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We report the time-dependent nucleation fluxes and associated nucleation rates in a metastable Ising
ferromagnet on square lattice with Metropolis (Glauber-type) dynamics. It is discovered that, with
lowering of the temperature, fluxes collapse into several representative transient curves corresponding
to magic cluster sizes. Those can be associated with physical droplets, i.e., long-lived configurations
which provide a link with the classical Becker-Döring picture.
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The classical theory of nucleation [1–3] views it as a
one-dimensional random walk in the space of nuclei sizes
and has an enormous number of applications from con-
densation of vapors [4] to crystallization of glass-forming
melts and glasses [5,6] and, more recently, to biological
systems [7]. The corresponding master equation, known as
the Becker-Döring equation, has an attractive mathemati-
cal structure [8]. In steady state, there is an exact solution
[2], and the flux, the ‘‘nucleation rate,’’ also can be ex-
pressed asymptotically as the product of an exponential
term determined by thermodynamics [1] and a kinetic
preexponential [3] (similarly to the activation flux in the
Kramers problem [9]). The preexponential can be refined
to account for discrete number of monomers in a nucleus
[10], making the asymptotic flux practically indistinguish-
able from the exact one. In the time-dependent case, mo-
ments of the transient flux can be obtained exactly—see,
e.g., Refs. [11,12], and an asymptotic expression for the
flux itself also is available [13]. Efficient numerical
schemes had been developed to solve the Becker-Döring
equation under realistic experimental conditions [14].

Despite the outstanding role of the classical approach, it
is a phenomenological one and there remain fundamental
questions with respect to its underlying assumptions. It is
thus natural to seek additional insight from models where
the description of nucleation is close to ‘‘first principles,’’
such as the the Ising model in external field [15–21] with
various kinds of spin-flip dynamics. Rather surprisingly,
even for this well-studied model, the status of the classical
approach remains open, and below we associate this with
inherent limitations of the stationary treatment. Transient
nucleation was discussed in connection with analysis of
high-temperature Monte Carlo simulations [22,23] as-
suming the qualitative validity of the Becker-Döring pic-
ture for the Ising model, but, otherwise, the thrust of most
of the earlier studies had been the stationary nucleation rate
Jst or the metastable-state lifetime, usually (depending on
precise definition) proportional to 1=Jst.

In the present Letter, the nonclassical transient nuclea-
tion rates are obtained for the case of Metropolis dynamics
which is of nonconservative, Glauber type. Since at low
temperatures this can be done without additional strong

assumptions (and without using the Monte Carlo methods),
connections with the classical phenomenology, includ-
ing the limitations of the latter, can be elucidated. The
significance of time dependence is increased by the fact
that the steady-state treatment allows multiple definitions
of a ‘‘nucleus.’’ (This flexibility echoes the duality in
splitting the nucleation rate into the exponential and pre-
exponential factors [19(b)] and, more generally, the un-
certainty of classical-type approximations to the rate if
both factors are treated as fitting parameters [24].) The
time scale associated with postnucleation growth also
emerges naturally in the nonstationary approach, allow-
ing one to estimate the duration of the entire phase
transformation.

The method is based on solving a time-dependent ki-
netic equation in a multidimensional space of cluster con-
figurations assuming noninteracting clusters which evolve
due to random gain or loss of a spin. (More complicated
events, such as coagulation, can be neglected at small T
[16].) The kinetic equation, to the largest possible extent, is
cast in the generalized Becker-Döring form, which facili-
tates the comparison. In particular, at least formally, all
exact results for the classical kinetics will have a direct
analog in the Ising case.

We consider the standard two-dimensional model on a
square lattice solved in equilibrium by Onsager [25], with
an added external field h analogous to supersaturation. The
following units are used: The Boltzmann constant is taken
as 1, and interaction energies between neighboring spins
are assumed to be �1. The temperature T is much lower
than the critical value Tc � 2:269 . . . , and the main
temperature-dependent variable is z � exp��4=T� � 1.
Interactions with external field h are taken as �4h, and
the field variable is � � exp�8h=T� � 1; the fields of
interest are h < 1=2 with z�� 1, corresponding to a
stable interface. Metastability is created by all spins origi-
nally pointing in the ‘‘wrong’’ direction, and the intent of
the study is to evaluate the time-dependent nucleation
fluxes. Steady-state analytical treatments of this problem
are available for both T ! 0 [17,18,20] and finite T [20];
symbolic computations [19] provide significant additional
help.
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To illustrate limitations of the stationary approach, how-
ever, consider first the case of T ! 0. Here the nucleation
path contains only the most compact clusters with the work
W�n� having an overall classical (Gibbs) outlook plus
sharp sawtooth modulations [20(b)]. The critical nucleus
is an m�m� 1� rectangle with an extra spin on the longer
side, as identified by Neves and Schonmann (NS) [17]. The
critical value of m is given by m�h� � 	1=2h
 (with [x]
denoting the largest integer not to exceed x) with the
number of spins n��0; h� � m2�h� �m�h� � 1. The abso-
lute barrier WH

� � W�n��0; h�� determines Jst /
exp��WH

� =T� [17] with a finite preexponential at T � 0
[18,20]. Alternatively, one can consider only clusters with
a smooth interface as candidates for nuclei with the NS
clusters treated as activation complexes. The time scale for
an activated transition between neighboring smooth shapes
is given by

 � � 1=z� (1)

and will determine the preexponential, which tends to 0 for
T ! 0. Nevertheless, the overall estimation for Jst will not
change due to a smaller barrier WL

� � WH
� � 8h� 4

[which corresponds to an m�m� 1� rectangle]. In other
words, Jst, which is the physical observable, allows two
very different interpretations if one tries to identify a
droplet. A time-dependent approach, on the other hand,
reveals additional time scales which help to select between
the two possibilities. The actual calculations, however, are
meaningful at T > 0 and, regardless of interpretation, can
be of independent interest due to the exceptional status of
the Ising model.

At nonzero temperatures, one needs to identify clusters
beyond the compact shapes, and computer assistance
[19,26] is required in a general case. Clusters are distin-
guished by a class index k, and each class is characterized
by a geometric factor wk 
 8 related to the symmetry of a
cluster, perimeter Pk, and the number of spins nk. A
(quasi)equilibrium distribution of clusters belonging to a
given class k and normalized per empty site (k � 0) is then
described by feq

k � wkzPk=2�nk . The maximum class index
has a large value D.

If adding a spin to class i converts it to class k, an in-
teger number oi;k is identified as the number of sites
where this addition can take place [26]. Transition rates
between classes are then defined as �i;k � oi;k=
max	1; feq

i wk=f
eq
k wi
. This corresponds to Metropolis dy-

namics, which is asymptotically close to Glauber dynamics
for h 
 1=2, with �i;k being analytical functions of h
[20(b)]. An absorbing boundary is placed at k � D� 1,
and with nD � n��0; h� � 1 the precise location of that
boundary is expected to be insignificant, in analogy with
the classical situation [8].

If fk represents a time-dependent distribution, the ki-
netic equation is conveniently written in terms of a
D-dimensional vector ~v � �f1=f

eq
1 ; . . . ; fD=f

eq
D �. Treating

�i;k as elements of a matrix �̂, one can construct a ‘‘tran-
sient matrix’’ T̂ � �̂� �̂�1 � �̂T � �̂� d̂. Here �̂ and d̂
are two diagonal matrices with nonzero elements �i;i �
feq
i and di;i �

PD�1
k�1 �i;k, respectively, with 1 
 i 
 D.

The time dependence is then governed by an equation

 

d ~v
dt
� T̂ � ~v� ~e; ~e � �1; 0; . . . ; 0�: (2)

The exact solution is formally given by ~v�t� �
fÎ � exp�tT̂�g � ~vst, with Î being a unitary martix and ~vst �

��T̂�1� � ~e. In practice, however, a numerical approach
should be used for large D, similarly to the classical
situation [14]. A forward update scheme ~v�t� �� �
~v�t� � �	T̂ � ~v�t� � ~e
 does not require an inversion of a
large matrix and, in principle, can be employed even if ~vst

cannot be obtained.
To determine the total flux Jn and the exact transient

moments tk�n� �
R
1
0 t

k	1� Jn�t�=Jst
dt at each size n, we
introduce linear operators Ln:

 Ln	 ~v
 �
X

k;nk�n

X
i

�i;kf
eq
i �vi � vk�: (3)

This gives a generalization of similar classical expressions
[11], and with k � 0; 1 one has:

 Jn�t� � Ln	 ~v�t�
; tk�n� � Ln	��T̂�
�k�1 � ~vst
=Jst:

(4)

The actual calculations were performed for nD � 25
(h � 0:22) and nD � 30 (h � 0:15). The update scheme
was implemented in the MATHEMATICA 5.2 version.
Compact clusters with a minimum perimeter Pmin

k �n� and
only those with Pk 
 Pmin

k �n� � 2 for a given n were
included, with total numbers D � 3196 and D � 6316,
respectively. The selected upper boundaries are sufficiently
far from the values of n��0; h�, respectively, 7 and 13,
which are expected to further decrease with temperature
[27]. Changes of nD affected only the upper 2–3 fluxes,
and those were excluded from consideration. To control
sensitivity of numerics to selected configurations, clusters
with Pk 
 Pmin

k �n� � 4 were included, with nD � 15 (D �
5924), and the maximum changes of Jst were within a
few percent at T � 0:8 (note that at such T the system is
still ‘‘cold’’ with a small z ’ 0:007). Correctness of Jst

(which involves inversion of a large matrix) was verified
by their n independence and by small difference from the
analytical results of Ref. [20(b)] at the lowest temperature.
The outgoing flux Jn can be evaluated for an empty site
with n � 0, although such calculations are less stable
compared to larger n and at low T could be completed
only for h � 0:22.

Results for Jn�t�=Jst are presented in Fig. 1. Note that �
in Eq. (1) (which changes by orders of magnitude) provides
a reasonable scale for transient nucleation. This is an
indication that rectangular-shaped clusters are indeed
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good candidates for ‘‘droplets,’’ while Neves-Schonmann
clusters play the role of activation complexes for slow
droplet-to-droplet transitions. When temperature is low-
ered, collapse of different fluxes to several representative
values of n is observed. At the lowest temperature where
the effect is the most pronounced, all fluxes group around
‘‘proper’’ n, which correspond to squares (n � m2) and
rectangles [n � m�m� 1�]. The stand-alone fluxes indi-
cate wrong rectangles n � �m� 1��m� 1� (the latter have
only one-sided connection with the lowest energy path and
thus play the role of ‘‘metastable traps’’). At low tempera-
tures, a primitive model can be constructed, which involves
only the aforementioned representative n and which accu-
rately predicts fluxes at proper n [28]. The difference with
the Becker-Döring picture, however, is obvious since only
selected n are present and three distinct shapes (squares
and two types of rectangles) are to be considered.

Of the main interest for applications is the nucleation
rate, i.e., the flux for some n > n� from which determinis-

tic growth of nuclei can be started. Within the classical
picture of Refs. [1–3], one has for a high barrier [13]

 J�n; t� � Jst exp��e�x�; x � 	t� t0�n�
=trel � �;

(5)

with � � 0:5772 . . . , the Euler constant. The ‘‘relaxation
time’’ can further be related to the transient moments [29]

 trel �

���
6
p

�

�����������������������������
2t1�n� � t20�n�

q
: (6)

A similar transient shape will be used (without a rigor-
ous justification) in the present nonclassical situation in
order to scale the data. For each field, the largest available
proper n were considered, respectively, n � 20 for h �
0:22 and n � 25 for h � 0:15, and trel was evaluated using
Eqs. (4) and (6). Results fit reasonably the double-
exponential curve for all temperatures and fields, as in
Fig. 2, and together with Jst listed in Fig. 1 provide a
predictive description of the transient nucleation rate.
Since relatively high temperatures (up to 0:35Tc) were
considered, the obtained data could test the accuracy of
Monte Carlo simulations, which are potentially vulnerable
for extremely rare nucleation events. Furthermore, for
temperatures and fields which are too low for direct
Monte Carlo studies, the obtained transient expressions
can provide the (non-Poissonian) rate of injection of nu-
clei, which can be further grown using faster schemes [30],
describing the entire phase transformation. Since the
growth rate is of the order of 1=�, the time scale for the
transformation follows from the standard Kolmogorov-
Avrami estimation �Jst=�

2��1=3, which is expected to be
much larger than �, leading to a requirement WL

� � 3T.

FIG. 2. Reduced nucleation rates [fluxes Jn�t�=Jst at the largest
n in Fig. 1] vs the scaling parameter x � 	t� t0
=trel �
0:5772 . . . at different temperatures and fields. The parameters
t0 and trel can be calculated from exact expressions (see text) and
are indicated in the legend. Scaled data closely follow the
double-exponential shape (solid line) expected from the
Becker-Döring model [13].

FIG. 1 (color online). Collapse of transient fluxes Jn�t�=Jst

with lowering of the temperature. Left column: h � 0:22, 0 

n 
 20. Right column: h � 0:15, 1 
 n 
 25. At higher T, the
structure of fluxes is similar to the one in the Becker-Döring
model, including the overshoot at subcritical n [4]. At low T,
fluxes group into a few representative curves. For T � 0:2, h �
0:22, the groups are (counterclockwise, from top): n � �0–3�,
�4; 5� (the two descending curves) and n � �6; 7�, 8, (9–11),
(12–14), 15, (16–19), 20. For h � 0:15, the second group is n �
�4–11� (descending), and added groups on the right (due to larger
nD) are n � �20–23�, 24, 25. At intermediate T � 0:4, similar
grouping is observed, although collapse is incomplete; the �4; 5�
fluxes for h � 0:22 and the �9; 10� and the 11 fluxes for h � 0:15
are shown as bell-shaped, rather than descending, curves due to a
smaller overshoot at higher T.
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In summary, the study provides the first explicit expres-
sions for the nonclassical transient nucleation rates. Such
results are important since, in many practical situations,
there is just not enough time for the steady-state nucleation
to be established (due to depletion of the mother phase by
growing nuclei, their interactions with each other, etc.).
From a more fundamental point, there exist inherent limi-
tations of the steady-state approach to the nucleation prob-
lem, and time-dependent studies provide a much deeper
insight into connections with the classical picture. The
most interesting feature is the observed collapse of fluxes
around selected ‘‘magic’’ cluster numbers, indicating the
presence of long-living dropletlike structures. The latter
effect is not restricted to the dynamic Ising model consid-
ered in the study but is expected for any low-temperature
nucleating system where a nucleus can have a smooth
interface with exponentially slow attachment kinetics.
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