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Modulation of the Nucleation Rate Preexponential in a Low-Temperature Ising System
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A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied
using a generalized Becker-Döring approach in the multidimensional space of cluster configurations. The
preexponential of the metastable-state lifetime (inverse of nucleation rate) is found to exhibit distinct
peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the
strict limit T ! 0, but become detectable and eventually dominate at higher temperatures.

DOI: 10.1103/PhysRevLett.89.025701 PACS numbers: 64.60.Qb, 02.50.Ga, 05.40.–a, 05.50.+q
Nucleation phenomena are observed in an enormous
variety of physical systems, including vapors [1], and
glass-forming [2] and quantum [3] liquids, to name just
a few. Already in the early treatment [4], Volmer and
Weber indicated an Arrhenius structure of the exponen-
tial part of the nucleation rate I, with the barrier W� given
by the minimal work to form a critical nucleus. There
remained, however, a fundamental issue of the preexpo-
nential, which was considered in subsequent classical [4]
and postclassical [5] nucleation developments. Although
in most metastable systems the exponential term domi-
nates, the nucleation picture is not complete without a rea-
sonable estimation of the prefactor, and misunderstandings
here can have far-reaching consequences [6]. In practice,
such estimations are often hindered by minor uncertainties
in W�, which can imply large (orders of magnitude) dis-
crepancies in the values of the preexponential.

With this, much attention is devoted to models where
exact values of W� can be obtained, and thus reliable
conclusions about the prefactor can be made. One of
the best known examples is the two-dimensional Ising
model, where metastability is achieved by orienting ini-
tially all spins one way (down) while nonzero magnetic
field h prescribes an opposite (upward) orientation. Al-
lowing spin flips of nonconserved [7] or conserved [8]
types adds the required dynamics to the problem. In a
closely related lattice gas model the role of h is played by
supersaturation.

The preexponential in such systems attracts much at-
tention both for the high- [5,9–12] and low-temperature
[13–15] regions. For h ! 0 the nucleus is macroscopic
and its shape, as well as the value of W�, can be obtained
from the Wulff droplet construction [16]. Monte Carlo
simulations are possible for W� & 10 15 T (temperature
is measured in units of Boltzmann constant) which, for
small h, restricts such studies to the aforementioned high-
temperature region; transfer-matrix approaches are also
available here [17]. For larger fields a straightforward
Wulff construction may be inadequate [18], but for T ! 0
analytical treatment becomes possible due to the dominant
contribution of low-energy configurations. The technique
of absorbing Markov chains [13–15] can also be used for
simulations in the low-temperature region.
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Neves and Schonmann [19] evaluated W0
� , the zero-

temperature limit of W�, obtaining the exponential part of
the metastable lifetime t � 1�I. Their result is insensi-
tive to the specifics of the dynamics. Novotny [13] fur-
ther showed that, for discrete-time Glauber dynamics and a
relatively large field, the preexponential of t remains finite
in the limit T ! 0, approaching a piecewise constant func-
tion of h and pointing towards a discontinuity at an integer
value of 1�2h. Similar features will be observed at weaker
fields as well [15]. Integer values of 1�2h, however, were
excluded from the aforementioned rigorous mathematical
treatments, leaving open questions with regard to this in-
triguing effect, especially in the physically more realistic
case of T . 0.

This Letter aims to evaluate the preexponential at higher
temperatures and in a finite domain of fields, spanning sev-
eral integer values of 1�h. This will clarify the nature of
the discontinuities and, together with the available W0

� , will
provide predictive expressions for t�T, h� at T . 0. We
will show that, in contrast to an intuitive expectation of
discontinuities spreading out in a standard tanh-like fash-
ion, they are replaced by sharp peaks which persist up
to T � 0, having finite heights and self-similar shapes as
functions of reduced deviations of the field from “magic”
values with integer 1�2h.

A lattice gas on a square lattice with standard nearest-
neighbor interactions described by the bond energy w will
be considered. Supersaturation (“field”) provides an ad-
ditional decrease in energy by 2h when a new particle is
created. The probability of the latter event in an infini-
tesimal time interval dt is taken as bdt, regardless of the
surrounding; without restrictions, the time scale b21 can
be taken as 1. The annihilation probabilities are sensitive
to the surroundings, and are determined by detailed bal-
ance. With various generalizations, this model is popular,
e.g., in Monte Carlo simulations of the dynamic interface in
crystallization problems — see [20] and references therein.
The dynamics is different from Glauber’s, and preexpo-
nentials will not be identical, but qualitative similarities
are still expected since both dynamics are nonconserved
(and the generalized Becker-Döring approach employed
below bears certain parallels with the technique of absorb-
ing Markov chains [13,14]).
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For a long time of the order of 1�I, the rare particles will
form isolated clusters of various sizes and shapes (classes),
which will be distinguished by a running index, i. An
empty site corresponds to i � 0. Cluster shapes will be
considered identical (and thus belonging to the same class)
if they can be made such by rotation or reflection. The key
characteristics of each class are the number of particles,
s�i�, the number of bonds, b�i�, and the statistical weight,
wi # 8. One can define the (quasi)equilibrium distribution

f
eq
i � wiz

2s�i�2b�i�ds�i� (1)

with z � e2w�T and d � z22h describing the temperature
and field dependencies, respectively. Subsequently, w will
be taken as 1 for simplicity of notations. In the s, b space
the function f

eq
i has a saddle point (for nonspecial fields,

a single one [15]) and the corresponding value of s de-
termines the critical cluster number, s�. In a general case
computer assistance is required in order to characterize all
classes. Consistency of such predictions can be checked,
e.g., against standard tables [21] for smaller s.

Once equilibrium properties are specified, one can in-
troduce kinetic fluxes as a multidimensional version of the
classical approach [4] since, in a low-temperature Ising
system, growth or decay of a cluster predominantly pro-
ceeds via random gain or loss of a single particle [22]. If
bikdt is the probability to transform a cluster from class
i to class k . i by adding a particle [with bik � 0 if
s�k� fi s�i� 1 1], the corresponding flux is given by

Iik � bikf
eq
i �yi 2 yk�, i , k (2)

with yi � fi�f
eq
i and y0 � 1. The master equation for

the kinetic distributions fi takes the form

dfi

dt
�

i21X

k�0

Iki 2

kmax11X

k�i11

Iik (3)

which automatically satisfies detailed balance.
For closing conditions, absorbing states are placed at all

classes k with s�k� � smax 1 1. Equivalently, all those
absorbing states can be combined in a single absorbing
class kmax 1 1.

Because of an exponentially long lifetime, one can ne-
glect the depletion of empty sites (for which, otherwise, an
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integral conservation law [23] should be employed instead
of y0 � 1). With this, Eqs. (2) and (3) can be solved in
the steady-state approximation; transient effects [24] can
also be neglected here.

By introducing bik � bikf
eq
i 1 bkif

eq
k (0 # i, k #

kmax 1 1) and

Mik � bik 2 dik

kmax11X

l�0

bil , 1 # i,k # kmax , (4)

one can show that the steady-state distributions
�y1, y2, . . .� correspond to the first column of the matrix
2M̂21 (since only class 1, with single-particle clusters, is
connected to empty sites). The total flux I coincides with
I01, where branching of paths does not yet occur. This
gives

I � �M̂21�11 1 1 . (5)

For a single nucleation path, which leads to a tridiago-
nal structure of the matrix M̂, one recovers the classical
result by Farkas [4] I21 � b21

01 1 b21
12 1 · · ·. Otherwise,

the actual evaluation of I via Eq. (5) is limited by one’s
ability to obtain all classes and transition rates bik for a
sufficiently large smax, and the ability to inverse analyti-
cally a large matrix M̂. At present, we are able to pro-
ceed up to smax � 9 (1818 classes representing a total of
13 702 cluster configurations) which allows us to consider
fields h . 1�6 with the critical number s� # 7. A full ex-
act expression for the lifetime t � 1�I can be surveyed by
a human eye only for more modest values of smax, which
implies a relatively small critical cluster (larger fields). For
example, for smax � 4, kinetics is determined by nine dis-
tinct classes with a total of 28 shapes (see, e.g. Fig. 2 in
Ref. [12]). Transition rates are easy to obtain (say, two
ways a 3-particle “minus” shaped cluster can turn into a
4-particle “T” shaped one and four ways it can turn into
an “L” shaped one, etc.). The result which follows from
Eq. (5) is expressed as a rational function of z and d,

t4 � P�d, z��Q�d, z� (6)

with the subscript indicating the value of smax, and poly-
nomials P and Q given by
P�d, z� � 384 1 210000d9z9 1 16d�48 1 185z� 1 4d2z�1576 1 2655z� 1 8d3z2�3081 1 3230z�
1 2500d8z7�21 1 250z 1 36z2� 1 250d7z6�695 1 2650z 1 1036z2�
1 d4z3�65740 1 57797z 1 15360z2� 1 5d5z4�28574 1 28155z 1 19680z2�
1 5d6z5�43375 1 70546z 1 50000z2� ,

(7)

Q�d, z� � 8d4z4�384 1 80�24 1 85d�z 1 250d2�25 1 64d�z3 1 125d3�259 1 625d�z4

1 20d�615 1 1753d�z2 1 3750d4�3 1 7d�z5� .
Equation (6) is expected to be accurate in strong fields,
h * 1�2, with rather relaxed restrictions on temperature
since all cluster configurations at s # 4 are taken into ac-
count (although, for higher T , eventual destruction of the
steady state due to neglected cluster interactions should be
kept in mind [25]). More consistently, this result should
be treated asymptotically for z ! 0 and d ! ` with cer-
tain combinations of powers of z and d remaining finite,
depending on the interval of the field.

In order to isolate the preexponential, Eq. (6) should
be multiplied by exp�2W��T� � zW� . In principle, an
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“observable” is t itself, rather than A or W� taken sepa-
rately. To avoid ambiguity, the value of W� will be as-
sociated with its zero-temperature limit W0

� [19], with
all temperature-dependent corrections being in the pre-
exponential; for h . 1 the barrier will be taken as zero.
The function W0

� �h� has a piecewise linear structure, and
exp�2W��T� is reduced to a product of integer powers
of z and d: 1 for h $ 1, z2d for 1�2 # h , 1, z4d3

for 1�4 # h , 1�2, etc. Resulting A�h� are shown by
dashed lines in Fig. 1 where numerical results, given as
filled circles, were obtained for a much larger smax and
can be treated as “exact” in the present context. The case
T � 0, for nonspecial h, would correspond to a piece-
wise constant structure of A, similar to the one for Glauber
dynamics [13,15] but with different constants: A � 1 for
h . 1, A � 1�4 for 1 . h . 1�4 (h fi 1�2), A � 1�16
for 1�4 . h . 1�6, etc. (These numbers can be deduced
from the lowest energy path— see below — serving as a
checkpoint for more elaborate expressions). This limit,
however, becomes apparent only at a very low tempera-
ture, z � 1027. At h � 1, 1�2, etc., the limit is singular,
though finite, reflecting the peaks.

For a larger cutoff, simplifications of analytics can be
achieved due to the dominant contribution of low-energy
configurations. Among all classes k of clusters with the
same s�k�, one can select only those which have a suf-
ficiently large number of bonds: bs�k� $ bmax,s�k� 2 r,
where bmax,s is the number of bonds in the most compact
cluster for a given s. An integer parameter r indicates how
close a cluster should be to the most compact configura-
tion in order to be included in the kinetics. For sufficiently
large r (r � 4 for smax � 9) all configurations are recov-
ered. Alternatively, r � 0 corresponds to the lowest en-
ergy path description, which is the closest to the kinetic
part of the conventional one-dimensional random walk ap-
proach to nucleation [4], although with microscopic rather
than phenomenological coefficients. In addition, branch-
ing of paths is added starting from s � 7. Already in the
r � 0 approximation, peaks at integer 1�2h will appear in
025701-3
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FIG. 1. The preexponential of the metastable-state lifetime.
Lines: the 4-particle approximation, Eq. (6), at a higher tem-
perature, z � 1021 (short dashed line) and at a low tempera-
ture, z � 1027 (long dashed line). Points: numerical results for
smax � 9 and r � 2.

the preexponential, although one needs to include r $ 1
for correct evaluation of their heights.

For the case r � 1 and z ø 1 the preexponential A�h�
can be described analytically in restricted domains of
fields, the most interesting being those near the peaks
[general expressions for A�h� are also available, but are
useless due to their size].

Introducing a finite combination

y � dz1�n (8)

with n � 1, 2, . . . determining a corresponding peak, one
can perform analytical expansions of 1�I in fractional pow-
ers of z. Symbolic computations with MATHEMATICA were
used here.

For n � 2, one obtains

t9 �
1

z5�2

T1� y�
8y7T � y�

2
1
z2

T2� y�
16y8T2� y�

1
1

z3�2

T3� y�
672y9T3� y�

1 · · · (9)

with the coefficients in this smax � 9 approximation
given by
T� y� � 8 1 63y2,

T1� y� � 4 1 29y2 1 79y4 1 126y6,

T2� y� � 2208 2 1432y2 1 3461y4 1 49855y6 1 89649y8 1 87318y10, (10)

T3� y� � 89152 2 297840y2 2 13174644y4 2 62801445y6 1 146767614y8

1 1284356493y10 1 957680010y12 1 556604622y14.
The approximation works accurately in the vicinity of
h � 1�4, describing the rather complex near- and off-peak
behavior — see Fig. 2. The coefficient of z25�2 in Eq. (9),
multiplied, respectively, by y3 at h . 1�4 or by y7 at
h , 1�4, determines the scaling structure of the peak in
the limit T ! 0, if the difference h 2 1�4 scales together
with temperature. The structure of the neighboring peak
at h � 1�2 (n � 1) follows the 4-particle approximation,
Eq. (6), with d � y�z and z ! 0.
An important question is sensitivity of the results to
variations in r and smax. A smaller r � 0 will give identi-
cal values of the leading term in the preexponential in the
limits y ! ` or y ! 0 (i.e., on both sides of the peak for
T ! 0), slightly overestimating the height of the peak at
y � 1. Cases with larger r $ 2 presently could be studied
only numerically and are shown by symbols in Fig. 2. At
small h, scatter appears in the data, indicating the limits of
025701-3
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FIG. 2. “Fine structure” of the two peaks near h � 1�2 and
h � 1�4 for z � 1025. Solid line: the 9-particle approximation
for r � 1, Eq. (9). Dashed line: the full 4-particle approxima-
tion, Eq. (6). Symbols: numerical data for smax � 9 and r � 2
(small circles) and r � 4 (large circles).

numerical accuracy for very small z. There is no detectable
difference with the analytical approximations in the
regions of their validity for fields up to h * 1�4. A
similar expansion in z for r � 1 and smax � 8 also
was performed, leading to a rather different structure
of the y-dependent polynomials. The first coefficients
in the z expansion are nevertheless numerically close
for stronger fields h $ 1�4 in the vicinity of the peak.
So are the heights of the peak given, respectively, by
0.4167 2.92z1�2 1 · · · and 0.4190 2.83z1�2 1 · · · in the
8- and 9-particle approximations. On the other hand,
unlike the 9-particle case, smax � 8 does not yield a
proper T ! 0 limit for weaker fields h , 1�4 since the
boundary here is too close to the critical size s� � 7.

In summary, for a moderate field (supersaturation) the
metastable-state lifetime of a supersaturated lattice gas has
been evaluated for T ø Tc. The main result is the pre-
exponential which, for the first time, was evaluated ana-
lytically beyond the zero-temperature limit, and which
exhibits distinct peaks as a function of field. One can
anticipate that similar peaks (which appear due to com-
petition of several “critical sizes”) will also be observed
in systems other than nearest-neighbor Ising models with
nonconserved dynamics, whenever the nucleation barrier
has a well-defined zero-temperature limit and the critical
nucleus contains a reasonably small number of particles.

The authors are grateful to Mark Novotny for comments
on the manuscript.
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