Metal-insulator transition in CuIr₂S₄: XAS results on the electronic structure

M. Croft,^{1,2} W. Caliebe,² H. Woo,³ T. A. Tyson,³ D. Sills,¹ Y. S. Hor,¹ S-W. Cheong,¹ V. Kiryukhin,¹ and S-J. Oh^{1,*}

¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

²Brookhaven National Laboratory, Upton, New York 11973

³Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102

(Received 18 March 2003; published 20 May 2003)

S K and Ir L_3 x-ray absorption measurements across the temperature-induced metal (*M*) to insulator (*I*) transition in CuIr₂S₄ are presented. Dramatic S K-edge changes reflect the Ir *d*-electronic state redistribution across this transition. These changes, along with a detailed consideration of the *I*-phase structure, motivate a model in which the *I*-phase stabilization involves an interplay of charge and *d*-orbital orientation ordering along Ir chains, a quadrupling of the Ir-chain repeat unit, and correlated dimer spin-singlet formation.

DOI: 10.1103/PhysRevB.67.201102

PACS number(s): 71.30.+h, 78.70.Dm

Metal-insulator transitions involving transition metal (*T*) compounds have been of intense interest in recent years on both fundamental and technological grounds.^{1,2} This field has been dominated by 3d-row *T*-oxide compounds, by virtue of the renaissance in these materials that followed the discovery of high- T_c superconductivity.³ The subclass of mixed valent metallic compounds that "charge order" into an insulating state has been the focus of special recent interest.² The compound CuIr₂S₄ stands out as unique in this subclass for a number of reasons.^{4–9}

The spinel structure CuIr₂S₄ compound has a paramagnetic, high-temperature, homogeneously mixed Ir³⁺/Ir⁴⁺, metallic (M) phase, which undergoes a first-order transition (near 230 K) to a low-temperature, charge-ordered, diamagnetic, insulating (I) phase.⁴⁻⁹ Recent definitive x-ray and neutron scattering measurements showed this I phase to involve a complex ordering of Ir⁴⁺-spin-singlet dimers and undimerized Ir³⁺ sites.¹⁰ This finding is novel, since such dimerization transitions have previously occurred almost exclusively in compounds with clearly defined quasi-onedimensional (1D) chains, and certainly not in a complex three-dimensional (3D) type structure.¹¹ Moreover, the complex pairwise ordering of Ir³⁺-Ir³⁺ nondimer and Ir⁴⁺-Ir⁴⁺ singlet-dimer moieties appears not to have been previously observed. In addition, the broadness of the 5d orbitals makes such M-I transitions rare in 5d-row compounds, and still rarer in a nonoxide (i.e., S) 5d compound. These properties, along with the previous dearth of precise structural or electronic information, have hindered the development of the outlines of a theory for the M-I transition in CuIr₂S₄. In this paper, we present S and Ir XAS results spanning the M-I transition in $CuIr_2S_4$. The S K-edge results, along with a careful review of the dimerized/charge-ordered chain character of the I phase, motivate a proposal for a specific electronic/structural basis from which to approach understanding of this novel *I-M* transition.

The sample preparation and characterization techniques were as discussed in Ref. 10. The S K and Ir L_3 XAS measurements were, respectively, performed on beamlines X19A and X18B at the Brookhaven National Synchrotron Light Source, using methods discussed in Refs. 12 and 13. The low-temperature XAS measurements on X19A utilizes a nitrogen cryostat (in the fluorescence mode), and those on

X18B used a displex refrigerator (using the transmission mode).

Previous photoemission spectroscopy measurements on CuIr_2S_4 showed a subtle loss of electronic states at 0.2 eV below the Fermi energy (E_F) in the *I* phase.⁶ These photoemission and *I*-phase inverse photoemission results manifested substantial departures⁶ from band-structure predictions⁹ on a wider energy scale. Thus the generic gap formation below E_F , and the absence of any information about above- E_F density-of-state (DOS) *changes* across this *M-I* transition, have provided little guidance to direct the theoretical attack on this interesting system.

XAS has been important in elucidating atomic/orbitalspecific electronic structure in many classes of transition metal compounds. The combination of O K-edge (probing O p states) and Cu $L_{2,3}$ -edge (probing Cu d states) measurements emphasized the crucial importance of hybridized O p/Cu d hole states in the physics of high- T_c cuprates.¹⁴ Importantly, O K-edge measurements on VO2 clarified the specific electronic structure changes behind its metal to dimerized-insulator transition.¹⁵ Systematic O K-edge measurements in T(3d)-O compounds have profiled (via their threshold structure) the important variations in their hybridized O p/T d empty states.¹⁶ 4d/5d-hole states have been studied extensively by T $L_{2,3}$ -edge spectroscopy in transition-metal compounds.¹² Finally, T(3d) K-edge XAS has been used to chronicle the valence variations in manganites and the charge donation to Cu in electron-doped high- T_c materials.¹³ This background motivates our S K- and Ir L_3 -edge studies across the *M-I* phase transition in CuIr₂S₄. Cu K-edge measurements in our laboratory, along with previous NMR⁵ and band-structure⁹ calculations, indicate a d^{10} Cu^{1+} state in $CuIr_2S_4$, allowing us to neglect Cu d state influences on the S states above E_F .

The elemental S *K* edge in Fig. 1(a) is dominated by an intense "white line" (WL) feature, due to dipole transitions into empty 3p states. In transition-metal sulfide compounds, one typically observes¹⁷ a diminution of the WL intensity due to T to S charge transfer and the appearance of prominent threshold features, shifted down by 0–5 eV from the elemental-S WL, due to hybridized S p/T d states. The S *K* threshold features probe the T(*d*) DOS (weighted by transi-

FIG. 1. (a) The S K edges of elemental S and CuT_2S_4 , with T = Cr, Co, and Ir. The a'- and a-threshold features are, respectively, associated with T $d t_{2g}$ and e_g state hybridization. (b) The S K edges of CuIr_2S_4 , at temperatures T=195 K (in the I phase) and 300 K (in the M phase). (c) The Ir L_3 edges of elemental Ir, IrO₂, CuIr_2S_4 , and CuIr_2S_4 . The intensity in the A and A' positions are associated with Ir $d t_{2g}$ and e_g final states, respectively.

tion matrix element effects) in sulfides in the same sense as O K threshold features do in oxides.¹⁶ The S K-edge spectra for the spinel compounds CuT_2S_4 (T = Cr, Co, and Ir) in Fig. 1(a) illustrate this for the octahedral ligand field case, where the d orbitals are split into a lower t_{2g} sextet and an upper e_g quartet. For the isoelectronic 3d Co and 5d Ir compounds, the empty states are $t_{2g}^{0.5} - e_g^4$ and for the Cr compound they are $t_{2g}^{2.5} - e_g^4$. The *a* and *a*' features in the S K spectra are associated with the empty S p states, hybridized with the empty t_{2g} and e_g states, respectively. Consistent with band calculations,⁹ the ligand field splitting for T=Ir is large (yielding a resolved a' - a splitting) and smaller for the more localized Co d orbitals (yielding an unresolved a' shoulder on the *a* feature). In the T = Cr case, the broader *d* bands and larger number of t_{2g} holes broaden the threshold features and enhance the a'-feature intensity. Finally, although not germane to this work, it should be noted that a full treatment of such threshold features should include exchange and multiplet effects, particularly for the Cr compound.

Figure 1(b) compares the S K- and Ir L_3 -edge spectra on the same (albeit displaced) energy scale for the I and M phases of CuIr₂S₄. The Ir L_3 edge also manifests an intense WL feature due to the 5d states above E_F . The A feature, at the L_3 edge of CuIr₂S₄, involves the four empty e_g states per Ir, and the aligned S K a peak is associated with the transitions to S p/Ir $d(e_g)$ hybridized states. The $\frac{1}{2}t_{2g}$ hole per Ir makes a weak unresolved contribution to the Ir L_3 WL near the A' energy range; however, the S K a' feature, involving

FIG. 2. Comparison of the S K edges of CuIr_2S_4 just across the *I*-phase (225 K) to *M*-phase (239 K) transition. The difference (bottom) between the *I*- and *M*-phase spectra is shown to highlight the full details of the *M* to *I* electronic state changes.

S $p/\text{Ir } d(t_{2g})$ hybridized states, defines these t_{2g} states much more sharply. The alignment of the Ir $L_3 B$ feature and S K b feature for the CuIr₂S₄ suggests S-Ir hybridization effects at these higher energies.¹²

For comparison, the Ir L_3 edges of IrO₂, CuIr₂Se₄, and Ir metal are also shown in Fig. 1(c). The higher WL intensity and chemical shift of the IrO₂ spectrum reflect its higher valence relative to CuIr₂S₄. The Ir L_3 spectrum of CuIr₂Se₄ shows a greater Ir *d* DOS near E_F , relative to CuIr₂S₄, consistent with a higher density of overlapping states near E_F in the always-metallic Se isomorph.⁶ The combination of monochromator resolution, core hole broadening, and corehole/*d*-electron interactions make the Ir L_3 WL feature essentially identical in the *M* and *I* phases of CuIr₂S₄.

S *K*-edge spectra were taken as the sample slowly warmed through the *I-M* transition (with temperature measurements being ± 5 K) and the details of the discontinuous spectral change can be seen by comparing the $T \sim 225$ K *I*-phase and $T \sim 239$ K *M*-phase spectra in Fig. 2 (top). The difference between these spectra, shown in Fig. 2 (bottom) provides a direct estimate of the detailed Ir d/S-p state redistribution occurring at the transition. Here we will focus only on the central element of this redistribution, the dramatic shift of the $a'(t_{2g})$ feature to higher energy in the *I* phase. A proper theoretical treatment of this transition should also replicate the state redistribution on the low energy side of the *a* feature.

We tacitly assume the S K threshold features are dominated by electronic structure effects in analogy to all past O K-edge threshold measurements.^{14–16} The close quantitative similarity of our *I*-phase S K threshold spectra to the *I*-phase inverse photoemission results⁶ strongly supports this assumption.

We will pattern our proposals for understanding CuIr_2S_4 after those of the Abbate *et al.*¹⁵ reformulation of Goodenough's ideas¹⁸ for the paramagnetic-metal-to-dimerizedinsulator transition in VO₂. These authors^{15,18} developed a simple molecular orbital (MO) theory for VO₂, motivated by METAL-INSULATOR TRANSITION IN CuIr₂S₄: XAS . . .

FIG. 3. (a) The Ir atoms (only) in the cubic spinel CuIr_2S_4 . Note the interleaved and Ir-chain structure and threefold chain intersections at the Ir sites (see center Ir). (b) The *I*-phase Ir chains of CuIr_2S_4 with surrounding atoms omitted for clarity. The isolated circles are Ir^{3+} and the circles, connected by heavy lines, are Ir^{4+} - Ir^{4+} dimers. Class *I* chains (light dotted line) are along the triclinic-(110) direction with the Ir^{4+} - Ir^{4+} - Ir^{3+} - Ir^{4+} interatomic distances being 3.06, 3.59, 3.66, and 3.59 Å and the chain repeat distance being 13.95 Å. Class II chains (light dashed line) are along the (011) direction with the interatomic distances being 3.00, 3.72, 3.55, and 3.66 Å and the chain repeat distance being 13.93 Å.

the appearance of a prominent O K threshold feature in the I phase. The model was based on a strong hybridizationinduced splitting of dimer V d states (d_{\parallel} states) oriented along the chains of edge-sharing VO₆ octahedra in the rutile structure.^{15,18} Abbate *et al.*¹⁵ noted, and Sommers *et al.*¹⁹ emphasized, that Mott-Heitler-London electron correlation effects also contribute to the d_{\parallel} splitting.

The spinel structure of $\operatorname{CuIr}_2 S_4$ is decidedly three dimensional, however, as Fig. 3(a) illustrates, it also contains crisscrossing Ir chains with an Ir-Ir spacing of h=3.48 Å $=a\sqrt{2}/4$, where *a* is the lattice parameter. The chains cross in adjacent planes a/2 apart, and cross-linking chains create three-fold chain intersections at the Ir sites (see the cube center). The cell edge-to-edge chain has a length of 4h=13.92 Å and contains four Ir atoms in the cubic cell. In the metallic phase the Ir^{3.5+} atoms, with a configuration of $t_{2g}^{5.5}$, can be thought of as $[t_{2g}^4][t_{2g}^{1.5}]$, where the former bracket constitutes two filled *d* orbitals and the latter a $\frac{3}{4}$ -filled band for the highest-lying $d(t_{2g})$ orbital.

Space limitations preclude detailed discussion of the complex triclinic (a = 11.95 Å, b = 6.98 Å, c = 11.93 Å, α =91.05°, β =108.47°, and γ =91.03°) *I*-phase structure;¹⁰ however, several crucial points should be noted [see Fig. 3(b)]. All Ir atoms are members of charge-ordered \cdots Ir³⁺Ir⁴⁺-Ir⁴⁺Ir³⁺ \cdots chains with dimerized Ir⁴⁺-Ir⁴⁺ pairs. There are two closely related types of chains (I and II) having unit repeat distances of $\sim 4h$, and extending along approximately orthogonal triclinic cell edge-to-edge directions. Planes of chains in these two directions alternate in the third direction. At staggered chain crossing regions, adjacent Ir^{3+} - Ir^{4+} atoms are still close (in the 3.43–3.56 Å range); however, the orientation of the crucial near- E_F , d-orbital charge lobes, within our model, should be along the chains. This should produce minimal overlap between the filled-shell t_{2g}^6 Ir³⁺ on one chain, and the transverse d lobe on the Ir⁴⁺ on the adjacent chain, leading to near- E_F d bands with quasi-1D character (within a 3D geometrical structure).

The four atom repeat unit in the I-phase chains is com-

FIG. 4. Schematic views of the proposed electronic properties of CuIr_2S_4 . (a) The *I*-phase chain repeat unit with IrS_6 octahedra being viewed from above. The overlapping d_{\parallel}^1 orbital lobes of the Ir^{4+} dimer are shown. The filled d_{\parallel}^2 shell Ir^{3+} sites are represented by circles. (b) The proposed MO electronic structure in the *M* phase. (c) The proposed MO electronic structure, in the *I* phase at the dimerized (left) and undimerized (right) sites. Note only the highest lying t_{2g} d states have been shown explicitly in the diagram.

posed of a $t_{2g}^5 - t_{2g}^5$ dimer, bounded by two filled-orbital t_{2g}^6 sites. After Abbate *et al.*,¹⁵ we denote the last filled *d* orbital along the chain as d_{\parallel} and note that the *I*-phase chain sequence would be $d_{\parallel}^2 d_{\parallel}^1 - d_{\parallel}^1 d_{\parallel}^2$. In the extended-zone scheme, the dispersion curve for the d_{\parallel} band would now have new gaps at $\pi/4h$, $\pi/2h$, and $3\pi/4h$. The $3\pi/4h$ gap falls in the range of the Fermi energy of the $\frac{3}{4}$ filled d_{\parallel} band, and the removal of nested states near E_F should play some role in the *M* to *I* transition. Sommers *et al.*¹⁹ emphasized that electron repulsion/correlation effects were important in VO₂, along with direct d_{\parallel} overlap effects. We believe the correlated singlet dimerization energy is crucial here also, and while the direct *d*-overlap effects should be enhanced and the correlation effects reduced in this 5*d* Ir compound, both are anticipated.

In Fig. 4(a) we show a schematic representation of the dimer-containing chain repeat cell indicating the filled d_{\parallel}^2 sites with circles, and the oriented d_{xy} -type charge cloud¹⁰ at the d_{\parallel}^1 sites. The intersite direct d_{\parallel}^1 - d_{\parallel}^1 overlap of the dimer, across the shared octahedral edge, is emphasized.

In the *M* phase of CuIr₂S₄, the itinerant *d* holes are hopping on and off Ir sites along three-fold cross-linked chains, with the spatial orientation of the d_{xy} charge lobes also fluctuating. The transition to the *I* phase involves several components: a Ir³⁺Ir⁴⁺-Ir⁴⁺Ir³⁺ charge ordering with a concomitant quadrupling of the chain cell to $\sim 4h$, an orbital ordering of the charge lobes at each site into one chain and across the shared edge of an Ir⁴⁺-Ir⁴⁺ dimer, and finally, $d_{\parallel}^{\parallel}-d_{\parallel}^{\parallel}$ hybridization into a spin singlet dimer with correlation effects.

In Fig. 4(b) the MO proposal for the *M* phase of CuIr₂S₄ is shown. The bonding (σ)-antibonding (σ^*) orbitals involve Ir $d(e_g)$ states that point toward the S sites, and induce strongly split hybrid states. The less split bonding (π)- antibonding (π^*) orbitals involve Ir *d* states that point between the S sites, and hybridize more weakly. The highest-lying Ir $d(t_{2g})$ orbital [labeled *d* in Fig. 4(b)] is partially filled at E_F .

In the *I* phase there will be two differing MO combinations, one for the $d_{\parallel}^1 - d_{\parallel}^1$ dimer and one for the d_{\parallel}^2 sites which are shown in Fig. 4(c). At the dimer site, the splitting of the *d* states into a bonding d_{\parallel} and antibonding d_{\parallel}^* pair is dramatic. The fact that both the d_{\parallel}^* and d_{\parallel} states carry hybridized S-*p* states with them, away from E_F , has been emphasized in Fig. 4(c) by the additional broader box accompanying these states. At the Ir³⁺ d_{\parallel}^2 site, the closed d_{\parallel}^2 orbital falls below E_F . Thus in this MO model the *M-I* transition involves; the redistribution of the near- E_F states in the *M* phase, into the *I*-phase dimer site bonding/antibonding $(d_{\parallel}/d_{\parallel}^*)$ states, and into the filled t_{2g} states at the Ir³⁺ site.

Referring back to our S K-edge results in Fig. 2, in the M phase we associate the high-lying MO σ^* states and the near- E_F MO $\pi^* d$ states with the S K a and a' features, respectively. In the I phase, the a feature and σ^* states persist relatively unchanged in both the S-K edge results and MO model. The shift of the a' feature to higher energy in the I phase is associated with the splitting of the MO antibond-

- *Permanent address: Department of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742 Korea.
- ¹M. Imada, Rev. Mod. Phys. **70**, 1039 (1998).
- ²M. Salamon and M. Jaime, Rev. Mod. Phys. **73**, 583 (2001).
- ³J. Bednorz and K. Muller, Rev. Mod. Phys. **60**, 585 (1988).
- ⁴T. Furubayashi *et al.*, J. Phys. Soc. Jpn. **63**, 3333 (1994).
- ⁵K. Kumagai et al., Physica C 341, 741 (2000).
- ⁶J. Matsuno *et al.*, Phys. Rev. B **55**, R15 979 (1997).
- ⁷S. Nagata *et al.*, Phys. Rev. B **58**, 6844 (1998).
- ⁸A. T. Burkov et al., Phys. Rev. B 61, 10049 (2000).
- ⁹T. Oda et al., J. Phys.: Condens. Matter 7, 4433 (1995).
- ¹⁰P. Radaelli *et al.*, Nature (London) **416**, 155 (2002).

PHYSICAL REVIEW B 67, 201102 (2003)

ing d_{\parallel}^* states to above E_F at the dimer sites. The bonding d_{\parallel} states at the dimer sites, and the filled t_{2g} states at the Ir³⁺ sites, are both pulled below E_F and do not contribute to the S K edge. Thus, this simple starting-point model involves the I phase arising from orbital ordering of the *d*-orbital charge lobes into in-chain d_{\parallel} states, and intrachain charge ordering into Ir⁴⁺-Ir⁴⁺ (d_{\parallel}^1 - d_{\parallel}^1) correlated singlet dimers bounded by Ir³⁺ filled d_{\parallel}^2 orbital sites.

More generally, the underlying electronic origin of the M-I transition in this system appears, at present, unique among 5d row compound. Besides explaining our XAS results, the proposed MO picture appears to explain the photoemission gap formation below E_F . Interestingly, the fact that the band structure calculation predicts a metallic state, even in a tetragonally distorted phase (Ref. 9), strongly suggests that the electrons in the I phase have localized character, despite the common belief that 5d electrons form broad bands. Hence, the MI transition would appear to involve electron localization due to correlation effects.

ACKNOWLEDGMENTS

This work was supported by the DOE under NSLS Contract No. DE-AC02-98CH10886, the NSF under Grants No. DMR-0093143 and No. DMR-0103858, and the Korean Science and Engineering Foundation through CSCMR.

- ¹¹See G. Grüner, *Density Waves in Solids* (Addison-Wesley, Reading, 1994).
- ¹²See J. Chen *et al.*, Phys. Rev. B **46**, 15 639 (1992) and Y. Jeon *et al.*, *ibid.* **50**, 6555 (1994), and references therein
- ¹³See M. Croft *et al.*, Phys. Rev. B **55**, 8726 (1997) and J. M. Tranquada *et al.*, Nature (London) **337**, 720 (1989).
- ¹⁴C. T. Chen *et al.*, Phys. Rev. Lett. **68**, 2543 (1992).
- ¹⁵M. Abbate et al., Phys. Rev. B 43, 7263 (1991).
- ¹⁶F. M. F. de Groot et al., Phys. Rev. B 40, 5715 (1989).
- ¹⁷See J. Yan *et al.*, J. Alloys Compd. **229**, 216 (1995) and G. Huffman *et al.*, Energy Fuels **5**, 574 (1991).
- ¹⁸J. B. Goodenough, J. Solid State Chem. **3**, 490 (1971).
- ¹⁹C. Sommers *et al.*, Solid State Commun. **28**, 133 (1978).