	<u>Lecture 11</u>	
	Capacitance, current, and resistance	Georg Simon Ohm (1789-1854)
	http://web.njit.edu/~sirenko/ <u>Physics 103</u> Spring 2012	
2012	Andrei Sirenko, NJIT	1

Electric Charge

- Electric charge is fundamental
- characteristic of elementary particles
- •Two types of charges: positive/negative
- Labels are simply a convention
- •Atomic structure :
 - negative electron cloud
 - nucleus of positive protons, uncharged neutrons

Quantization of Charge

- Charge is always found in INTEGER multiples of the charge on an electron/proton
- Electron charge $e^- = -1.6 \times 10^{-19}$ Coulombs [C]
- Proton charge $p = e = +1.6 \times 10^{-19}$ Coulombs
- Unit of charge: Coulomb (C) in SI units
- One cannot ISOLATE FRACTIONAL CHARGE (e.g., 0.8 x 10⁻¹⁹ C, +1.9 x 10⁻¹⁹ C, etc.)
- $e = \Sigma$ quarks, $(\pm 2/3e, \pm 1/3e)$
- Charge: Q, q, -q, -5q,, 7q, etc.
- Q = 1 C is OK, it means $Q = (1 \pm 1.6 \times 10^{-19}) C$

2012

Andrei Sirenko, NJIT

Capacitance

- Capacitance depends only on GEOMETRICAL factors and on the MATERIAL that separates the two conductors
- e.g. Area of conductors, separation, whether the space in between is filled with air, plastic, etc.

(We first focus on capacitors where gap is filled by vacuum or air !) 6

- A parallel plate capacitor of capacitance C is charged using a battery.
- Charge = Q, potential difference = V.
- Battery is then disconnected.
- If the plate separation is INCREASED, does potential difference V:
- (a) Increase?
- (b) Remain the same?
- (c) Decrease?

2012

• Q is fixed!

• C decreases (= $\epsilon_0 A/d$)

Andrei Sirenko, NJIT

Parallel Plate Capacitor & Battery

Example 2

What is the potential difference across each capacitor?

Example 6

Summary for Capacitors

(same Q)

- (same V)

• Capacitors in PARALLEL: $C_{eq} = C_1 + C_2 + \dots$

• Capacitors store energy: $U = (1/2)CV^2 = Q^2/2C$

Georg Simon Ohm (1789-1854)

"a professor who preaches such heresies is unworthy to teach science." Prussian minister of education 1830

Current and resistance

Microscopic view of charge flow: current density, resistivity and drift speed Macroscopic view: current and resistance

Relating microscopic and macroscopic

Conductors, semiconductors, insulators, superconductors

2012

Andrei Sirenko, NJIT

17

Conductors in electrostatic equilibrium

Suppose a piece of copper wire is placed in a static electric field and not connected to anything else. What happens?

• Naïve view: electrons are free to move; they arrange themselves in such a way that E = 0 inside the wire; no more electron motion!

• **Reality**: electrons inside the wire keep moving all the time, but on average they arrange themselves so that E = 0 inside!

Random motion of electrons:Movement is random because of "collisions" with vibrating nuclei

• In between collisions, electrons move VERY FAST ~10⁶ m/s!

Conductors in absence of equilibrium

Non-equilibrium -- imagine that you attach a battery across a copper wire so that electrons can be put into the wire and extracted from the wire:

- Now: E is NOT ZERO inside the conductor
- Electrons "drift" because of the non-zero electric field ("electric current")
- Drift is much, much SLOWER than random motion: typically < mm/s

$$I = \frac{dQ}{dt} \quad [A = C/s]$$

Andrei Sirenko, NJIT

19

Current: example 1

- The figure shows charges moving at the given rates
- What is the total current flowing through the area shown?
- Remember that current is the flow of POSITIVE charge!
- Total current = 5A + 5A 1A= 9A (towards the right)

Andrei Sirenko, NJIT

 Macroscopic property -- e.g. we talk about "resistance" of an object such as a specific **piece** of wire. This is not a **local** property

2012

22

Circuit symbol for R

Relating the Macro- and Microscopic views

• Conductor of UNIFORM crosssectional area A, length L

• Potential difference V applied across ends

 Note: what if the area was not uniform?? (HW problem)

2012

Andrei Sirenko, NJIT

23

Resistance:

How much potential do I need to apply to a device to drive a given current through it?

$$R = \rho \frac{L}{A} = \frac{E}{J} \frac{L}{A}$$

$$R \equiv \frac{V}{i}$$
 and therefore : $i = \frac{V}{R}$ and $V = iR$

Units:
$$[R] = \frac{\text{Volt}}{\text{Ampere}} = \text{Ohm} (abbr. \Omega)$$

For many materials, R remains a constant for a wide range of values of current and potential.

Devices specifically designed to have a constant value of R are called resistors, and symbolized by -

Georg Simon Ohm (1789-1854)

Variation of resistance (resistivity) with temperature

R, ρ change with temperature in a complicated, material-dependent way.

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Why does it change? Nuclei vibrate due to thermal agitation, and scatter electrons as they pass.

For many conductors, it can be approximated by a linear temperature dependence (for a small range of temperatures),

$$\frac{\rho - \rho_0}{\rho_0} = \alpha (T - T_0)$$

With α determined empirically and listed in tables.

Trivia: why do light bulbs mostly die at the moment of switch-on?

Answer: when the filament is cold it has less resistance, therefore it is the moment when the current is maximum.

2012

Andrei Sirenko, NJIT

Power dissipation:

Resistance was a measure of the "cost" of establishing a current in a realistic conductor. The "cost" can be characterized in terms of the energy one needs to constantly input to a conductor in order to keep a current going.

Let us follow an amount of charge dq as it moves through the circuit, starting at a.

From *a* to *b*, through the battery, its potential energy is increased by Vdq. From b to c its potential is constant, similarly from c to d.

When it is back at *a*, its potential energy should be the same as when it started. Therefore there must have been a loss of potential energy of amount -Vdq when moving through the resistance.

Power = $\frac{dU}{dU} = Vi$ $dU = Vdq = Vidt \implies$ Units: Watt Applying Ohm's laws : Power = $(iR)i = i^2R$ Andrei Sirenko, NJIT

$$Power = \frac{dt}{dt}$$

Power =
$$V\left(\frac{V}{R}\right)_{7} = \frac{V^{2}}{R}$$

Summary:

- We saw that charges moving through conductors experience "resistance" to their motion.
- resistance is related to the electron drift speed
- We discussed microscopic and macroscopic view of electrical currents.
- Studied temperature and material dependence.
- Discussed how moving charges costs and delivers electrical power.

Lecture QZ

1. Capacitors C1 and C2 are connected in parallel. The equivalent capacitance is given by

 $\begin{array}{l} \text{(a)} \ C_1C_2/(C_1+C_2) \\ \text{(b)} \ (C_1+C_2)/C_1C_2 \\ \text{(c)} \ 1/(C_1+C_2) \\ \text{(d)} \ C_1/C_2 \\ \text{(e)} \ C_1+C_2 \end{array}$

 $C_1 = C_2$

2. Capacitor s C_1 and C_2 are connected in series. The equivalent capacitance is given by

(a) $C_1 C_2 / (C_1 + C_2)$	
(b) $(C_1 + C_2)/C_1C_2$	
(c) $1/(C_1 + C_2)$	
(d) C_1/C_2	
(e) $C_1 + C_2$	

2012

Andrei Sirenko, NJIT

29

Summary: