
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.199.3.165

This content was downloaded on 11/06/2014 at 23:12

Please note that terms and conditions apply.

Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale

mode confinement

View the table of contents for this issue, or go to the journal homepage for more

2012 J. Opt. 14 095501

(http://iopscience.iop.org/2040-8986/14/9/095501)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/2040-8986/14/9
http://iopscience.iop.org/2040-8986
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF OPTICS

J. Opt. 14 (2012) 095501 (6pp) doi:10.1088/2040-8978/14/9/095501

Metal-coated hollow nanowires for
low-loss transportation of plasmonic
modes with nanoscale mode confinement
Yalin Su1,2, Zheng Zheng1, Yusheng Bian1, Lei Liu1, Xin Zhao1,
Jiansheng Liu1, Tao Zhou3, Shize Guo2, Wei Niu2, Yulong Liu2 and
Jinsong Zhu4

1 School of Electronic and Information Engineering, Beihang University, Beijing 100191,
People’s Republic of China
2 Northern Institute of Electronic Equipment, Beijing 100083, People’s Republic of China
3 Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA
4 National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190,
People’s Republic of China

E-mail: zhengzheng@buaa.edu.cn

Received 5 April 2012, accepted for publication 3 August 2012
Published 24 August 2012
Online at stacks.iop.org/JOpt/14/095501

Abstract
Two types of plasmonic waveguiding structures based on hollow dielectric nanowires are
proposed and their modal properties are investigated numerically at a wavelength of 1550 nm.
The first type of waveguide consists of a high-index hollow nanowire covered directly by a
thin metallic film. Depending on the size of the hollow nanowire, such a waveguide could
support a plasmonic mode with lower propagation loss than the metal-coated nanowire
structures without a hollow core. To further reduce the propagation loss, a second type of
waveguide is proposed, which includes an additional low-index silica buffer layer between the
metal layer and the hollow nanowire. Simulations reveal that the additional low-index buffer
could enable strong hybridization between the dielectric mode and the plasmonic mode, which
leads to even lower propagation loss while maintaining nanoscale confinement similar to that
of the first type of waveguide. Both of the proposed waveguides are feasible using modern
fabrication methods and could facilitate potential applications in integrated photonic
components and circuits.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Plasmonic waveguiding structures are playing an increasingly
important role in a wide range of areas [1]. Guiding and
confining lightwaves at the sub-wavelength scale beyond
the fundamental diffraction limit have been enabled by the
surface plasmon polaritons (SPPs), laying the groundwork
for the realization of highly integrated photonic components
and circuits with complex functions [2]. Numerous kinds of
plasmonic waveguides have been proposed and demonstrated,
including metal nanowires [3], long-range SPP waveguides [4,
5], metal slot structures [6–9], metallic V grooves [10] and

wedges [11], cylindrical metal nanowire waveguides [12, 13],
dielectric-loaded plasmonic waveguides [14, 15] as well as the
recently studied hybrid plasmonic structures [16–28].

On the other hand, silicon based plasmonic waveguides
have attracted particular interest [29], due to their high
compatibility with the standard CMOS technology and
potential for further on-chip integrations [30]. However,
structures with metal directly deposited on the silicon
waveguide may have very high optical loss. One commonly
employed method for loss reduction is to separate the metal
layer and the silicon structure by introducing an additional
low-index buffer layer [18, 19, 31–36] or incorporating
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Figure 1. Schematic diagram of the studied metal-coated hollow
nanowire plasmonic waveguide.

an air-filled slot [22, 26–28] between them, which is
similar to the approach for extending the propagation length
of long-range surface plasmons [37]. The formed hybrid
plasmonic mode could feature both tight mode confinement
and low propagation loss for a broad range of optical
wavelengths. Here, in this work, we propose an alternative
approach to balance the trade-off between the confinement
and loss by using silicon nanowires with hollow cores instead
of solid silicon nanowires. Pure silicon waveguides with
similar hollow air core [38] or SiO2-filled core [39] have been
theoretically studied as slot structures for two-dimensional
field enhancement and optical confinement. However, our
simulation results demonstrate that, besides preserving the
key advantages of silicon and metallic devices, the hollow
nanowire based plasmonic waveguides offer new possibilities
for both loss reduction and good mode confinement. We
further show that, by introducing an additional buffer layer
between the silicon wire and the metal coating, the structure
could possess even lower propagation loss with a nanoscale
mode area.

The proposed waveguides could be realized using modern
fabrication methods. For example, to form the hollow
nanowire, wafer bonding methods could be employed to
connect a SOI wafer with a prepatterned square-shaped air
nanotrench with a thin layer of silicon [38]. Lithography and
etching procedures can then be applied to define the plasmonic
waveguide of a finite-width after the buffer layer and the
metallic coating were deposited on top of the silicon layer. For
practical applications, in order to further ease the fabrication
process, other semiconductor nanotubes (such as ZnO, ZnS)
may also be used [17, 40], which are available using versatile
chemical fabrication techniques.

2. Hollow nanowire based plasmonic waveguides:
geometries and modal properties

2.1. Metal-coated hollow nanowire plasmonic waveguides

The schematic of the metal-coated hollow nanowire
plasmonic waveguide is shown in figure 1, which consists

Figure 2. Electric field distribution of the fundamental plasmonic
mode supported by the metal-coated hollow nanowire waveguide
(w = hSi = 250 nm, r = 0.5, hAg = 100 nm).

of a silver layer deposited directly over a hollow silicon
nanowire on a silica substrate. The silver layer and the
hollow nanowire have the same width of w. The heights of
the silver layer and the hollow nanowire are hAg and hSi,
respectively. For simplicity, the hollow silicon nanowire and
its air-filled hollow core (width and height: a) are assumed to
have square cross-sections (i.e. w = hSi). The width ratio r is
given by a/w. In the following simulations, the wavelength
is set at λ = 1550 nm. The permittivities of SiO2, Si and
Ag are εc = 2.25, εd = 12.25 and εm = −129 + 3.3i [41],
respectively. The modal properties are investigated by means
of the finite-element method (FEM) using COMSOLTM with
the scattering boundary condition.

In the simulations, the height of the silver layer is
fixed at 100 nm and w is chosen as 200, 250, 300 nm
with varied hollow cores. Simulation results indicate that
the studied metal-coated hollow nanowire waveguide can
support a fundamental quasi-TM plasmonic mode under a
wide range of geometric parameters. As an example, the
electric field distribution of the fundamental plasmonic mode
is drawn in figure 2, where w and r are chosen as 250 nm
and 0.5, respectively. It is demonstrated that besides the
enhancement at the Ag/Si interface, an even stronger local
field enhancement could be observed in the hollow core
region due to the slot effect [38, 42]. The cross-sectional
curve of the electric field also indicates that, for the hollow
core, the enhancement of the electric field is much more
pronounced at the upper interface (near the metallic coating)
than the lower interface (near the substrate). It is expected
that the hollow core may contribute to the reduction of the
propagation loss, while at the same time leading to weakened
mode confinement, as indicated by the slight spreading of the
electric field.

The calculated mode properties including the modal
effective index (Neff), propagation length (Lp) and normalized
mode area (Aeff/A0) of the fundamental hybrid plasmonic
mode of the metal-coated hollow nanowire structures with
different w are shown in figure 3 as r varies from 0 to
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Figure 3. The dependence of modal properties on r: (a) the modal
effective index (Neff); (b) the propagation length (Lp). Insets show
the electric field distributions of the hybrid plasmonic waveguides
with w = 300 nm, r = 0.1; w = 300 nm, r = 0.4; w = 300 nm,
r = 0.7; (c) the normalized mode area (Aeff/A0). Insets show the
electric field distributions of the hybrid plasmonic waveguides with
w = 200 nm, r = 0.1; w = 200 nm, r = 0.4; w = 200 nm, r = 0.7.

0.7, where the extreme cases of r = 0 correspond to the
metal-coated non-hollow waveguides. The modal effective
index is obtained by calculating the ratio of the wavenumber
of the waveguide mode to the free-space wavenumber.
The propagation length is given by Lp = λ/[4π Im(neff)].
A0 is the diffraction-limited mode area defined as λ2/4.
The effective mode area (Aeff) is calculated using Aeff =

(
∫ ∫

W(r) dA)2/(
∫ ∫

W(r)2 dA), where the definition of the
electromagnetic energy density W(r) is the same as that in [9,
43].

Figure 3(a) illustrates that Neff drops monotonically when
r gets bigger or w becomes smaller, while increased mode
area indicating weakened confinement is observed with the
increment of r or w. And such a trend gets more pronounced
when the hollow core is relatively large, which is caused

by the rapid spreading of the field due to the dramatically
reduced mode confinement, as also indicated in the electric
field distributions drawn in the inset. Correspondingly, the
propagation length also sees an increase with the expanding
of the mode area when w = 200 nm. Calculation results
also show that, for such a case, the propagation loss is
smaller than the nanowire based plasmonic waveguides
without hollow cores. However, different trends are observed
at w = 250 nm or 300 nm, where Lp decreases first before
it increases. It is also shown in figure 3(b) that a hollow
nanowire with larger w suffers lower loss when r < 0.4,
while a reverse trend occurs when r > 0.4, where smaller
hollow nanowires have longer propagation lengths. The
above phenomena observed in the curves of the propagation
lengths are related to the different coupling strengths between
the metal layer and silicon hollow nanowire at different
sizes. When the effective index of the SPP mode matches
that of the dielectric mode, the strongest coupling between
them occurs, which leads to the occurrence of the largest
propagation loss. That is why a minimum propagation length
is observed when w is relatively large, while for small silicon
nanostructure (e.g. w = 200 nm), its effective index is lower
than that of the SPP’s and would decrease further with the
continuously enlarged hollow region. Correspondingly, the
coupling strength between the two modes would also get
weaker and consequently lead to a monotonic trend in the
propagation length. As can be seen in figures 3(b) and (c), for
the considered range of geometry parameters, sub-wavelength
mode confinement could be achieved along with relatively
long-range propagation distance. Further increasing of Lp
could be realized by enlarging the size of the hollow core.
However, when r is larger than 0.7, the studied hybrid mode
is almost close to cut-off with Neff approaching 1.5, which
puts limitations on the further extension of the propagation
distance. In order to achieve the goal of loss reduction, a
second type of hollow nanowire based waveguide is proposed,
which will be studied in the following section.

2.2. Metal-coated hollow nanowire hybrid plasmonic
waveguides

In this section, we carry out a detailed analysis on the
second type of waveguide, namely the metal-coated hollow
nanowired hybrid plasmonic waveguide. It is schematically
shown in figure 4, where an additional SiO2 layer is
introduced between the Ag layer and the Si hollow nanowire.
The height of the SiO2 buffer layer is denoted as hb while
other parameters are the same as those in figure 1. The
modal properties are investigated by varying the thickness
of the SiO2 layer with different hollow nanowires. In the
simulations, the height of the silver layer is fixed at 100 nm
and w is chosen as 200, 250, 300 nm. As demonstrated by
the numerical simulations, the hybrid plasmonic waveguide
can also support a fundamental quasi-TM plasmonic mode
under a wide range of geometric parameters, similar to the
first type. Figure 5 shows the electric field distribution of the
fundamental hybrid plasmonic mode of the structure when
w = 250 nm with r = 0.5. It is seen that due to the strong

3



J. Opt. 14 (2012) 095501 Y Su et al

Figure 4. Schematic diagram of the studied metal-coated hollow
nanowire hybrid plasmonic waveguide.

Figure 5. Electric field distribution of the fundamental hybrid
plasmonic mode supported by the metal-coated hollow nanowire
hybrid waveguide (w = hSi = 250 nm, r = 0.5, hb = 20 nm,
hAg = 100 nm).

hybridization of the plasmonic mode and the dielectric mode
of the hollow nanowire, the electric field is greatly enhanced
in the low-index SiO2 layer, which is much stronger than
that in the hollow region of the Si nanowire. The introduced
buffer layer, combined with the hollow core, is expected to
be beneficial to the further reduction of the propagation loss,
as the mode field distribution is further shifted away from the
metal/Si interface and towards the low-index area.

Figure 6 shows the calculated modal properties at various
buffer layer thicknesses with different hollow nanowires,
where the case of hb = 0 nm represents the first type of
waveguide without the buffer layer. It is clearly seen that
increasing hb results in decreased Neff as well as increased
propagation length and larger effective mode area, which
are also illustrated correspondingly in the electric field
distributions depicted in the insets. Besides, the propagation
length undergoes a more dramatic increase with the increment
of hb than the effective mode area, which is also illustrated

Figure 6. The dependence of modal properties on the thickness of
the SiO2 layer (r = 0.5): (a) the modal effective index (Neff); (b) the
propagation length (Lp). Insets show the electric field distributions
of the hybrid plasmonic waveguides with w = 300 nm, hb = 10 nm;
w = 300 nm, hb = 50 nm; (c) the normalized mode area (Aeff/A0).
Insets show the electric field distributions of the hybrid plasmonic
waveguides with w = 200 nm, hb = 10 nm; w = 200 nm,
hb = 50 nm; (d) the figure of merit (FoM). The modal
characteristics of the waveguide with silver deposited directly on
top of a non-hollow silicon nanowire are also plotted in the figures
(see the dashed lines).
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in the curve of the figure of merit (FoM) in figure 6(d).
FoM is defined as the ratio of the propagation length (Lp)
to the effective mode size (Deff) [44], where Deff is defined
as the diameter of the effective mode area (Aeff), i.e. Deff =

sqrt(4Aeff/π). The calculated FoM clearly indicates improved
optical performance achieved by introducing the buffer layer.
Further reduction of the propagation loss could also be
realized by tuning the size of the hollow core or increasing the
thickness of the buffer layer. Here, it is also worth mentioning
that for the metal-coated non-hollow waveguides (r = 0 in
figure 3), more than one plasmonic mode can be supported
by the structure when the silicon nanowire is relatively large
(e.g. three modes exist when w = 300 nm). The multimode
guiding might induce high modal dispersion, which could
limit the operation bandwidth of such waveguides when used
in transmission applications. By introducing the hollow air
core (for the first type of proposed structures), the number
of sustained modes can be greatly reduced (e.g. only two
guided modes for w = 300 nm, r = 0.5). Even more modes
can be suppressed by further employment of the buffer layer
(i.e. for the second type). For instance, a metal-coated hybrid
hollow waveguide with parameters of w = 300 nm, r = 0.5
and hb = 10 nm has only one guided optical mode. Such a
single-mode condition can also be readily achieved with other
geometries by tuning the sizes of the hollow core and/or the
buffer layer.

3. Conclusions

In this paper, the characteristics of two types of hollow
nanowire based plasmonic waveguides are investigated at
a wavelength of 1550 nm. Simulation results reveal that
both of the two types of structures could support the
low-loss propagation of plasmonic modes with small mode
area. Compared to the metal-coated nanowire counterparts,
the proposed metal-coated hollow nanowire structures with
properly selected geometries exhibit lower propagation loss
while keeping similar confinement capacity. On the other
hand, the second type of waveguide, with additional buffer
layer added between the metal layer and the hollow nanowire,
shows improved optical performance over the first one, due to
the formed efficient hybrid plasmonic modes. With these nice
optical features as well as their easy-to-fabricate properties,
both of the presented hollow nanowire based plasmonic
waveguides could be useful candidates for integrated photonic
circuits.
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