−1=A exp{Wg/T} (22)
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In the metastable region 0 < S < 1 the barrier Wg follows from Eq. (8) with
m=mg and is equivalent to the one obtained by Neves and Schonmann. (18)

Formally, one can also include the region S > 1 by defining here the barrier as
zero, so that the preexponential coincides with the inverse of the ‘‘rate’’ I.

4.1. Lattice Gas Dynamics

For S > 1/4, when the critical size falls into the non-branching part of
Fig. 2, Eq. (15) can be applied directly. For non-integer 1/2S only the
dominant term in the series, corresponding to the highest primary
maximum (‘‘the largest resistance’’) survives the limit T Q 0. This gives

A0=(wn*
bn*, n*+1)−1, ng=0, 1, 3 (23)

I.e., A0=1/4 for 1/4 < S < 1, S ] 1/2, and formally A0 is 1 for S > 1 in
accord with ref. 24.

For smaller S [ 1/4, when ng falls into the branching part of the
nucleation path, consider first a group of primary classes k with the same
n(k)=np (e.g., the two 7-particle clusters in Fig. 2). From the left, each
primary class is connected to the same m by (m+1) rectangle with
m=[`np − 1]. The connecting ‘‘resistances,’’ however, are negligible for
S < 1/2 compared to the resistances from the right discussed below. (Thus,
every primary class in this group has an identical ‘‘voltage’’ in the electric
analogy). From the right, each of the primary classes k is connected to
some non-extremal class i which has the shape of the aforementioned rec-
tangle with two additional neighboring particles on the longer side (e.g, the
8-particle cluster in Fig. 2). Connecting resistances are given by

Rki=exp{Wnp
/T}/bk, iwk (24)

where the exponential term is identical for all k in the group. Resistances to
the right of class i are negligible, which means that all resistances given by
Eqs. (24) are ‘‘in parallel.’’ Thus, one has to add the inverses of Rki to get
the inverse of the equivalent resistance, R−1

np
=exp{ − Wnp

/T} ; k, i bk, iwk

(summation is over all k, i with n(k)=n(i) − 1=np). The actual calcula-
tions are straightforward since bk, i can only have the value of 1 for an m by
(m+1) rectangle with an extra particle near the corner of a longer side, or
the value of 2 for any other location of the extra particle on that side. The
value of wk is 8 for all configurations, except for the single symmetric con-
figuration for an odd m+1, with wk=4. The result is insensitive to the
parity of m, and is given by

Rnp
=exp{Wnp

/T}/8m, m=[`np ] − 1 (25)
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Fig. 3. Prefactor of the inverse nucleation rate, for T=0 (the lower solid line), Eq. (23), and
at T > 0, from Eq. (35), (upper solid line with u=10−7). The smooth asymptote—dashed
line—is given by Eq. (45).

Contributions of secondary maxima are similar to the above, with np

replaced by ns and m in the denominator replaced by m − 1.
In the limit T Q 0 the equivalent resistance with np=ng dominates,

giving the inverse of the nucleation rate. Since the corresponding value of
Wnp

coincides with the barrier Wg, the preexponential is

A0=1/8mg (26)

This is valid for mg \ 2, with non-integer 1/2S. The value of A0 is shown
by the lower line in Fig. 3.

Consider now an integer 1/2S, which coincides either with mg or with
mg − 1, depending on the direction from which the integer number is
approached. Here another primary and a neighboring secondary maxima
will provide comparable contributions, leading to a sharp increase in the
value of A0. Specifically for 1/2S=mg+0, the two additional maxima lead
to identical equivalent resistances of exp{Wg/T}/8(mg − 1), which are in
series with the one in Eq. (25) evaluated at np=ng. The preexponential is
thus given by 1/4(mg − 1)+1/8mg. Replacing mg by 1/2S (which makes
the result insensitive to the direction the integer limit is taken), one obtains

Apeak
0 (S)=

S(3 − 2S)
4(1 − 2S)

, 1/2S=3, 4,... (27)

For S Q 0 this is three times larger than A0 in Eq. (26). Special values of
Apeak

0 at S=1, 1/2, and 1/4 are given, respectively by 5/4, 5/8, and 7/16.
One should keep in mind, however, that the peak at S=1/2 will be
modified by higher-energy nucleation paths, and is lower by about 50%, as
follows from comparison with ref. 24–see also the Appendix below.
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Although the peaks have a finite height, they will have a zero width at
T=0, for which reason they are not shown in the corresponding part of
Fig. 3. Their contribution becomes important for finite T, as will be
described later in the paper.

4.2. Glauber Dynamics

Let us introduce dimensionless variables

u=e−f/T, d=e2fS/T (28)

to characterize the dependence on temperature and supersaturation,
respectively. (In view of traditional applications of Glauber dynamics to
the Ising model simulations, note that u is the standard low-temperature
expansion parameter for that model. (26) Futhermore, if in the Ising model
the spin-spin interaction energy has the values of ± J, and the energy of a
single spin in external field is ± H, equivalence with lattice gas is achieved
with J=f/4 and H=fS).

Applying Eq. (13), one finds two general types of correcting factors

bG
i, k=

bi, k

1+1/d
(29)

for transition to an non-extremal and

bG
i, k=

bi, k

1+1/ud
(30)

for transition to an extremal class. A special case is

bG
0, 1=

b0, 1

1+1/u2d
(31)

At T Q 0 switching to Glauber dynamics mostly affects transition rates to
extremal classes.

The nucleation path is similar to Fig. 2. However, now the resistors
entering the extremal junctions either from left or from right will have
comparable input. In the non-branching part one thus has

AG
0 =1/wn* − 1bn* − 1, n*

+1/wn*
bn*, n*+1 , ng=1, 3 (32)

This gives for the preexponential, respectively, 5/4 at 1 > S > 1/2 and 3/8
at 1/2 > S > 1/4, in accord with ref. 20. For S > 1 one has bG

0, 1=b0, 1 and,
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similarly to the lattice gas case, only one term contributing the the overal
resistance, with the same result AG

0 =1.
The easiest way to visualize calculations for the branching path, is to

remove the degeneracy of an individual extremal class k by breaking it into
wk identical replicas. Each replica will be connected by an exactly one link
(‘‘resistor’’) to a lower non-extremal class and by one link to a higher class.
After adding together the two associated resistors (which are in series to
each other) for each of the replicas, one recovers wk parallel connections.
Further treatment becomes quite similar to the lattice gas dynamics of the
previous section. For non-integer 1/2S one obtains

AG
0 =

3
8mg+4

, mg \ 2 (33)

Compared to ref. 21, the above equation (which is also valid for Metro-
polis dynamics) has an extra term ‘‘+4’’ in the denominator.

For integer 1/2S there is a simultaneous contribution of two primary
and one secondary equivalent extremal resistances. Adding to AG

0 in
Eq. (33) twice that term with mg replaced by mg − 1 (similarly to lattice gas
dynamics), and substituting 1/2S for mg in the answer, one obtains

Apeak
0, G (S)=

3S(3+S)
4(1 − S2)

, 1/2S=3, 4,... (34)

Again, for S Q 0 peaks are three times higher than non-special neighboring
values of AG

0 . At S=1, 1/2 and 1/4 the general pattern is not followed,
and one has for the peak values of the prefactor, respectively, 9/4, 2 and
31/40. However, similarly to the lattice gas case, the second peak can be
lower than 2 due to the contribution of higher-energy nucleation paths.
Indeed, at S=1/2 simulations (22, 25) indicate a value of the preexponential
which is smaller by 10–15%. The peak at S=1/2 is further reduced if
Metropolis dynamics is considered instead of Glaubers, having a value of
13/8 in the lowest energy path approximation. The peak at S=1 will
completely disappear for Metropolis dynamics. Other peaks will remain
unchanged.

5. EXTRAPOLATION TO T > 0

In the present section the lowest energy nucleation path will be used to
estimate the nucleation rate at small finite T. In doing so, one should keep
in mind the potential contribution of the neglected higher-energy paths,
and the question of the magnitude of those contributions remains open,
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(see also the Discussion section below). Since those paths are ‘‘in parallel’’
to the nucleation path considered, they will all act in the direction of
reducing the ‘‘equivalent resistance,’’ sic. increasing the nucleation rate.
Thus, the results obtained from the lowest-energy path should be treated as
the lower bound for the nucleation rate or, equivalently, as the upper
bound for the preexponential.

5.1. Lattice Gas Dynamics

In the previous section the problem has been reduced to a one-dimen-
sional chain of equivalent resistances which connect the primary and
secondary junctions. Only one dominant resistor (or at most three of them
for integer 1/2S) contributed in the limit T Q 0. The straightforward way
to extrapolate the treatment to finite T would be to use the sum of those
equivalent resistances, which leads to an infinite series in powers of u (for a
fixed d), as discussed below. At non-zero T, however, one first needs to
justify the neglect of all resistances which do not emerge from one of the
extremal classes.

Consider Fig. 1. Note that for np or ns reasonably close to ng, the cor-
responding value of Wnp

or Wns
can differ from Wg by an arbitrarily small

number if S is small. This justifies inclusion of a large number of terms in
the series expansion below. On the other hand, the non-extremal values of
W in Fig. 1 are separated from Wg by a finite gap of at least f(1 − 2S). The
latter corresponds to a compact cluster with ng − 1 particles; all other non-
extremal configurations will have a larger separation from Wg. In the elec-
tric analogy, such configurations lead to resistances which are asymptoti-
cally small compared to the dominant resistance, and which are ‘‘in series’’
to it. Thus, contribution of such terms can be ignored for small S. When S
approaches or exceeds 1/2, the gap disappears, but for n [ 3 all resistors
are ‘‘extremal’’ (see Fig. 2) and are taken into account anyway.

Thus, one still can consider only those equivalent resistances which
can potentially contribute at T=0, with unchanged individual values. The
main difference is that at T > 0 the total resistance of the resulting one-
dimensional chain will be determined by all resistors, and not only by the
dominant one. This total resistance, which is the inverse of the nucleation
rate I, is just the sum of individual contributions

I−1= C
.

m=1

u−op(m, S)+u−os(m+1, S)

8m
+D0 (35)

Here op=Wnp
/f and os=Wns

/f are, respectively, the dimensionless ‘‘pri-
mary’’ and ‘‘secondary’’ energies, with np and ns related to m by Eqs. (8)
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and (9). D0 corrects for contributions of small clusters which do not follow
the general pattern:

D0=1+
1

4u2d
+

1
8u3d2+

1
8u4d3 (36)

(these corrections, however, are negligible for small supersaturations with
mg \ 2). The pre-exponential A is obtained by multiplying Eq. (35) by
uW*/f, and is shown in Fig. 3.

In a general case, Eq. (35) determines a rather complex function of u
and d. Consider, however, u Q 0 with a finite d, which corresponds to a
scaling limit S, T Q 0 with S/T=const. Here, the dependences on S and
S/T factor, although the latter still will be determined by a special func-
tion.

Contributions of primary and secondary maxima can be evaluated
separately. Introducing

a=mg − 1/2S+1/2 (37)

with |a| [ 1/2, one obtains the exponents in the expansion (35)

Wg/f − op(m, S)=2S(l2+2la), l — m − mg (38)

and

Wg/f − os(m, S)=2S(l2+(2l − 1)(a − 1/2)) (39)

For the primary contribution this gives

Ap=
1
8

C
.

l=1 − m*

1
mg+l

11
d
2 l2+2la

(40)

For mg ± 1 the lower summation limit can be replaced by − ., while
l in the denominator can be neglected compared to mg. The remaining
series leads to an elliptic theta function h3(x, y) (35) with one imaginary
argument

Ap=Bp/8mg , Bp=h3
1 ia ln d,

1
d
2 (41)

Similarly, for the contribution of secondary maxima, one obtains

As=Bs/8mg , Bs=h3
1 i 1a −

1
2
2 ln d,

1
d
2 da − 1/2 (42)
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Fig. 4. Approximations to the prefactor at small S. Solid line and the monotonic dashed line
are, respectively, the full expression [from Eq. (35)] and the smooth asymptote for u=10−7,
same as in Fig. 3. The elliptic function approximation, Eq. (43), is shown by a longer-dash
line, starting from 1/S=3. The S ° T/f asymptote, Eq. (44), is shown by a shorter-dash line
starting from 1/S=5.

Thus, the total pre-exponential is given by

A=A0(Bp+Bs) (43)

Strictly speaking, within the accuracy of the treatment A0 from Eq. (23)
should be replaced by its continuous version, Ã0=S/4, but it helps to
make obvious the connection with the zero-temperature limit. For T Q 0
one has, respectively, B0

p=1, B0
s =0 for non-integer 1/2S, and B0

p=2,
B0

s =1 for integer 1/2S, so that in this limit Eq. (43) is consistent in with
Section 4 for any small S.

Equation (43), together with its counterpart for Glauber dynamics
described in the next section, are the main results of the present paper. For
small supersaturations, Eq. (43) provides an asymptotically accurate
approximation to the general expression (see Fig. 4). For a fixed supersa-
turation, the temperature dependence is smooth. Alternatively, for a fixed
T the S-dependence has a saw-tooth structure, as in Fig. 4.

The general expression has elementary asymptotes for d Q 1 (small
supersaturation) and d Q 0 (small temperature), respectively. The former
case corresponds to a large number of terms contributing to the sums in
Eq. (35), which can be replaced by integrals. This gives

A % A0
= p

ln d
(da2

+da2 − 1/4), S ° T/f (44)

Peaks in Fig. 4 are described by this approximation, although there are
small discontinuities which are not seen in the scale of the figure (disconti-
nuities are removed if the smooth version Ã0=S/4 is used instead
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of A0—see the example of the Glauber dynamics below—which otherwise
practically does not affect the accuracy of the approximation). In the
original variables one has an asymptotic dependence

A ’
1
4
=pST

2f
(45)

for the ‘‘smooth’’ part of the pre-exponential. Small scale modulations
appear if the above expression is multiplied by 1+(2a2 − 1/4) fS/T. Local
maxima (peaks) are located at a= ± 1/2, while a=0, approximately, locates
the minima of modulations.

In the ‘‘cold’’ limit d ± 1 the maximal term in Eq. (35) is dominant.
However, there are four additional terms (two primary and two secondary
maxima) which potentially give a comparable contribution for special
values of the supersaturation. In order to account for such cases, one needs
a 5-term approximation

A5=A0+
da − 1/2+d2a − 1

8(mg − 1)
+

d−a − 1/2

8mg
+

d−2a − 1

8(mg+1)
, mg \ 3 (46)

One can check that this expression is continuous—the discontinuities in a
and mg compensate each other. This is an accurate approximation for finite
S (which, in the region of its applicability, would practically blend in with
the solid curve in the scale of Fig. 4), and which leads to a correct zero-
temperature limit. It gives, however, a typical A ’ S dependence for S Q 0
and finite T, instead of the square root asymptote, as in Eq. (45).

Deviation from the zero-T limit, approximately, is the smallest at the
midpoints between the peaks, at odd 1/S, where it scales as d−1/2. Devia-
tion increases towards even 1/S, where it scales as d |a| − 1/2. This is in quali-
tative agreement with conclusions based on simulations for Glauber
dynamics, (25) although remarkably, directly at even 1/S deviation from the
limit T=0 is the smallest, as shown below.

Peaks at integer 1/2S are given by

Apeak=Apeak
0 +

1
8mgd

+
1

8(mg+1) d2 (47)

Note that the finite-T corrections are smaller (have a larger negative power
of d) compared to those at non-special values. In other words, as tempera-
ture is lowered, the limiting values of A in a given finite interval of 1/S
(fixed mg) are first approached at even 1/S, at the peaks, then at odd 1/S,
and then in the rest of the interval.
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The width of a peak is given by T/(4fS). This should be compared to
the distance between peaks, which is S2/2 for S ° 1. Thus, already at a
rather low temperature T/f > 2S3, peaks are broad enough to dominate
the pre-exponential.

5.2. Glauber Kinetics

As shown in Section 4, in the Glauber case one has to consider two
groups of ‘‘resistors’’ which are connected to each extremal junction,
respectively from left and from right. According to Eqs. (29)–(31) these two
groups have a different temperature dependence, which somewhat compli-
cates the situation compared to lattice gas dynamics. Nevertheless, after all
resistor spanning a group of extremal junctions with a given number of
particles, are replaced by a single equivalent resistor (where relative con-
tributions from left and from right will be skewed compared to T=0), the
problem is again reduced to an effectively one-dimensional one. Adding the
resulting resistances gives the total equivalent resistance of the chain, which
is the inverse nucleation rate:

I−1
G = C

.

m=2
(g(m, d) u−op(m, S)+g(m − 1, d) u−os(m, S))+DG

0 (48)

with

g(m, d)=13+
1
d
218m+

4
1+1/2d

2−1

(49)

and

DG
0 =1+

5
4u2d

+
3

8u3d2+
3

8u4d3+
1

4u4d4 (50)

The latter correction appears due to violation of the general pattern for
smaller clusters, and can be traced to the non-branching part of Fig. 2.

Once the nucleation rate is known, the preexponential follows from
Eq. (22). Qualitatively, the structure of the preexponential is very similar to
the one from lattice gas dynamics, which is shown in Fig. 3, although the
numerical values in the Glauber case are higher, and at T=0 there is an
additional discontinuity at S=1/2 . (20) In the region 1/4 M S M 1/2 and
small temperatures, Eq. (48) is in reasonable agreement with corresponding
simulation data of ref. 25, although the latter are slightly lower near
S=1/4 and S=1/2 due to contributions of higher-energy nucleation
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paths. Correction for such paths and a more detailed comparison will be a
subject of a separate study. (36)

For small supersaturation the D-term does not contribute, while
summation of the series can be expressed in terms of elliptic theta-func-
tions, similarly to the case of lattice-gas dynamics. One thus obtains

AG % ÃG
0 (1+1/3d)(Bp+Bs), ÃG

0 =3S/4(S+1) (51)

where ÃG
0 is the smooth version of the zero-temperature limit, Eq. (33) with

mg replaced by 1/2S, while Bp and Bs are the same as defined in Eqs. (41)
and (42).

Similarities with Eq. (43) allow one to use almost verbatim the
approximations of the previous section. In particular, for S ° T/f one has
an asymptotic dependence

AG ’ = pST
2f

(52)

which is exactly four times larger than for lattice gas dynamics.
At low-temperatures a five-term approximation can be constructed

similarly to Eq. (46) by selecting the leading primary term in Eq. (48) (the
one with m=mg), and adding two primary and two secondary terms with
m=mg ± 1. For mg \ 3 one has

AG
5 =g(mg, d)(1+d−1/2 − a)+g(mg − 1, d)(da − 1/2+d2a − 1)

+g(mg+1, d) d−1 − 2a (53)

Compared to lattice gas dynamics, there is an additional dependence on d

through the coefficients g. For large d, however, such corrections are small
as 1/d and, qualitatively, conclusions about the width of the peaks and
their sensitivity to temperature remain unchanged.

In case of Metropolis dynamics (MD) there are a few modest modifi-
cations. The small-cluster correction is given by

DM
0 =max(1, 1/u2d)+max(1, 1/ud)(1/4u2d+1/8u3d2)+1/4u4d3 (54)

This determines the inverse of the nucleation rate for S \ 1/2. For smaller
S the nucleation rate appears to be an analytic function of S (since there
are no near-idle transitions with Wi % Wk where rates in MD can become
non-analytic). An expansion similar to the one in Eq. (48) can be used, but
with the zero-temperature values of the coefficients, g(m, 0) which are not
renormalized with temperature, in contrast to Glauber dynamics (in this
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sense, the MD is simpler). With such modifications, Eq. (53) for the low-
temperature preexponential also can be used for MD, and the general
Eq. (51) is valid once the term 1/3d is dropped. The small-S asymptote in
Eq. (52) is multiplied by 3/4 in case of MD.

6. SUMMARY OF THE RESULTS AND OPEN QUESTIONS

The inverse nucleation rates along the lowest-energy path are given by
expansions (35) and (48) for the lattice gas and Glauber dynamics, respec-
tively. For non-special values of S both expansion have a single maximum
term which determines the exponential part of the nucleation rate (equi-
valent to the one of ref. 18), as well as the zero-temperature limit of the pre-
exponential. Special cases are integer 1/2S, when at least three terms have
comparable contributions, which modifies the preexponential. The number
of contributing terms increases with temperature. For small S ° 1 general
expansions can be evaluated in terms of elliptic theta-functions—see
Eqs. (43) and (51). For S ± T/f and S ° T/f further simplifications are
possible which lead to elementary functions.

When plotted as functions of inverse supersaturation, the preexpo-
nentials for both dynamics will have a typical saw-tooth structure, as the
upper line in Fig. 3. This notably differs from the zero-temperature limit
(lower line in that figure), even at rather low temperatures. Deviation
increases at smaller supersaturations, and a temperature which is cubic in S
is required for the limit to become apparent.

Sharp peaks observed in ref. 24 at relatively large S, are confirmed at
any integer 1/2S both for lattice gas and Glauber dynamics. For both
dynamics, at T=0 and S ° 1 peaks are three times higher than the
neighboring non-special values. For finite T, however, the relative ampli-
tude of those peaks linearly diminishes for small S.

The electric analogy allows one to visualize the nucleation flux as a
current through a branching network. The nucleation rate is then the
inverse of the equivalent resistance of the network. The conventional
description of nucleation as a one-dimensional random walk, (5) can be
described in terms of a simple ‘‘Ohms law.’’ Branching paths (which appear
even at T=0), generally speaking, require more elaborate ‘‘Kirchoffs
equations.’’ It turns out, however, that only certain extremal parts of the
network provide the dominant resistance at small T, and examining the
parallel-series connections in the vicinity of those junctions allows one to
reduce the problem to a one-dimensional chain of resistors, and write down
an explicit solution.

Modulations of the preexponential (or strong oscillations in the imag-
inary part of the free energy observed in transfer matrix studies (16, 37))
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should not obscure the fact that the nucleation rate is expected to remain a
monotonic function of the supersaturation for a fixed temperature. In
terms of the electric analogy, increasing of S leads to the decrease of every
one of the resistances which enters into the network, and one can anticipate
that its equivalent resistance will also decrease. This makes the nucleation
rate a monotonically increasing function of S for all S, and for all types of
the dynamics considered. Available simulations for S N 1/6 with Glauber
dynamics (25) seem to confirm this conclusion.

Comparing the lattice gas and the Glauber dynamics, one notes that
despite qualitative similarities, Glauber dynamics is more sophisticated in
the nucleation context in that the gain coefficient bi, k rapidly oscillates with
the number of particles in a cluster, n, becoming very small for n immedi-
ately preceding an ‘‘extremal’’ value. This is different from the lattice gas
dynamics (and from the conventional nucleation approaches (5)) where gain
only moderately changes with size. Technically, complications due to
Glauber kinetics result in an additional group of ‘‘resistors’’ which enter
each extremal junction. The difference becomes most obvious in the non-
branching part of the nucleation path of Fig. 2. For both dynamics the
classical-type expression, Eq. (15) is valid here, but only in the lattice
gas case, generally there will be a single dominant term (determined by
the minimum feq

n ) in the limit T Q 0. The resulting preexponential—
Eq. (23)—thus bears certain similarities with the early guess by Volmer and
Weber. (5) In the Glauber case, on the other hand, there will be at least two
comparable terms—see Eq. (32)—which has no analogs in ref. 5. In that
sense, the lattice gas kinetics where links with conventional treatments are
obvious, can have an advantage, although it is likely to remain open to
dispute which of the dynamics better mimics a given physical system.

The lowest energy nucleation path considered in the present study
provides a bare, backbone contribution to the nucleation rate. This still can
be increased by higher-energy nucleation paths, lowering the preexponen-
tial. At special values of supersaturation, especially at S=1/2, this effect
can be quite noticeable even at T Q 0. For Glauber and lattice gas dynam-
ics, respectively, this conclusion follows from comparison with data
reported in refs. 22 and 24 which included higher-energy nucleation paths.
The peak at S=1/4, on the other hand is lowered by only a few percent,
and elucidation of such questions will require a separate study. (36)

A related open question (38) is the connection with the macroscopic
description of nucleation based on the so-called droplet model (DM). In
the DM the shape of a nucleus (which is anisotropic at low T) and the
barrier to nucleation are determined from the Wulff droplet construction.
There are estimations of the preexponential in the higher-temperature
region, which are supported by simulations, (15) but less is known about the
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preexponential at small T. In terms of the present work, the macroscopic
limit would be recovered for S Q 0 (with ng Q .), with a finite T. The
number of higher-energy paths in that limit, however, becomes unboun-
dedly large, which can lead to a noticeable change in the preexponential
despite the exponentially small individual contributions of such paths. In
other words, the neglect of higher-energy paths restricts the present treat-
ment to values of S which are not exponentially small in temperature. This
allows one to consider the small S, T limit in the order T Q 0, S Q 0, but
not in the opposite order S Q 0, T Q 0, which is required for the identifica-
tion with the DM. At the same time, one notes that at finite fixed T the
present treatment provides an upper bound for the preexponential, which
decays for small S, in clear contrast with the DM where the preexponential
unboundedly increases as S Q 0. This could mean that the DM preexpo-
nential cannot be applied at low T, although due to the difference in
nucleation barriers used in the DM and in the present study, direct com-
parison of preexponentials remains quite a non-trivial task.

APPENDIX A: LOWERING OF PEAKS BY HIGHER-ENERGY PATHS

One could expect that the paths which involve non-compact cluster
configurations will have a negligible contribution for T Q 0. This is
generally true for non-special values of the supersaturation, but the situa-
tion is more subtle at near-integer values of 1/2S. Here, the ‘‘dormant’’
compact configurations which are not connected directly to any of the
other lowest energy configurations (and which are thus excluded from the
main nucleation path considered), can turn important.

Consider, e.g., a small domain of S around 1/2, with S > 1/2 corre-
sponding to ng=1 and S < 1/2 to ng=3. The corresponding segment of
the main nucleation path in Fig. 2 connects the single-particle cluster, the
dimer, the L-shaped—particle cluster and, neglecting the square which
leads to a negligible ‘‘resistance,’’ the 5 particle cluster. Individual resistan-
ces for each element of this path are given, respectively, by R1, 2=1/(4u2d),
R2, 3=1/(4u3d2) and R3, 5=1/(4u4d3). The resistor R1, 2 dominates for
ud ± 1 (which is S > 1/2), and the resistor R3, 5 dominates for ud ° 1. All
of the resistors have a comparable contribution for d ’ 1/u, which is at
S=1/2. Now consider one of the additional paths which links the the
dimer and the 5 particle cluster of Fig. 2. This path contains the ‘‘minus’’-
shaped 3-particle cluster, and one of the higher-energy shapes of the 4-par-
ticle cluster, which are not shown in that figure. (Possible links with the
L-shaped 3-particle cluster are not important for the qualitative discussion).
Without numerical constants, the resistances involved in the additional
path are, respectively, 1/u3d2, 1/u4d3, 1/u5d4. The overall resistance of this
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path is asymptotically larger than R3, 5 for S < 1/2 or than R1, 2 for
S > 1/2, respectively. Generally, this justifies the neglect of the additional
path at T Q 0. On the other hand, for S=1/2 this path provides a com-
parable contribution. The actual expression is rather elaborate (24) since the
aforementioned extra link to the L-shaped 3-particle cluster leads to a
‘‘Wheatstone bridge’’ (in electric terminology) with notoriously cumber-
some equivalent resistance.
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