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Today

• EMF devices: ideal vs. non-ideal

• Single loop circuitsSingle loop circuits

• Multiloop circuits

E l f CQZ3• Examples for CQZ3 
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Resistance:

L
R ρ= dQ

i

Current:

A
R ρ=

dt

Q
i =

i
V

R ≡ iRV
R
V

i ==   and    :thereforeand
Georg Simon Ohm
(1789-1854)

Ohm’s laws

i R

) (abbr. Ohm
Ampere

Volt
  [R] :Units Ω≡=
Ampere

For many materials, R remains a constant for a wide range of values of 
current and potential.

Devices specifically designed to have a constant value of R are called
resistors, and symbolized by
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EMF Devices
“EMF d i ” b l i h Ξ

R
• “EMF devices”: boost electric charge 

from a point of low electric potential 
energy to high electric potential energy

ab cd

Ξ

gy g p gy

• This is done by converting various 
forms of energy (chemical, 

h i l li ht ) i t l t i l

Difference in electric potential 
between the terminals of an EMF 

mechanical, light,…) into electrical 
energy (batteries, generators, solar 
cells,….) V

device is called the “EMF” = Ξ

• View battery as pump that pushes 
positive charge around a circuit.

a b c d

V

Emf devices: 

• “dc” (Ξ fixed) 
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• “ac” (Ξ varies with time)
• Initial focus: dc circuits.



RC Circuits

• Loop analysis of an RC circuit: doing the 
math

• Time constant

• Physical understanding of RC circuits:• Physical understanding of RC circuits: 
intuitive picture
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EMF Devices
• “EMF”

dW
=Ξ

dq
=Ξ

• Units: [V]
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Ideal & non-ideal EMF Devices
• Ideal EMF devices: no matter 

what you connect across the 
EMF th f Ξ i

Ξ TRUE

EMF source, the emf Ξ is 
constant. 

• Non ideal EMF device: the R• Non-ideal EMF device: the 
emf Ξ depends on what else 
you connect in the circuit

R

you connect in the circuit

• Devices are non-ideal because 
of energy dissipation -- we 

i trΞ

Ξ TRUE

gy p
model this is as an ideal emf Ξ
+ “internal resistance”

intrΞ
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R

Single Loop DC circuitg p
• Recall that electric potential at any given point is 

uniquely defined once you arbitrarily decide 
h V 0 b ciwhere V = 0. 

• If you go around a circuit in a complete loop, the 
net change in potential = 0! RΞ

b c

+

i

• RULES:

– When walking through an EMF device, add 

+ Ξ if you go from - to + terminal or - Ξ
a d

 Ξ if you go from to  terminal or Ξ
otherwise. 

– When walking through a resistor, add -iR if 
flowing with the current or +iR otherwise

-
• Start at “a”, walk 

clockwise end at “a”flowing with the current or +iR otherwise. 
“Current flows downhill thru resistors”

clockwise, end at a
• + Ξ -iR=0

• Ξ = iR
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Example 1: Resistors in Series

• “Series” Resistors:
t d i “ h i ”

i

– connected in a “chain”

– carry the SAME 
CURRENT

Ξ
1R

R
CURRENT 

– total potential difference 
across resistors in series = 

f i l diff

2R

0Ξ iRiRsum of potential difference 
across each resistor

021 =−−Ξ+ iRiR
tot21 )( iRRRi =+=Ξ⇒

21tot RRR +=
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∑
=

=
n

i
iRRn

1
tot   :series in resistors  have  youIf Series R is always 

greater than 
individual R

Example 2: non-ideal battery

• Non-ideal battery of emf 
Ξ is connected across a

intRΞ
Vab

Ξ is connected across a 
resistor R.

• Internal resistance of

i
R• Internal resistance of 

battery = Rint

• What is the potential 0int =−−Ξ+ iRiRWhat is the potential 
difference across  the 
terminals of the battery?

int

Ξy

int

R

iRiRVab

Ξ
=Ξ+−=

intRR
i

+
Ξ

=
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intRR

R

+
Ξ

=



Example 3: Multiloop Circuits
• Assign a different current to 

each branch of the circuit --
choose ARBITRARY directions 
for currents.

• At junctions, net current in = net 
current out. Each junction gives cu e t out. ac ju ct o g ves
one equation.

• Take a walks around each loop 
in the circuit: sum of potentialin the circuit: sum of potential 
difference  = 0. Each walk gives 
an equation.

Choose enough equations to solve
Given: Ξ 1, Ξ 2, R1, R2,, R3– Choose enough equations to solve 

for the unknowns!
– Make sure equations are 

INDEPENDENT!

,

Find: i1, i2, i3

3 unknowns; need 3 independent
simultaneous equations:

2012 Andrei Sirenko, NJIT 11

INDEPENDENT! simultaneous equations:
• 1 junction equation
• 2 loop equations

Kirchoff’s LawsKirchoff s  Laws

Ki hh ff’ l f• Kirchhoff’s law for 
currents Gustav Robert 

Kirchhoff (1824-1887)K

0
1

=∑
=

K

j
ji

• Kirchhoff’s law for EMF

j

∑∑ =Ξ
N

jj

K

i Ri
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Let’s do it! Junction Rule 
(1st Kirchhoff law):

231 iii =+

Walk CC along the left loop: Walk CC along the right loop:

1 1 3 3 1i R i R− = Ξ 3 3 2 2 2i R i R− − = Ξ
Gi th l f th EMF’ d th i t l ft ith th
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Given the values of the EMF’s and the resistors, we are left with three
equations with three unknowns, i.e., the three currents.

Kirchoff’s  Laws

• Procedure just followed: 
Kirchoff’s Laws

• Is the procedure unique? 
No! For instance, we could 
h k h l f l dhave taken the left loop and 
the “exterior loop”.

N t th t th d lt ill• Note that the end result will 
be unique!

0ΞΞRiRi
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0122211 =Ξ+Ξ−−− RiRi



Example 3 -- A Loop Puzzle:Example 3 A Loop Puzzle: 
HRW Q28.12

• All resistors are equal (4 
Ω) and all batteries are 
IDEAL with emf = 4 V. 

• What is the current through 
iresistor R?

• Hint: potential difference 
th t i l f

R

across the terminals of an 
ideal battery is ALWAYS 
= emf!

0=−−−−+ iRVVVV

iV 048 Ω
2012 Andrei Sirenko, NJIT 15

 emf!

Ai

iV

2||

048

=
=Ω−−

Example 5: Resistors in ParallelExample 5: Resistors in Parallel

+ a
1i 3i

• Resistors in parallel:
– SAME POTENTIAL 

DIFFERENCE 

+ a

1R 2R2i
Ξ

– Total CURRENT thru 
resistors in parallel = sum 
of currents thru each 

i tresistor

• What is the equivalent 
resistance? -- let’s use  + a

1i

Kirchoff’s Laws.

totR
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321   :a Node iii +=
Ξ

• First, use junction rule at “a”

0   :loopLeft 12 =−Ξ Ri

0-:loopOuter 23 =Ξ Ri
1

2 R
i

Ξ
=⇒

3i
Ξ

=⇒

• Next, use left loop:

• Then use outer loop: 0  :loopOuter 23Ξ Ri
2

3 R
i⇒

Ξ⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Ξ
+

Ξ
=1

11

RRRR
i

Then, use outer loop:

+
1i 3i

⎠⎝ 2121 RRRR

1

+ a

1R 2R2i
Ξ

⎟
⎠

⎞
⎜
⎝

⎛
+

=

21

tot
11

1

RR

R Same as capacitors
in series.

∑ −− =
n

iRRn 11
tot      :resistors For 

Parallel R is 
always SMALLER 
th h i t

2012 Andrei Sirenko, NJIT 17

∑
=i

i
1

tot than each resistor 
involved!

Example 1
Each resistor = 5Ω (a) 5Ω

(b) 25ΩWhat is the resistance between A and B?

Equivalent to:

(b) 25Ω
(c) 2.5Ω

q

A B

A B NOTE: 
• R in series with R = 2R

R 5Ω|| 10Ω|| 10Ω 5Ω|| 5Ω 2 5Ω

R in series with R  2R
• R in parallel with R = R/2
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Rtotal = 5Ω|| 10Ω|| 10Ω = 5Ω|| 5Ω = 2.5Ω



Example 3: Series & Parallel 
ResistorsResistors

• Assume that battery is IDEAL 
& all bulbs are identical & that 
brightness is proportional to 
power dissipated (P = I2R = 
V2/R) A

B

V /R)

• Rank the 3 circuits in order of 
increasing bulb brightness

A

P = Ξ 2/R
(a) ABC

(b) C, [A&B same]

PA = Ξ 2/R
PB = Ξ /R

(c) [B&C same], A 

C

2012 Andrei Sirenko, NJIT 19PC = Ξ 2/(4R)

Example 8: Using Symmetry

/2 /2• All resistors are equal = R; 

• Ideal battery has emf Ξ

I/2 I/2

y

• What is the current I?
I I/2 I/2I/2

• Symmetry: no current goes thru the middle resistor!
• So, you can throw it away!
• Equivalent resistance = (2R||2R) = R
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qu v e es s ce ( || )

• So, I = Ξ /R



Summary:
∑

=

−− =
n

i
iRRn

1

11
tot       :resistors parallel For 

T l i it t t t i t d “t k

∑
=

=
n

i
iRRn

1
tot       :seriesin  resistors  For 

• To solve a circuit, start at any point and “take a 
walk” around it.

• Add potential every time you traverse an EMF• Add potential every time you traverse an EMF 
from - to +.

• Deduct potential every time you move along a• Deduct potential every time you move along a 
resistor “with the flow”.

• Take as many walks along INDEPENDENT loops

2012 Andrei Sirenko, NJIT 21

Take as many walks along INDEPENDENT loops 
as needed to solve the circuit.

Reminder

• Capacitors: Q = CV

• Current: I=dQ/dtCurrent:      I dQ/dt

• DC circuits: going around a loop, the net 
potential difference = 0potential difference = 0
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Discharging a capacitor
• Capacitor C is fully charged by 

an emf Ξ -- then we discharge 
the capacitor thru the resistor R.

R

• Use loop analysis  at any instant 
in time

• Discharging a capacitor using an

Ci
+
-

• Discharging a capacitor using an 
RC circuit: q0 = V0C at t =0.

• Note that i = -dq/dt   i.e.
d i h i

0
)(

)( =+−
C

tq
Rti

decreasing charge gives a 
positive current. 

Solution:

C

RC

t

Ctq
−

= eV)( 0

)(tq

q0=CV
Exponential discharge.

Analogy:
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t

q0 CV gy

Discharging a capacitor

00 =+⇒=+
qdq

R
q

iR

Kirchhoff’s 2nd law R

qtdq 0)(

00 =+⇒=+−
Cdt

R
C

iR
Ci

+
-

)0( CVqtq
RC

q

dt

q 0)(
−=

RC

t

I
dt

dq
ti

−
==−= e)( 0

00)0( CVqtq ===

RC

t

RC

t

CVqtq
−−

== ee)( 00
RC

t

RC

t

R

V

RC

q −−
= ee 00

)(tq

q0=CV
Exponential discharge.

)(ti

I0

Exponential decrease.
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t

q0 CV

t

0



Current through a capacitor

C
• When t ∞

i = 0

• V = Q/C

Any combination 

of   R and    Ξ

2012 Andrei Sirenko, NJIT 25

Charging a capacitor - I
i• Capacitors are NOT conductors 

of current!

• Current can only flow through

R

C

i

+
• Current can only flow through 

wires connected to capacitors to 
“build up charge” on the plates

CΞ
−

• Eventually, this current stops.

• Loop analysis can be used for an 
RC circuit at any instant in time

0=−−Ξ
C

q
iR

dt

dq
i =

RC circuit at any instant in time

• Charging a capacitor using an 
RC circuit: q = 0 at t =0.

C dt

0=−−Ξ
C

q
R

dt

dq
q

Cdt
⎞

⎜
⎛

Ξ
−

RC

t

Ct 1)(
2012 Andrei Sirenko, NJIT 26⎠

⎜⎜
⎝

−Ξ= RCeCtq 1)(Solution:



⎞
⎜⎜
⎛

Ξ=
−

RC

t

eCtq 1)(
)(tq

)(

)(

Ξ∞→

Ξ=∞→
q

tV

Ctq

⎠
⎜⎜
⎝

−Ξ= RCeCtq 1)(  
C Ξ

The capacitor charges as an exponential.
0)(

)(

=∞→

Ξ==∞→

ti
C

q
tV

t
Proof that q(t) is a solution:

eedq RC

t

RC

t
−−

⎞⎛ t

R

e

RC

e
C

dt

dq
i Ξ=Ξ==

RC

t

eRi
−

Ξ= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ξ=

−
RC

t

e
C

q
1  

q
0      So, =−−Ξ

C

q
iR

Analogy:
When tap is opened the water

Water 
tank

Tap

When tap is opened, the water
level in the thin pipe will rise,
until it equals the level of the
big tank The approach is
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big tank. The approach is
actually exponential as well.

The Time Constant τ = RCThe Time Constant   τ  RC

Charging:
• Time constant = τ = RC

• For capacitor that is being charged, at

t = τ q(t) = (1 e-1) C Ξ = 0 63C Ξ

Charging:

⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ξ=

−
RC

t

eCtq 1)(
t = τ,        q(t) = (1-e ) C Ξ = 0.63C Ξ

• τ is the time required for a charging 
capacitor to reach ~63% of maximum 
charge

⎞
⎜⎜
⎛

−Ξ=
−

τ
t

eCtq 1)(

⎠
⎜
⎝

charge

• Discharge:  q(t) = (1/e) C Ξ = 0.37C Ξ
• Discharge: τ is time required to reach 

37% f i h

⎠
⎜⎜
⎝

Ξ eCtq 1)( 

Discharging: t~37% of maximum charge Discharging:

τ
t

eCtq
−

Ξ=)(  
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Example 1a p e
• The capacitor discharged, starting 

with a potential of 100 V.

• At t=0, close switch (on). At t=10s, 
potential=1V

• What is the time constant τ?• What is the time constant τ?

ττ
tt

eCVeqtq
−−

==)( =
tτeCVeqtq == 00)(  

τ
t

eV
tq

tV
−

==
)(

)(
⎥
⎦

⎤
⎢
⎣

⎡
=

)(
ln 0

tV
V

 τ

eV
C

tV == 0)(  

⎥
⎤

⎢
⎡ )(

l
tVt

⎦⎣ )(tV

=
⎤⎡

=
V

s
100

)10(
 2.17 s
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⎥
⎦

⎢
⎣

=
0

)(
ln

Vτ
- 

⎥⎦
⎤

⎢⎣
⎡

V
V

1
100

ln

RC Circuits: intuitive approach

• You cannot change the voltage (potential difference) 
across a capacitor SUDDENLY! It takes time.

S j f i h i l d h V i i• So, just after a switch is closed, the V across a capacitor is 
the SAME as just before the switch was closed.

• A capacitor is NOT A CONDUCTOR; so after a steadyA capacitor is NOT A CONDUCTOR; so after a steady 
state is reached (i.e. long time after a switch is closed), 
there is NO CURRENT in a branch containing a capacitor.
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Example 2
R

• The capacitor is initially uncharged

• Immediately after the switch is closed, which of 
th f ll i titi NOT ?

R

CΞthe following quantities are NOT zero?

(a) Current I in the circuit

(b) P t ti l diff V it

Ξ

(b) Potential difference VC across capacitor

(c) Potential difference VR across resistor

(d) Ch i(d) Charge on capacitor

(e) Power dissipated by resistor

• Initially, q= 0, so VC = 0; 
• So immediatel after s itch is closed V 0!
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• So, immediately after switch is closed, VC = 0!
• So, VR = Ξ ; and current I = Ξ /R (neither are zero!)
• Also, power dissipated by resistor = Ξ 2/R 

Example 2 (continued)
)(tI

Ξ /R
)(tq

C Ξ

tt

)(tVC

tt

)(tVR)(tVC

Ξ

)(tVR

Ξ

t t
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Do the experiment: attach a light bulb across 1F capacitor and battery:
Bulb lights up IMMEDIATELY and then gradually goes out!



Example 3: using our intuition

• Capacitor initially 
UNCHARGED. 

At t 0 l it h

R1

• At t=0, close switch. 

• Immediately after the switch is 
closed, what is the power 

CΞ R2

, p
dissipated by the resistor R2?

(a) ZERO.
• Before switch is closed, capacitor 
voltage = 0

(b) Ξ 2/R2

(c ) Ξ 2R2/(R1+R2)2

g
• So, just after switch is closed, 
capacitor voltage = 0
• Potential difference across R = 0• Potential difference across R2 = 0
• Current thru R2 = 0
• Power dissipated by R2 = 0 
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Example 4: using our intuition

R1

• Capacitor initially 
UNCHARGED. 

A 0 l i h

1

CΞ R2
• At t=0, close switch. 

• Long after the switch is closed, 
what is the energy dissipated by L ti ft it h i l dwhat is the energy dissipated by 
the resistor R2?

(a) ZERO.

• Long time after switch is closed, 
NO current thru capacitor branch
• Treat as if C wasn’t there!

(b) Ξ 2R2/(R1+R2)2

(c ) Ξ 2/R2

• Current = I = Ξ /(R1+R2)
• Power dissipated = 

I2R2 = Ξ 2R2/(R1+R2)2
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I R2  Ξ R2/(R1+R2)



Example 5:HRW 76P
• The circuit has been connected for a 

LONG time with S kept open from 
the beginning Suppose Ξ 1 > Ξ 2

A

E2the beginning. Suppose Ξ 1 > Ξ 2.
• S is now closed and, again, we wait 

for a long time. What is the charge on 
the capacitor?the capacitor?   

• If you wait for a LONG time, there is no current in capacitor branch! 
S th l t i i th t l d i th

B

• So: the only current is in the outer loop and you can ignore the 
capacitor! -- I = (Ξ 1 - Ξ 2)/(R1+R2)
• Now: potential difference across C = VA- VB = Ξ 1 - IR1

• So, the charge on the capacitor = Q = C(VA- VB) 

⎞
⎜⎜
⎛ Ξ+Ξ 1221 RR

C
⎞

⎜⎜
⎛ ΞΞ
Ξ 21 -

RC)( iRCQ Ξ
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⎜⎜
⎝ +

=
21

1221

RR
C

⎠
⎜⎜
⎝ +

−Ξ=
21

21
11 RR

RC)( 11 iRCQ −Ξ=

Example 8: Using Symmetry

/2 /2• All resistors are equal = R; 

• Ideal battery has emf Ξ

I/2 I/2

y

• What is the current I?
I I/2 I/2I/2

• Symmetry: no current goes thru the middle resistor!
• So, you can throw it away!

E i l i (2R||2R) R
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• Equivalent resistance = (2R||2R) = R

• So, I = Ξ /R



Resistors: Parallel or in Series ???

• 12 identical 
resistors R

• Req = ???

• (a)  Req = 12 R

• (b) Req = R/12( ) eq

• (c) Req = 10R/12

• (d) Req = 3R/12 
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( ) eq /

Resistors: Parallel or in Series ???
• 12 identical 

resistors R

• Req = ???

• (a)  Req = 12 R

• (b) Req = R/12q

• (c) Req = 10R/12

• (d) Req = 3R/12 

Req=R/3+R/6+R/3=
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Req R/3 R/6 R/3

=5R/6≡10R/12



Summary:

• Final Exam includes:

i iR-Ξ circuits

RC circuirs

RC Ξ circuitsRC- Ξ circuits

R and C connected  parallel and in series
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