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Wulff shapes and the critical nucleus for a triangular Ising lattice
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Equilibrium Wulff shapes and interfacial energies of two-dimensional ‘‘crystals’’ on a triangular lattice are
considered. Asymptotic approximations are constructed for both the shapes and energies in the limitT→0
where crystals are close to perfect hexagons, and the limitT→Tc ~critical temperature! where crystals have
near-circular shapes. The intermediate temperature region is studied numerically, and accurate interpolating
approximations are proposed. The relevance of the study to the nucleation problem is discussed.
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I. INTRODUCTION

In 1901 Wulff1 showed how to construct a minimum
energy surface~‘‘ S surface’’! that encloses a given volumeV
of a crystal, provided one knowss(nW ), the anisotropic inter-
facial tension as a function ofnW , the normal to the interface
This approach formed the basis of the modern understan
of real-life shapes of crystallites, with the variety of pos
bilities introduced by facets, corners, etc.2–4

Further interest in the Wulff construction came from tw
dimensional Ising systems. While some three-dimensio
features~e.g., facets! are absent here for all positive temper
turesT, the possibility of an exact evaluation of temperatu
dependent anisotropics(nW ) made such systems exceptio
ally interesting for analysis. Remarkably, there also ex
experimental situations for which a two-dimensional und
standing is of crucial importance. One can mention tw
dimensional islands on otherwise flat faces of thr
dimensional crystals~see, e.g., Refs. 5 and 6 and referenc
therein!, absorbed monolayers of surfactants,7 etc.

Applications of rigorous results, however, are often h
dered by the fact that the Wulff construction provides a g
eral prescription how to build anS surface which may still
require an appreciable effort before a practical implemen
tion. Not surprisingly, alternative parametric representati
of the Wulff construction were later developed for tw
dimensions8 and for higher dimensions9,10 in a coordinate-
invariant way. A realization of such approaches for Isi
systems on square or honeycomb lattices can be found
spectively, in Refs. 11 and 12. Nevertheless, even in
parametric representation results are usually given in te
of implicit dependencies, and further work is required bo
for an explicit determination of a Wulff shape and for a
evaluation of the interfacial energies.

In this paper we extend the results of Ref. 12 for the c
of a triangular lattice, obtaining theSsurface parametrically
We also asymptotically examine the limitsT→Tc and T
→0 for both Wulff shapes and interfacial energies. Furth
we construct elementary interpolating approximations for
entire temperature region; those are accurate, at worst, to
part in 103. Such approximations can be useful f
experiments5,6 with the triangular lattice formed by atoms o
0163-1829/2001/63~8!/085410~7!/$15.00 63 0854
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the ~111! plane of Cu, as described in Sec. VII.
Another potential application of the results is related

nucleation from a metastable phase. It is expected that
work required to form a nucleus—the key parameter of
nucleation problem—can be obtained from the same equ
rium Wulff construction.13 Once this parameter is evaluate
available semiphenomenological expressions for the nu
ation rates can be specified and tested against large-s
Monte Carlo simulations and numerical studies of trans
matrices. For a square lattice such comparisons were
formed earlier.14–17 There are no comparative studies for
triangular lattice. Monte Carlo simulations of nucleation
such a lattice were carried out recently.18 Many of the kinetic
aspects of the classical picture19–21~e.g., the relation between
nucleation and growth, transient nucleation effects22, etc.!
are accurately reproduced in such simulations. However,
unavailability of an explicit simple expression for the surfa
energy of a nucleus prevented a crucial verification of
thermodynamicsof the classical approach. In Sec. VI w
evaluate the nucleation parameters, and in Sec. VII g
some preliminary results of comparison.

II. BACKGROUND

The anisotropic interfacial tension can be obtained eit
directly ~see, e.g., Ref. 23! or from its relation to the corre-
lation lengthj on a dual lattice:24

s~nW !5T/j~uW !. ~1!

Here T is the temperature~Boltzmann constant is taken a
unity!, anduW is a unit vector normal tonW . In turn, the cor-
relation length can be extracted from the asymptote of
two-spin correlation function.12

For lattices with hexagonal symmetry, the duality~‘‘star-
triangle’’ relation25! implies that the original reduced bon
energy

K5J8/T ~2!

is related to the one on a dual lattice by
©2001 The American Physical Society10-1
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V. A. SHNEIDMAN AND R. K. P. ZIA PHYSICAL REVIEW B 63 085410
tanhK* 5exp~22K !, ~3!

with the triangular lattice being dual to the honeycomb o
and vice versa.

The two-spin correlation function is known exactly for
triangular lattice.26 With this, the honeycomb interfacial ten
sion can be evaluated, and the Wulff construction realize
a parametric form.12 In polar coordinates (r ,u) the result can
be expressed implicitly as

coshH r

T
sinuJ 1coshH r

T
sinS u1

p

3 D J
1coshH r

T
sinS u2

p

3 D J 5A, ~4!

with

A5A~K !5$~cosh 2K* !31~sinh 2K* !3%/sinh 2K* . ~5!

Remarkably, if one evaluates the areaW(T) enclosed by
the curves r (u) in Eq. ~4! three important physical
characteristics—the polar radiusR(u) of an equilibrium sur-
face of a crystal with volumeV, the interfacial tensions in
extremal directions, and the total interfacial energy—can
evaluated. The equilibrium surface is given by

R~u!5r ~u!AV/W,

i.e., just the scaled solution of Eq.~4!. This solution has the
dimension ofs, and foru l5 lp/6,l 50,1, . . . ,11 theinterfa-
cial tension in the direction normal to the surface is inde
given byr (u l). The total interfacial free energy of a crysta
G, is proportional toAVW, with a dimension-dependent pro
portionality constant.10 For the two-dimensional case consi
ered, one obtainsG52(VW)1/2.

As mentioned, the main goal of this paper is twofold. Fi
we wish to adjust Eq.~4! for the case of a triangular lattic
~which will lead to a different value ofA), and to calculate
the resulting interfacial energy of an equilibrium cryst
This will also determine the nucleus in a metastable ca
Second, we intend to obtain asymptotic approximations fo
Wulff shape in the limitsT→0 andT→Tc , which are valid
for both triangular and honeycomb lattices. Understand
asymptotic limits will allow us to construct accurate interp
lating approximations at intermediate temperatures.

Naively, one could think that once the interfacial tensi
is available for one type of hexagonal lattice, the tension
the other type is obvious from the duality relations. Ho
ever, duality links the subcritical region of one lattice, whe
the interface exists, to the overcritical region of the oth
with no phase separation. Thus a preliminary transforma
~the so-calledD2Y transformation27! which links two sub-
critical lattices is required—see Sec. IV. First, however,
will introduce a few relations which are applicable for bo
lattices.
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III. SOME GENERAL EXPRESSIONS

Using duality relation~3!, one can expressA(K) as

A~K !5
1

2 sinh2K
12 sinh2K11. ~6!

The value ofK here can be either the reduced bond energy
the original honeycomb lattice, as in Eq.~2!, or it can corre-
spond to bond energies of another lattice obtained by de
rating a triangular lattice—see next Sec. IV. In both cases
expressions fors in the two principal directions are given b

s1[r ~0!5T
2

A3
arccoshS A21

2 D , ~7!

s2[r ~p/2!52T arccoshHA2A13

4
2

1

2J . ~8!

For T→Tc the asymptote ofA(K) is given by

A23;4~sinh2K21/2!2. ~9!

The values ofs1 ands2 rapidly converge to each other an
to the value of

sc~T!;Tc

4

A3
~sinh2K21/2!. ~10!

This goes to zero asTc2T, with the slope specified for eac
type of lattice by the temperature dependence ofK.

One can also construct a more accurate~though somewhat
less elementary! approximation for the interfacial tension us
ing the fact that anisotropy appears only in higher-ord
terms inTc2T. If r is isotropic in Eq.~4!, this equation can
be averaged with respect tou, giving

I 0@r /T#5A/3,

with I 0 being the modified Bessel function. Since an isot
pic r coincides withs, the latter is given by

s'TI0
21@A/3#. ~11!

In contrast to Eq.~10!, where the error is quadratic inTc
2T, the above expression is accurate up to (Tc2T)5, at
which point the anisotropic terms become important, as w
be described in Sec. V A.

IV. DÀY TRANSFORMATION FOR A TRIANGULAR
LATTICE

Consider a triangular lattice with a reduced bond ener

L5J/T. ~12!

A convenient parameter is

x5tanh~L !, ~13!

with criticality achieved at

xc522A3, Lc50.27465307 . . . ~14!
0-2
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WULFF SHAPES AND THE CRITICAL NUCLEUS FOR A . . . PHYSICAL REVIEW B63 085410
@note that this value is linked to the value ofKc

5arctanh(1/A3) by the duality relation#.
‘‘Decoration’’ of a triangular lattice consists of placing a

additional spin in the center of each triangle~‘‘ D ’’ !, and
connecting it with the surrounding three spins with ne
bonds K, giving ‘‘Y’’ patterns which form a honeycomb
lattice.25 ~The D2Y transformation was briefly mentione
by Onsager, and further examined by Wannier28!. The re-
quirement of equivalence of partition functions on both l
tices leads to the relation

tanh2K5
x

11x1x2
. ~15!

There are certain subtle questions as to what exactly hap
to the interface upon this transformation in a general cas12

but no difficulties are expected for isotropic ferromagne
bonds considered in the present work.

The new honeycomb lattice is subcritical, i.e.,K.Kc , if
the original triangular lattice is belowTc . From Eqs.~6! and
~15!, one obtains

A~L !5
2x

~12x!2
1

~12x!2

2x
11. ~16!

This relation should be used forA in Eq. ~4! in order to
describe the triangular lattice. The expanded path to the
sult ~of which the present work is only a small part! can be
summarized as follows: One starts with a low-temperat
~subcritical! triangular lattice with bondsL; the D2Y trans-
formation gives a low-temperature honeycomb lattice w
bonds K; the duality relation links this lattice to a high
temperature triangular lattice with bondsK* . Finally, the
known correlation function for the latter lattice allows one
evaluate the anisotropic interfacial tension and to realize
Wulff construction.

V. WULFF SHAPES AND ENERGIES

The scaled Wulff shapesr (u)/J obtained from Eqs.~4!
and ~16! at various temperatures are shown in Fig. 1. AtT
50 the shape is a perfect hexagon which rather quic
changes to an almost ideal circle upon the increase of t
perature; analytical and numerical reasons for the rapid
appearance of anisotropy will become apparent shortly.

Due to symmetry, the area can be calculated as

W56E
0

p/6

r ~u!2du. ~17!

To characterizeW we will introduce an ‘‘effective’’ tension

se f f5AW/p, ~18!

which coincides with the actual interfacial tension in the is
tropic high-temperature region. Otherwise,se f f corresponds
to an equivalent surface tension of a circular droplet w
area and energy identical to those of an anisotropic crys
The values ofse f f are shown in Fig. 2 by solid lines togethe
with anisotropic interfacial tensions given by Eqs.~7! and
08541
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~8!, which bracketse f f . Anisotropy which is due to the dif-
ference betweens1 and s2 , indeed vanishes quickly nea
Tc , and we examine this in more detail below.

A. Limit T\Tc

As T becomes close toTc , A(L), approaches its mini-
mum A(Lc), with an asymptote

FIG. 1. The exact Wulff shapes~solid lines! from T50 ~outside
hexagon! to T50.9Tc ~inner circle! in increments of 0.1Tc . Areas
under these shapes correspond toW/J2[pse f f

2 /J2—see Fig.
2—and determine the interfacial energy. Two element
approximations—Eq.~29! ~dashed! and Eqs.~26! and ~31! ~dotted
line!—are shown for T<0.3Tc . Equation ~29!—the high-
temperature approximation—blends in with exact shapes aT
>0.2Tc ; the low-temperature approximation@Eqs. ~26! and ~31!#
blends in with solid lines atT<0.1Tc .

FIG. 2. Exact values for the reduced ‘‘effective’’ interfacial te
sion, se f f /J ~solid line!. The anisotropic tensions in the principa
directions are indicated by short- and long-dashed lines, and
proximations forse f f given by Eqs.~30! and ~33! are shown by
dotted and dash-dotted lines, respectively.
0-3
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A23;36~L2Lc!
2. ~19!

This gives the interfacial tension—radii of smaller circles
Fig. 1—as

sc~T!;4JA3~12T/Tc!. ~20!

At lower temperatures we define a dimensionless ‘‘
dius’’

r~u,T![r /T, ~21!

with

rc~T!52AA/321;sc~T!/Tc , ~22!

determining the leading isotropic term nearTc .
Expanding the left-hand side of Eq.~4! to the sixth power

in rc ~the first term where the anisotropy appears!, and solv-
ing the resulting equation iteratively, one obtains

r2~u,T!5rc~T!22
1

16
rc~T!41

7

93128
rc~T!6

1
1

5760
rc~T!6cos~6f!. ~23!

Here, strictly speaking, an exact value ofrc in Eq. ~22!
rather than its asymptote should be used to ensure the a
racy of higher-order terms in the isotropic part. An exce
tionally minor anisotropy, even forrc , of the order of unity
should be noted. In principle, Eq.~23! can be used for evalu
ating S shapes at intermediate temperatures~i.e., not only in
the strict asymptotic limit!, although a less rigorous but pra
tically more convenient~and accurate! approximation will be
constructed in Sec. V C.

B. Limit T\0

Let us introduce an auxiliary function

m~u!5max$usinuu,usin~u1p/3!u,usin~u2p/3!u%,
~24!

so that

r 0~u!54J/m~u! ~25!

describes the zero-temperature hexagon in Fig. 1 with
area

W0532A3J2.

When considering the case ofT.0, care should be take
since r 0(u) is nonanalytic. The major modification come
from the disappearance of sharp corners—see Fig. 1—an
this section we will use the ideas of singular perturbations
order to evaluate the corresponding reduction in the area

We look for a correction

r ~u!5r 0~u!~11d~u!/4L !. ~26!

From Eq.~4! and the low-temperature asymptote ofA(L),
one has
08541
-

cu-
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d~u!52 ln~11e28uuuL/A3!, uuu!1. ~27!

Despite the restrictions onu, this expression is sufficient to
evaluate the corrections to the area. Indeed, the main co
bution to the integral in Eq.~17! comes from the regionu
5O(1/L), which is well within the region of applicability of
Eq. ~27!. Switching to a ‘‘stretched variable’’ 8uL/A3, and
using the identity

E
0

`

dz ln~11e2z!5p2/12,

one obtains

W02W~T!;
2p2T2

A3
J25151.0776397•••J2S T

Tc
D 2

.

~28!

Despite the exponential closeness ofr (u) to r 0(u) in almost
any direction, corrections toW0 are quadratic in temperature
reflecting the ‘‘chop off’’ of sharp corners in Fig. 1.@In this
context, note that corrections tos(nW ) in principal directions
are, respectively, linear or exponentially small inT, with the
resulting modification of theoverall interfacial energy of a
crystal having an intermediate quadratic dependence.# A
similar quadratic correction, with a different proportionali
constant derived numerically, was also observed for a squ
lattice,18 where an explicit integral expression ofW(T)
through elliptic functions is available.10 In the present study
the constant in Eq.~28! could be evaluated analytically, con
firming, in a sense, the advantage of implicit parametric r
resentations.

C. Intermediate temperatures

In the high-temperature region we introduce the appro
mation

r ~u, T!'
s1~T!1s2~T!

2
1

s1~T!2s2~T!

2
cos 6u,

~29!

with the anisotropic part suggested by the expansion n
Tc . This expression is exact in the directions of extremau
5 lp/6,l 50,1, . . .,11, at any temperature. Otherwise, it co
rectly describes the location of theSsurface for temperature
as cold as 0.2Tc—see Fig. 1. On the ‘‘experimental’’ level o
accuracy the agreement is reasonable even at 0.1Tc ; how-
ever, the low-temperature approximation, which will be d
scribed below, is more adequate and more accurate her

In approximation~29! the anisotropic term does not con
tribute to the area, andse f f is given by

se f f~T!'
s1~T!1s2~T!

2
, T*0.2Tc ~30!

with a relative error less than 1023. The error rapidly de-
creases with the increase of temperature, as suggeste
Fig. 2. At 0.5Tc , for example, Eq.~30! deviates from the
exact value ofse f f.2.91280J by less than one part in 106.
The Bessel-function approximation@Eq. ~11!# can also be
0-4
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used for an evaluation ofse f f ; however, Eq.~30! is slightly
more accurate, and being an elementary function looks m
attractive for applications.

At lower temperatures we construct an interpolating
proximation ford(u) in Eq. ~26!

d~u!'2 ln@~2A! usin(u)u/m(u)211~2A! usin(u1p/3)u/m(u)21

1~2A! usin(u2p/3)u/m(u)21#, ~31!

with

2A'exp~4L !. ~32!

Equation~31! coincides with Eq.~27! in the appropriate lim-
its, but has no restrictions inu.

It can be used when plotting the low-temperature Wu
shapes for a triangular lattice~see Fig. 1!. The approximation
is very accurate up to 0.2Tc . Remarkably, even at 0.3Tc one
still obtain a reasonable, near circular shape~with minor
dimples, the birthmarks of zero-temperature corners!, al-
though Eq.~29! works better here, completely blending
with the exact result in the scale of the figure.

The low-temperature expression forse f f follows from Eq.
~28!,

se f f~T!.JS 32A3

p D 1/2F12
p2

96 S T

J D 2G
5JS 32A3

p D 1/2F121.362886•••S T

Tc
D 2G , ~33!

and is shown by dash-dotted lines in Fig. 2. The error in
regionT,0.2Tc also does not exceed 1023, and the equation
becomes exact forT→0. Thus the two proposed approxim
tions,@Eqs.~30! and~33!# cover the entire region of tempera
tures from zero toTc .

VI. RELATION TO THE NUCLEATION PROBLEM

Consider a small positive fieldh and spins originally
pointing in the ‘‘wrong’’ direction. The free-energy chang
associated with formation of a large domain of properly o
ented spins with volume~area! V is given by

DG~V!52~VW!1/222hJVk. ~34!

Herek(T) is the equilibrium density of up-spins in a trian
gular lattice,

k5
2

A3
x~T!,

and x(T) is the equilibrium magnetization29 ~the values of
x, however, are extremely close to unity anywhere aw
from Tc).

With the effective interfacial tensionse f f defined above,
the critical volume is given by

V* 5
pse f f

2

4h2J2k2
. ~35!
08541
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This locates the maximum ofDG(V), and the corresponding
value

G* [DG~V* !5se f f~pV* !1/2 ~36!

determines the barrier to nucleation, as discussed by Gib
Evaluation of the nucleation rate requires a specificat

of the spin-flip dynamics, which is not part of the prese
work. However, on this stage certain conclusions on ap
cability of some standard nucleation approaches can alre
be made, and this will be briefly discussed in Sec. VII.

VII. DISCUSSION

In the present work exact equilibrium Wulff shapes we
constructed for a triangular Ising lattice. The shapes b
strong qualitative similarities to the case of a honeyco
lattice,12 changing from a perfect hexagon atT50 to a per-
fect circle nearTc . Quantitatively, however, the temperatu
dependence is different for each of these lattices.

Asymptotic analysis of exact expressions was perform
nearT50 andT5Tc , and accurate elementary approxim
tions were constructed for the entire temperature region. T
part of the study can be potentially useful for application

For example, experimental studies of islands on
Cu~111! surface5 fall into the low-temperature asymptoti
region. There does not yet exist a uniform opinion on t
values of J for this system, but if one accept
J'0.16 eV—one of the values used in the above pape
one obtainsTc'0.58 eV. This is between 18 and 22 time
larger than experimental temperatures used in Ref. 5. E
with uncertainties inJ, there is little doubt that the ratio o
T/Tc is small, and the observed islands5 are indeed close to
hexagons.

From Eqs.~25!, ~26!, and~31! ~also see Fig. 1! it follows
that the only observable effect at smallT.0 could be the
erosion of sharp corners of the hexagon, again in qualita
agreement with observations in Ref. 5. Otherwise, the fa
of a two-dimensional crystal remain practically flat or, mo
rigorously, exponentially close to flat. Correction to the i
terfacial energy is quadratic in temperature, and for such
T the asymptotic expression@Eq. 33!# is expected to be very
accurate. This can be helpful for further interpretation
experimental data.

The potential importance of discreteness effects~‘‘finite-
size’’ effects6! at low temperatures should be noted, ho
ever. Applicability of the aforementioned correction requir
a large number of atoms lost from corners, which could b
nontrivial requirement even ifn—the number of atoms in a
two-dimensional crystal—is very large. One estimates
loss from each corner as 0.5n(T/Tc)

2; this falls in the inter-
val between 4 and 14 atoms for 4000,n,9000 reported in
Ref. 5. Discreteness effects for such small numbers are
sible, and the quadratic~in temperature! correction to inter-
facial energy, which is valid strictly forn→`, should be
treated with care.

If the islands are so small that discreteness changes
zero-temperature energy itself, ‘‘clusters’’ rather than Wul
shaped droplets should be considered. For a square I
lattice this was recognized by Neves and Schonmann,13 and
0-5
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the role of such clusters in low-temperature nucleation
ceived further attention in Refs. 30 and 17. There are
equivalent studies for hexagonal lattices.

The obtained high-temperature approximations for
Wullf shapes and energies can be relevant to the analys
large-scale simulations of nucleation and growth of islan
in Ising systems. Higher temperature is usually selected
such simulations in order to ensure detectable nuclea
rates. The nucleus here is a practically circular droplet, w
the interfacial tension accurately given by an element
equation~30! @or by Eq.~11!#; input of the small anisotropy
to the shape of a crystal can be estimated from Eq.~29! or
~23!.

Results obtained in Sec. VI for the free energy of form
tion of a nucleus can be used to specify parameters in sev
mainstream nucleation theories, after which they can
tested against simulation data. For example, one can
estimate the nucleation rate or cluster distributions in
classical nucleation theory19–21 when applied to a triangula
lattice. Those estimations can be compared with data of
18 ~simulations atT.0.82Tc), and the comparison allow
one to rule out the classical theory at this temperature sin
predicts unrealistically small slopes for both the fie
dependent nucleation rate and the size-dependent dist
tions. This could be an important conclusion, even if ne
tive, due to an extraordinary status of that theory
understanding the nucleation phenomena. More rec
approaches31–34 seem to work more accurately here, sim
ms

ev

ur

o

, J

tt.

ys
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larly to the better studied case of a square lattice,15,16 but
more simulation data are required for any definite conc
sions.

APPENDIX: HONEYCOMB LATTICE

All of the above expressions which do not yet specify t
temperature dependence but contain only the functionA(L)
are valid for the honeycomb case as well, withA(L) re-
placed byA(K) from Eqs.~2! and~6!. SpecifyingA(K), for
T→Tc one obtains:

sc
hon~T!;4J8~12T/Tc! ~A1!

~note a somewhat unexpected integer value of the slo!.
This asymptote determinesrc in the high-temperature expan
sion @Eq. ~23!#. The intermediate approximations for th
Wulff shapes and energies,@Eqs.~29! and ~30!# still can be
used with appropriate values ofA(K) in Eqs.~7! and ~8!.

The low-temperature approximation for the Wulff sha
is given by Eq.~31! with

A~K !'e2K/2.

From the analysis for the triangular case, switching fro
low- to high-temperature approximations~with errors in en-
ergies less then 1023) should be done aroundA5120. This
corresponds to 0.24Tc in the honeycomb case, compared
0.2Tc in the case of a triangular lattice.
ys.
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