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Asymptotic analysis of the nucleation-growth equations describing a nucleation pulse of arbitrary

duration is performed. It is discovered that after extended growth an asymptotic distribution is established,

which is not of any standard form (Gauss, log-normal, etc.). Regardless of the mass exchange mechanism

between the nucleus and the metastable phase, in the extremes of long and short pulses the shapes of the

distribution become universal, with additional insensitivity of either the maximum or, respectively, the

width to the duration of the pulse.
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Homogeneous nucleation is of enormous interest in
connection with condensing vapors [1,2], crystallizing
liquids [3], glasses [4] and amorphous solids [5], colloidal
[6] and biological [7] systems, etc. Applications to the
description of ferroelectric [8] and ferromagnetic domains
[9], or to nucleation and growth of quantum dots [10],
could also be mentioned. The standard technique for nu-
cleation studies is the nucleation pulse [2] (‘‘two-step
annealing’’ [4]), when after a brief nucleation period the
supersaturation is abruptly decreased, terminating nuclea-
tion but allowing further growth of subnanoparticles to
optically visible sizes. Of main interest are the distributions
of nuclei over sizes. An understanding of their structure
would allow us, on the one hand, to extract accurate
nucleation information from growth measurements and,
on the other hand to increase control over the microstruc-
ture of the material, which is determined by those distri-
butions, via modification of the nucleation and growth
conditions.

In the past, significant numerical and analytical effort
was devoted to analysis of the classical time-dependent
Becker-Döring nucleation equations (see, e.g.,
Refs. [1,5,11,12] and Refs. [1,13], and references therein,
respectively). Many of the predicted dependences, in par-
ticular, those for the distribution function [14], can be
applied to nucleation in nonclassical models as well, as
observed in large-scale simulations and related computer-
assisted studies of lattice systems [14,15], in molecular
dynamics [16], or in phase field models [17]. However,
in most of the real experiments the observed distribution
will be extremely different, undergoing dramatic changes
once particles are grown to large sizes. The goal of this
Letter is to describe those changes analytically in a general
form, applicable to arbitrary nucleation-growth mecha-
nism, and to find the asymptotic shape of the distribution
once particles grow to large sizes. The accuracy of the
results is confirmed by exact numerics for classical-type
nucleation models, similar to the one used in
Refs. [11,12,18], and it is conjectured that results will
hold for nonclassical models (e.g., phase field [19–21])
due to similarities in the growth laws, as described below.

It could be useful to distinguish the current problem
from the one due to Lifshits, Slyozov, and Wagner
(LSW) [22]. In their case the supersaturation is continu-
ously decreasing with time due to depletion of monomers
by growing particles, and scale-free asymptotic distribu-
tions are formed for each type of the mass exchange. Those
exhibit remarkable insensitivity to fine detail of the initial
conditions determined by the nucleation stage, and in
practice the LSW regime is commonly used to study later
stages of a phase transformation. In contrast, an abrupt
drop in supersaturation following a nucleation pulse is due
to external control [2,4]. Although particles do grow to
large sizes, the depletion of monomers (or direct interac-
tions between nuclei) is assumed to remain negligible and,
despite certain universality features described below, a
detailed memory of the initial nucleation conditions is
preserved. Indeed, for a high nucleation barrier �� � kT
the above assumption is valid on an exponential time scale,
allowing for the establishment of the asymptotic distribu-
tions described below (which requires a large, but nonex-
ponential, time). On a still larger time scale the described
solution has the meaning of an intermediate asymptote
before depletion becomes important, eventually leading
to the LSW regime.
It is convenient to start with the deterministic evolution

of the distribution due to growth or decay of particles with
a rate _RðRÞ, and then to specify the nucleation part, which
determines initial conditions. Indices ‘‘n’’ and ‘‘g’’ will
distinguish the nucleation and the growth stages, and the
dimensionless � ¼ Rg

�=Rn� > 1, the ratio of critical radii,
will describe the relative depth of the nucleation quench.
Time twill be measured from the start of growth; functions
of time which have a discontinuity at that instant will be
distinguished by t ¼ 0� and t ¼ 0þ.
Consider a typical

_R ¼ R�
�

�
R�
R

�
�
�
1� R�

R

�
(1)

with the time scale � defined as the inverse of d _R=dR at
R ¼ R� (which should be specified separately for the
nucleation and the growth stages, with, e.g., �g ¼ 1 to
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simplify notations). The power index � depends on the type
of mass exchange, with � ¼ 0 and 1 corresponding to
interface- and diffusion-limited growth, respectively, and
�¼�1 to the case of cavitation [23]. Identical expressions
are encountered in field-theoretic models with � ¼ 0 and 1
corresponding to nonconserved (Ginzburg-Landau) and
conserved (Cahn-Hillard) order parameter, respectively,
and appearing in various combinations in phase field mod-
els [19–21]; �¼�1 corresponds to the inflation scenario.

Evolution of the distribution fðR; tÞ due to deterministic
growth is described by a continuity equation

@f=@tþ @j=@R ¼ 0; j ’ _Rf: (2)

Introducing a full (‘‘total’’) derivative with respect to time,
D=Dt¼@=@tþ _R@=@R, one can cast the above equation as

D lnjjj=Dt ¼ @ lnj _Rj=@t: (3)

Since for any t > 0 the growth rate has no explicit time
dependence, the flux is conserved along the growth path,
and in terms of a dimensionless r ¼ R=Rg

� is given by
jðr; tÞ ¼ jðr0; 0þÞ, where r0ðr; tÞ is the ‘‘nascent size,’’
which achieves the value of r at time t. The exception is
t ¼ 0, where integration of Eq. (3) across the discontinuity
gives jðr; 0þÞ ¼ jðr; 0�Þ _rg= _rn, which is an equivalent rep-
resentation of the continuity of the distribution, i.e.,
fðr; 0�Þ ¼ fðr; 0þÞ. The flux jðr0; 0�Þ, which determines
the initial distribution, must be obtained from the solution
of the nucleation equation, further denoted as j0ð�r0Þ to
comply with present notations. The general result at arbi-
trary growth time t thus takes the form

fðr; tÞ ¼ j0ð�r0Þ _rg0
_rn0 _r

g ;
Z r

r0

dr

_rg
¼ t: (4)

Note that singularity at r ¼ 1with _rg ¼ 0 is fictitious since
r0ð1; tÞ ¼ 1 and a similar zero appears in the numerator.
More accurately, for r ! 1 one has r0 � 1� ðr� 1Þe�t,
leading to an exponential decay of the distribution at the
new critical size: fð1; tÞ ’ fð1; 0Þe�t. This results in sepa-
ration of the decay and the growth regions, and to forma-
tion of a maximum in the latter region even if the initial
distribution was monotonic. On the other hand, the singu-
larity corresponding to _rn0 ¼ 0 (with r0 ¼ 1=�) can be

‘‘real,’’ reflecting a rapid increase of the initial distribution
towards the old critical size. This singularity, however, will
disappear into r ¼ 0 after a finite decay time td ¼
�R1=�

0 dr= _rg, and will be described in more detail once

the flux and the growth rates in the general equation (4) are
specified.

In order to account for nucleation, one needs to include a
fluctuational correction ��@f=@R to the drift flux in
Eq. (2), which leads to a Fokker-Planck-type equation
[23]. If � ¼ ��½3ðR=R�Þ2 � 2ðR=R�Þ3� is the minimal
work required to form a nucleus, one has [23]

� ¼ �kT
_R

d�=dR
¼ R2�

�

kT

6��

�
R�
R

�
�þ2

: (5)

For a high barrier � is small, which allows one to use
singular perturbation methods to solve the time-dependent
Fokker-Planck equation [24]. This leads to Eq. (6), below,
for the transient flux, with the incubation time (for selected
growth rates) given by Eq. (7). Furthermore, since �
decays with size, fluctuational corrections to the growth
solution are negligible at large times with a characteristic
r � 1.
One has for �r > 1

j0ð�rÞ ¼ js expð�e�xÞ; x � ½tn � tið�rÞ�=�n: (6)

Here tn is the duration of the nucleation pulse and ti is the
‘‘incubation time’’ determined by the type of mass ex-
change. The number of particles which will grow to large
sizes is given by NðtnÞ ¼ �njsE1ðe�xÞ [24(b)], where E1

denotes the first exponential integral [25] and x from
Eq. (6) is evaluated at the new critical size r ¼ 1.
Equations (4) and (6) thus provide a general parametric
representation of the distribution in terms of r0; evaluation
of r0ðr; tÞ will relate the distribution to physical variables.
A similar double-exponential shape of the transient flux is
observed empirically in nonclassical systems as well
[15,16], potentially further increasing the generality of
the solution.
For integer � the incubation time is evaluated in ele-

mentary functions [24(b)]. One has

1

�n
tiðrÞ¼ ln

�
6��
kT

ðr�1Þ
�
þr�2þ�

�
r2

2
�1

�
; �¼0;1;

(7)

and only the logarithmic term is present for � ¼ �1. The
distribution in Eq. (4) at t ¼ 0 is then an elementary
function too [recall that r0ðr; 0Þ ¼ r], which decays mono-
tonically with r in the ballistic case, and which can have a
local maximum for diffusion-limited growth if the pulse is
sufficiently long.
To obtain the distribution at t > 0 one needs to evaluate

r0ðr; tÞ, which can be done in elementary functions only for

FIG. 1 (color online). Postnucleation transformations of the
ballistic distribution with tn=�

n ’ 10, � ’ 1:3. Symbols are
exact numerics; lines are Eqs. (4) and (8). Dimensionless growth
times, from left to right: t=�g ¼ 0:57 (descending) and (bell
shaped) 1.7, 4.0, and 7.9.
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cavitation, � ¼ �1, with a linear growth rate. Otherwise,
e.g., in the more challenging case of interface-limited
growth, the dependence is expressed in terms of a special
function. One has

r0ðr; tÞ ¼ 1þWððr� 1Þer�t�1Þ; (8)

whereWðzÞ, the LambertW function, is defined as the root
of an equation z ¼ WðeWÞ [26].

Typical evolution of the distribution is shown in Fig. 1.
Initial singularity at the old critical size r ¼ 1=� disap-
pears after a short td ¼ ln½�=ð�� 1Þ� � 1=�. At small r
and for t close to td, the distribution is approximated by

fðr; tÞ ’ �njs
r

r2=2þ t� td
; (9)

and two distinct situations are possible. For t > td the
distribution is defined for all r � 0, and linearly tends to
zero for r ! 0 (the latter reflects the fact that nucleation is
expected to be negligible on the growth stage, so that there
is no source in the continuity equation). For t < td, how-

ever, the distribution is defined only for r >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtd � tÞp

and
is singular when r approaches the lower boundary. Physi-
cally, disappearance of the singularity indicates an abrupt
dissolution of a large number of particles which were
formed on the nucleation stage but did not survive growth.
It is unclear, though, whether this will have observable
consequences since those particles are so small.

One also notes from Fig. 1 that at large times, well after
the initial singularity disappears, the distribution ap-
proaches an asymptotic shape. The latter is best described
in a reference frame moving together with the growing
particles.

Consider first a not-too-short nucleation pulse and define
the initial location of the ‘‘front’’ (sharp cutoff of the

distribution) rf0 from the condition j0ðrf0Þ ¼ js=e, i.e., x ¼
0 in Eq. (6). As the front rf moves towards large sizes, the
dependence r0ðr; tÞ in the general solution is asymptoti-
cally reduced to its dependence on a single parameter �,
the dimensionless distance from the front:

Z r0

rf
0

dr

�g _rg
� r� rf

�g _rf
� �=�; � ¼ lim

r!1
�g _rg

�n _rn
: (10)

In terms of � the distribution takes a time-independent
asymptotic form Fð�Þ ¼ j0ð�r0Þ�g _rg0=ð��n _rn0Þ for any

type of mass exchange.
Further simplifications and emergence of universal be-

havior are observed for a long pulse with rf0 � 1. Here the
rational and the double-exponential factors in the general
expression for Fð�Þ are well separated, and one can write

Fð�Þ ’ 1� 1=r0
1� 1=�r0

expð�e�Þ: (11)

For r0 close to 1 (� ! �1) the dependence is exponential,
r0 � 1þ expð�=�þ constÞ, with the constant determined
by the nonlinear part of growth during the nucleation pulse,

while expð�e�Þ ’ 1. On the other hand, in the vicinity of
the front the rational part approaches unity, so that the
front’s shape is determined exclusively by expð�e�Þ, re-
gardless of the growth type.
In between the cutoffs the distribution will have a flat

top, which appears especially surprising for diffusion-
limited growth with a very different structure of initial
conditions. For an extra long pulse when not only the
double-exponential front is sharp, but even the exponential
cutoff at small sizes becomes near vertical, the distribution
approaches a boxlike shape for any type of growth, as in
Fig. 2.
In the opposite case of an ultrashort pulse the ‘‘front’’ is

not a convenient reference point since the rapidly decaying
distribution does not have one from the start. Subsequently,
however, a well-pronounced maximum will be developed
(this is in contrast with the long-pulse scenario where the
distribution is exceptionally broad and flat). Introducing

� � ðr� rmaxÞ= _rmax; (12)

one obtains the asymptote of the dimensionless distribution
for rmaxðtÞ ! 1

Fð�Þ¼e��

�
expð��e� Þ; �¼exp

�
tið�Þ�tn

�n

�
�1: (13)

The accuracy of the absolute value of the maximum Fmax ’
e�ð�þ1Þ=� is not expected to be too high due to extreme
sensitivity to � (and thus to initial conditions), but the �
dependence is accurate and is remarkably similar for all
types of growth and for all (short) pulse durations, as in
Fig. 3. In terms of r, however, the distributions will be
sensitive to growth type, with _rmax � ðrmaxÞ�� in Eq. (12)
implying either a constant width (� ¼ 0) or an expanding
and narrowing distribution for � < 0 and � > 0,
respectively.

FIG. 2 (color online). Boxlike asymptotic distributions origi-
nating from long nucleation pulses tn for ballistic and diffusion
mechanisms. Durations of each pair of pulses were matched to
ensure a similar number of nuclei. Shorter pulses: tn=�

n ¼ 61:32
(ballistic) and 61.16 (diffusion); longer pulses: tn=�

n ¼ 122:47
(ballistic) and 122.32 (diffusion). Symbols are exact numerics
(not shown for the flat part); lines are Eqs. (10) and (11).
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In order to verify that the conclusion above is not an
artifact of a continuos nucleation equation, the Turnbull-
Fisher version [11,12,18,27] of the discrete Becker-Döring
equation was considered. The associated growth rate is
given by ð2=a�Þ sinh½a2 ð1� 1=rÞ� [18]; a ¼ 2��=ðkTn�Þ
is the ‘‘discreteness parameter’’ [28] and n� the critical
cluster number. The general numerical approach was de-
scribed by Kelton et al. [11,18] and the MATHEMATICA

realization of the nucleation update scheme is discussed
in Ref. [15]. Parameters [29] were close to that of lithium
disilicate nucleated and grown at 730 and 840 K, respec-
tively (which is typical for corresponding experiments [4]),
with nn� ’ 18, ng� ’ 40, and�� ’ 37kTn. The deterministic
(growth) part of the distribution was represented by a
histogram with a variable number of bins (and a similar
approach, with artificially reduced values of a, was used to
test the continuous description); computational detail will
be provided elsewhere [30]. Numerical results are still in
good agreement with the universal curve in Fig. 3.

In summary, despite the complicated structure of the
time-dependent nucleation-growth equations, it is possible
to construct an accurate general expression for the distri-
bution of nuclei formed during a pulse of arbitrary length.
At small growth times, which follow the pulse, the distri-
bution undergoes dramatic changes, including an intrigu-
ing disappearance of the ‘‘nucleation singularity’’ at
subcritical sizes. At larger times changes are moderated
and the distribution, in appropriate variables, approaches
an asymptotic shape. In both limits of long and short pulses
that shape exhibits universal features, turning insensitive to
the physical mechanism of mass exchange or the mathe-
matical structure of the underlying nucleation model. Most
remarkably, in those limits even the pulse duration can
have no effect on either the maximum of the distribution
or even on its width. Results are expected to have direct
applications to vapor condensation and, especially, to two-

step annealing crystallization studies, but can be of more
general validity due to the ubiquitous nature of the tech-
nique of a nucleation pulse.
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FIG. 3 (color online). Universal distribution Fð�Þ=Fmax, Eqs.
(12) and (13), formed in short nucleation pulses of different
durations tn. Symbols are exact numerics. From left to right
(legend): tn=�

n ’ 1, 2, and 3 (ballistic); 1.22 and 2.45 (diffu-
sion); 0.75, 1, and 2.5 (Turnbull-Fisher). Note that the width of
all distributions emerges near same for all types of growth and all
pulse durations.

PRL 101, 205702 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

14 NOVEMBER 2008

205702-4


