Lecture 11

Capacitance, current, and resistance

http://web.njit.edu/~sirenko/
Physics 103 Spring 2012

Electric Charge

- Electric charge is fundamental characteristic of elementary particles
-Two types of charges: positive/negative
- Labels are simply a convention
-Atomic structure :
- negative electron cloud
- nucleus of positive protons, uncharged neutrons

Force between pairs of point charges

	$+q_{1} \bigcirc \longrightarrow F_{12}$
Or	$F_{21} \longleftrightarrow q_{12}$
Or	
	$F_{12} \longleftrightarrow q_{2} \bigcirc F_{21}$
Or	$F_{12} \longleftrightarrow q_{2}$

Coulomb's law -- the force between point charges:

- Lies along the line connecting the charges.
- Is proportional to the magnitude of each charge.
- Is inversely proportional to the distance squared.
- Note that Newton's third law says $\left|\mathrm{F}_{12}\right|=\left|\mathrm{F}_{21}\right|$!!

$$
\begin{gathered}
\text { Coulomb's law } \\
\left|F_{12}\right|=\frac{K\left|q_{1}\right|\left|q_{2}\right|}{r_{12}^{2}} \quad \begin{array}{l}
\text { For charges in a } \\
\text { VACUUM } \\
\mathrm{k}=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{C^{2}}
\end{array}
\end{gathered}
$$

Often, we write k as:

$$
k=1 / 4 \pi \varepsilon_{0}=1 \text { with } \varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{N m_{4}^{2}}
$$

Quantization of Charge

- Charge is always found in INTEGER multiples of the charge on an electron/proton
- Electron charge $\mathrm{e}^{-}=-1.6 \times 10^{-19}$ Coulombs [C]
- Proton charge $p=e=+1.6 \times 10^{-19}$ Coulombs
- Unit of charge: Coulomb (C) in SI units
- One cannot ISOLATE FRACTIONAL CHARGE (e.g., $0.8 \times 10^{-19} \mathrm{C},+1.9 \times 10^{-19} \mathrm{C}$, etc.)
$=\Sigma$ quarks, $(\pm 2 / 3 \mathrm{e}, \pm 1 / 3 \mathrm{e})$
- Charge: Q, q, -q, $-5 \mathrm{q}, \ldots ., 7 \mathrm{q}$, etc.
- $\mathrm{Q}=1 \mathrm{C}$ is OK , it means $\mathrm{Q}=\left(1 \pm 1.6 \times 10^{-19}\right) \mathrm{C}$

Capacitance

- Capacitance depends only on GEOMETRICAL
factors and on the MATERIAL that separates the two conductors
- e.g. Area of conductors,
 separation, whether the space in between is filled with air, plastic, etc.
(We first focus on capacitors where gap is filled by

Parallel Plate Capacitor

What is the electric field in between the plates? (Gauss' Law)

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A}
$$

Relate E to potential difference V between the plates:

What is the capacitance C ?

$$
\mathrm{C}=\mathrm{Q} / \mathrm{V}=\frac{\varepsilon_{0} A}{d} \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

Isolated Parallel Plate Capacitor

- A parallel plate capacitor of capacitance C is charged using a battery.
- Charge $=\mathrm{Q}$, potential difference $=\mathrm{V}$.
- Battery is then disconnected.
- If the plate separation is INCREASED, does potential difference V :
(a) Increase?
(b) Remain the same?
(c) Decrease?
- Q is fixed!
- C decreases $\left(=\varepsilon_{0} \mathrm{~A} / \mathrm{d}\right)$
- $\mathrm{Q}=\mathrm{CV}$; V increases.

\square

Parallel Plate Capacitor \& Battery

- A parallel plate capacitor of capacitance C is charged using a battery.
- Charge $=\mathrm{Q}$, potential difference $=\mathrm{V}$.
- Plate separation is INCREASED while battery remains connected.
- Does the electric field inside:
(a) Increase?
(b) Remain the same?
(c) Decrease?
- V is fixed by battery!
- C decreases $\left(=\varepsilon_{0} \mathrm{~A} / \mathrm{d}\right)$
- $\mathrm{Q}=\mathrm{CV}$; Q decreases
- $\mathrm{E}=\mathrm{Q} / \varepsilon_{0} \mathrm{~A}$ decreases

Example 2

What is the potential difference across each capacitor?

- $\mathrm{Q}=\mathrm{CV} ; \mathrm{Q}$ is same for all capacitors
- Combined C is given by:

$$
\frac{1}{C_{e q}}=\frac{1}{(10 \mu F)}+\frac{1}{(20 \mu F)}+\frac{1}{(30 \mu F)}
$$

- $\mathrm{C}_{\mathrm{eq}}=5.46 \mu \mathrm{~F}$
- $\mathrm{Q}=\mathrm{CV}=(5.46 \mu \mathrm{~F})(120 \mathrm{~V})=655 \mu \mathrm{C}$
- $\mathrm{V}_{1}=\mathrm{Q} / \mathrm{C}_{1}=(655 \mu \mathrm{C}) /(10 \mu \mathrm{~F})=65.5 \mathrm{~V}$
- $\mathrm{V}_{2}=\mathrm{Q} / \mathrm{C}_{2}=(655 \mu \mathrm{C}) /(20 \mu \mathrm{~F})=32.75 \mathrm{~V}$
- $\mathrm{V}_{3}=\mathrm{Q} / \mathrm{C}_{3}=(655 \mu \mathrm{C}) /(30 \mu \mathrm{~F})=21.8 \mathrm{~V}$

Note: 120 V is shared in the ratio of INVERSE capacitances
i.e.1:(1/2):(1/3)
(largest C gets smallest V)

Example 3

Which of the following statements is FALSE?
(a) B, D and F are in PARALLEL.
(b) E and F are in SERIES.
(c) A, C and E are in PARALLEL.

Example 4 a

 what is the charge on capacitor A?

- A, C, E are in parallel
- B, D, F are in parallel

- Potential difference across each set of capacitors $=120 \mathrm{~V} / 2=60 \mathrm{~V}$
- Potential difference across $\mathrm{A}=60 \mathrm{~V}$
- Charge on $\mathrm{A}=(\mathbf{1 0} \mu \mathrm{F}) \mathbf{(6 0} \mathrm{V})=\mathbf{6 0 0} \mu \mathrm{C}$ Andrei Sirenko, NJIT

Example 5

In the circuit shown, what is the charge on the $10 \mu \mathrm{~F}$ capacitor?

- The two $5 \mu \mathbf{F}$ capacitors are in parallel
- Replace by $\mathbf{1 0} \mu \mathbf{F}$
- Then, we have two $\mathbf{1 0} \mu \mathbf{F}$ capacitors in series
- So, there is 5 V across the $10 \mu \mathrm{~F}$ capacitor of interest
- Hence, $\mathrm{Q}=(\mathbf{1 0} \mu \mathbf{F})(5 \mathrm{~V})=\mathbf{5 0} \mu \mathrm{C}$

Energy Stored in a Capacitor

- Start out with uncharged capacitor
- Transfer small amount of charge $d q$ from one plate to the other until charge on each plate has magnitude Q

- How much work was needed?
- $10 \mu \mathrm{~F}$ capacitor is initially charged to 120 V .

$20 \mu \mathrm{~F}\left(\mathrm{C}_{2}\right)$

After switch is closed, let charges $=Q_{1}$ and Q_{2}.
Charge is conserved: $\mathrm{Q}_{1}+\mathrm{Q}_{2}=1200 \mu \mathrm{C}$
Also, $\mathrm{V}_{\text {final }}$ is same: $\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}} \quad Q_{1}=\frac{Q_{2}}{2}$

$$
\begin{aligned}
& \cdot \mathrm{Q}_{1}=400 \mu \mathrm{C} \\
& \cdot \mathrm{Q}_{2}=800 \mu \mathrm{C} \\
& \cdot \mathrm{~V}_{\text {final }}=\mathrm{Q}_{1} / \mathrm{C}_{1}=40 \mathrm{~V}
\end{aligned}
$$

Initial energy stored $=(1 / 2) \mathrm{C}_{1} \mathrm{~V}_{\text {initial }}{ }^{2}=(0.5)(10 \mu \mathrm{~F})(120)^{2}=72 \mathrm{~mJ}$
Final energy stored $=(1 / 2)\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}_{\text {final }}{ }^{2}=(0.5)(30 \mu \mathrm{~F})(40)^{2}=24 \mathrm{~mJ}$

Energy lost $($ dissipated $)=48 \mathrm{~mJ}$
2012
Andrei Sirenko, NJIT

Question: where did the energy go??

Summary for Capacitors

- Capacitors in SERIES: (same Q)

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots
$$

- Capacitors in PARALLEL: $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots$ (same V)

- Capacitors store energy:

$$
\mathrm{U}=(1 / 2) \mathrm{CV}^{2}=\mathrm{Q}^{2} / 2 \mathrm{C}
$$

Current and resistance

Microscopic view of charge flow: current density, resistivity and drift speed
Macroscopic view: current and resistance
Relating microscopic and macroscopic
Conductors, semiconductors, insulators, superconductors

Conductors in electrostatic equilibrium

Suppose a piece of copper wire is placed in a static electric field and not connected to anything else. What happens?

- Naïve view: electrons are free to move;
 they arrange themselves in such a way that $\mathrm{E}=0$ inside the wire; no more electron motion!
- Reality: electrons inside the wire keep moving all the time, but on average they arrange themselves so that $\mathrm{E}=0$ inside!

Random motion of electrons:

- Movement is random because of "collisions" with vibrating nuclei
- In between collisions, electrons move VERY FAST $\sim 10^{6} \mathrm{~m} / \mathrm{s}$!

Conductors in absence of equilibrium

Non-equilibrium -- imagine that you attach a battery across a copper wire so that electrons can be put into the wire and extracted from the wire:

- Now: E is NOT ZERO inside the conductor
- Electrons "drift" because of the non-zero electric field ("electric current")
- Drift is much, much SLOWER than random motion: typically $<\mathrm{mm} / \mathrm{s}$

$$
I=\frac{d Q}{d t} \quad[A=C / s]
$$

- Drift of electrons creates a net flow of charge -- CURRENT measured in Amperes $=\mathrm{C} / \mathrm{s}$ - Convention: "current" is viewed as flow of POSITIVE charge

Current: example 1

- The figure shows charges moving at the given rates
- What is the total current flowing through the area shown?
- Remember that current is the flow of POSITIVE charge!
- Total current $=5 \mathrm{~A}+5 \mathrm{~A}-1 \mathrm{~A}$ $=9 \mathrm{~A}$ (towards the right)

Current: Example 2

- Charge is CONSERVED: total current into junction = total current out of junction
- In figure shown, e.g. $\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}$
- Useful analogy: think of water flow!

- Example: what is the current I in the wire shown at right?
- Answer: $\mathrm{I}=3 \mathrm{~A}$

Resistance

- Since electrons collide with vibrating nuclei, there is "resistance" to the free flow of charge.
- Define "Resistance" $=\mathrm{R}=\mathrm{V} / \mathrm{I}$ (i.e. "how much charge flow do I get for an applied potential difference?")
- Units: Ohm (Ω)
- Macroscopic property -- e.g. we talk about "resistance" of an object such as a specific piece of wire. This is not a local property

Current $=\mathrm{I}$

$$
R=\frac{V}{I}
$$

$$
-\mathcal{W}
$$

Circuit symbol for R

Relating the Macro- and Microscopic views

- Conductor of UNIFORM crosssectional area A , length L
- Potential difference V applied across ends
- Note: what if the area was not uniform?? (HW problem)

Resistance:

How much potential do I need to apply to a device to drive a given current through it?

$$
R=\rho \frac{L}{A}=\frac{E}{J} \frac{L}{A}
$$

$$
R \equiv \frac{V}{i} \quad \text { and therefore : } i=\frac{V}{R} \quad \text { and's laws } V=i R
$$

Georg Simon Ohm (1789-1854)

$$
\text { Units }:[\mathrm{R}]=\frac{\text { Volt }}{\text { Ampere }} \equiv \operatorname{Ohm}(\text { abbr. } \Omega)
$$

For many materials, R remains a constant for a wide range of values of current and potential.

Devices specifically designed to have a constant value of R are called resistors, and symbolized by

Variation of resistance (resistivity) with temperature

R, ρ change with temperature in a complicated, material-dependent way.

Why does it change? Nuclei vibrate due to thermal agitation, and scatter electrons as they pass.

For many conductors, it can be approximated by a linear temperature dependence (for a small range of temperatures),

$$
\frac{\rho-\rho_{0}}{\rho_{0}}=\alpha\left(T-T_{0}\right)
$$

With α determined empirically and listed in tables.
Trivia: why do light bulbs mostly die at the moment of switch-on?
Answer: when the filament is cold it has less resistance, therefore it is the moment when the current is maximum.

Various materials and temperature:

Power dissipation:

Resistance was a measure of the "cost" of establishing a current in a realistic conductor. The "cost" can be characterized in terms of the energy one needs to constantly input to a conductor in order to keep a current going.

Let us follow an amount of charge $d q$ as it moves through the circuit, starting at a.

From a to b, through the battery, its potential energy is increased by Vdq.
From b to c its potential is constant, similarly from c to d.

When it is back at a, its potential energy should be the same as when it started. Therefore there must have been a loss of potential energy of amount $-V d q$ when moving through the resistance.

$$
\begin{aligned}
& d U=V d q=V i d t \\
& \text { Units: Watt }
\end{aligned} \Rightarrow \quad \text { Power }=\frac{d U}{d t}=V i
$$

Applying Ohm's laws : $\underset{\text { Andrei Sirenko, NJIT }}{\text { Power }=(i R) i=i^{2} R}$

Summary:

- We saw that charges moving through conductors experience "resistance" to their motion.
- resistance is related to the electron drift speed
- We discussed microscopic and macroscopic view of electrical currents.
- Studied temperature and material dependence.
- Discussed how moving charges costs and delivers electrical power.

Lecture QZ

1. Capacitors C_{2} and C_{2} are connected in parallel. The equivalent capacitance is given by
(a) $C_{1} C_{2} /\left(C_{1}+C_{2}\right)$
(b) $\left(C_{1}+C_{2}\right) / C_{1} C_{2}$
(c) $1 /\left(C_{1}+C_{2}\right)$
(d) C_{1} / C_{2}

(e) $C_{1}+C_{2}$
2. Capacitor s C_{1} and C_{2} are connected in series. The equivalent capacitance is given by
(a) $C_{1} C_{2} /\left(C_{1}+C_{2}\right)$
(b) $\left(C_{1}+C_{2}\right) / C_{1} C_{2}$
(c) $1 /\left(C_{1}+C_{2}\right)$
(d) C_{1} / C_{2}

(e) $C_{1}+C_{2}$

Summary:

