

Lecture 7 Oscillations

http://web.njit.edu/~sirenko/

Physics 103 Spring 2012

2012 Andrei Sirenko, NJIT

Acceleration: $a=F/m [m/s^2]$

1. Positive: free fall

2. Zero: constant speed (65 mph on a highway)

3. Negative motion under friction

Acceleration

Average acceleration

$$a_{ ext{avg}} = rac{v_2 - v_1}{t_2 - t_1} = rac{\Delta v}{\Delta t}$$

• Instantaneous acceleration

$$a=\frac{dv}{dt}$$

Constant acceleration

$$v=v_0+at$$

$$x-x_0=v_0t+\frac{1}{2}at^2$$

2012

Andrei Sirenko, NJIT

Examples of SHM

 $a(t) = -\omega^2 x(t)$

- 1. Projection of the Circular motion.
- 2. Pendulum
- 3. Spring+weight

2012 Andrei Sirenko, NJIT

Simple Harmonic Motion

Simple Harmonic Motion (SHM)

Displacement, Velocity, and Acceleration of SHM

$$x(t) = x_m \cos(\omega t + \phi)$$
 (displacement).

$$v(t) = \frac{dx(t)}{dt} = \frac{d}{dt} [x_m \cos(\omega t + \phi)]$$

$$v(t) = -\omega x_m \sin(\omega t + \phi)$$
 (velocity).

$$a(t) = \frac{dv(t)}{dt} = \frac{d}{dt} \left[-\omega x_m \sin(\omega t + \phi) \right]$$

$$a(t) = -\omega^2 x_m \cos(\omega t + \phi)$$
 (acceleration).

$$a(t) = -\omega^2 x(t)$$
 Andrei Sirenko, NJIT

Click on the image to start the simulation

Displacement, Velocity, and Acceleration of SHM

$$a(t) = -\omega^2 x(t)$$

Andrei Sirenko, NJIT

8

The Force Law for SHM

$$a(t) = -\omega^2 x(t)$$

<u>Force is proportional to displacement with a negative constant of proportionality</u>

$$F = m\alpha = -(m\omega^2)x.$$

Examples of SHM

- 1. Projection of the Circular motion.
- 2. Pendulum
- 3. Spring+weight

2012 Andrei Sirenko, NJIT

10

Examples of nonSHM

- 1. Torsion Pendulum with the moving weights
- 2. Coupled Pendulums

2012 Andrei Sirenko, NJIT 11

What sort of force gives SHM?

$$a(t) = -\omega^2 x(t)$$
 \longrightarrow $F_{tot} = m\alpha = -m\omega^2 x$

Force is proportional to displacement with a negative constant of proportionality

Spring Force!

$$F = -kx \longrightarrow \omega = (k/m)^{\frac{1}{2}}$$

ω is the frequency of oscillation of the mass

 ω does not depend on amplitude of motion

Energy of SHM

2012

Total Energy is a constant

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 + mgx$$

Simple Pendulum

Simple Pendulum

Simple pendulum follows SHM

$$\frac{d^2\theta}{dt^2} = -(g/L)\theta$$
 Looks like spring $\frac{d^2x}{dt^2} = -(k/m)x$

$$\frac{d^2x}{dt^2} = -(k/m)x$$

Spring	Pendulum
$x = x_{m} \cos(\omega t + \phi)$	$\theta = \theta_{\rm m} \cos(\omega t + \phi)$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega = \sqrt{\frac{\mathbf{g}}{\mathbf{L}}}$$

$$T = 2\pi \int \frac{m}{k}$$

$$T = 2\pi \int \frac{L}{g}$$

2012

Andrei Sirenko, NJIT

Simple Pendulum: Questions

Q1. If we double θ_m the energy:

- a) is half as large
- b) Stays the same
- c) is twice as large d) is 4 times greater
- e) is 16 times greater

Q2. If we double θ_m the period:

- a) is half as large
- b) Stays the same
- c) is twice as large d) is 4 times greater
- e) is 16 times greater

15

Damping of harmonic oscillations

Simple Harmonic Motion is an Idealization

Energy is constant → Motion never decays

In real life the motion eventually stops

Friction Air Resistance

....

Mechanical Energy $\rightarrow 0$

F_d = -by Air resistance, etc.

Direction opposite to motion

Magnitude proportional to velocity

2012

Andrei Sirenko, NJIT

17

Damping of harmonic oscillations

$$x = x_0 \cos(\omega t)$$
 $v = -x_0 \sin(\omega t)$

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kx_m^2$$

Damping Force

$$F_{d} = -bv$$

$$-bv - kx = ma.$$

$$m\frac{d^{2}x}{dt^{2}} + b\frac{dx}{dt} + kx = 0.$$

$$x(t) = x_m e^{-\delta t/2m} \cos(\omega t + \phi)$$

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}.$$