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Today

EMF devices: ideal vs. non-ideal
Single loop circuits

Multiloop circuits

Examples for CQZ3
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Resistance: Current;

L
A dt
Ohm’s laws

vV oV ] Georg Simon Ohm
R=— and therefore: i = M and V =IR (1789-1854)

Volt
Ampere

Units: [R]= = Ohm (abbr. Q)

For many materials, R remains a constant for a wide range of values of
current and potential.

Devices specifically designed to have a constant value of R are called

resistors, and symbolized by J\/\/\_
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EMPF Devices =

p—

“EMF devices”: boost electric charge =

from a point of low electric potential bT a d c

energy to high electric potential energy

This is done by converting various
forms of energy (chemical,

mechanical, light,...) into electrical
energy (batteries, generators, solar

cells,....) Y, _/_\—
View battery as pump that pushes

positive charge around a circuit. : b : d
a C

Difference in electric potential
between the terminals of an EMF

device is called the “EMF” = &

@ Emf devices:

—| 3 « “de” (2 fixed)
- O e “ac” (& varies with time)
2012 rei Sirenko, NJIT | ® [nitial focus: dc cireuits.




RC Circults

 Loop analysis of an RC circuit: doing the
math

 Time constant

 Physical understanding of RC circuits:
Intuitive picture )(

H\F AN —
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EMF Devices
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ldeal & non-ideal EMF Devices

Ideal EMF devices: no matter
what you connect across the
EMF source, the emf E is
constant.

Non-ideal EMF device: the
emf = depends on what else

you connect in the circuit
Devices are non-ideal because 1 = TRUE
Of energy diSSipation __ We ........... E rmt ........

model this is as an ideal emf = —il—MW—
+ “Internal resistance”
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Single Loop DC circuit

Recall that electric potential at any given point is

uniquely defined once you arbitrarily decide 7
where V = 0. b ' C
If you go around a circuit in a complete loop, the i

net change in potential = 0! R

RULES: =

— When walking through an EMF device, add a-|_ d
+ & if you go from - to + terminal or - &
otherwise. -

— When walking through a resistor, add -iR if |* Start at “a”, walk
flowing with the current or +iR otherwise. clockwise, end at “a”
“Current flows downhill thru resistors” e« += _iR=0

+ E-iR
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Example 1: Resistors in Series

e “Series” Resistors:
— connected in a “chain”

— carry the SAME
CURRENT

— total potential difference
across resistors in series =
sum of potential difference
across each resistor

+E—-1R,—-IR, =0
= E=I(R+R,)=1Ry,

Rtot = Rl + Rz
- - - . N Series R is always
If you have n resistorsinseries: R, . =>R.
2012 Andrei Sirenko, NAGE i-1 'l greater than o
individual R

Example 2: non-ideal battery

w V|
° NOﬂ-Ideal battery Of emf ...... E ......................... Rmt ......
2 is connected across a — il —W—
resistor R. iJ e
. R
» [Internal resistance of A A
battery = R, _ _
 What is the potential Z—-IR-IR;, =0
difference across the
terminals of the battery? _ =
- —_ | = —
_ ER
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Example 3: Multiloop Circuits

« Assign a different current to
each branch of the circuit --
choose ARBITRARY directions
for currents.

« At junctions, net current in = net
current out. Each junction gives
one equation.

» Take a walks around each loop
in the circuit: sum of potential
difference =0. Each walk gives

an equation.

. Given: 2., =2, R,,R,,R
— Choose enough equations to solve 1 21 7Y 132 7R3

for the unknowns! Find: iy, iy, i3 _
— Make sure equations are 3 unknowns; need 3 independent
INDEPENDENT! simultaneous equations:

* 1 junction equation

2012 Andrei Sirerém NJIT .
2 loop equations
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Kirchoff’s Laws

e Kirchhoff’s law for |

—~
currents ! Gustav Robert
K Kirchhoff (1824-1887)
2.i;=0
j=1

e Kirchhoff’s law for EMF

K N

P—
)

.Rj

J

D 3 — I
|

i=1 j=1
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Let’s do it!

L & Junction Rule
L T b _II+ ¢
Il

Walk CC along the left loop:

%, ¢
a R {; ‘E

1% R

] | sl
|I

Ry 153

LR —1,R

d

P
|
T

1

L, +i, =1,

|R -L,R,

(1%t Kirchhoff law):

Given the values of the EMF’s and the resistors, we are left with three
equatlons with three unknowns, i.e., the three currents.

Andrei Slrenko NJIT
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Kirchoff’s Laws

 Procedure just followed:

Kirchoff’s

Laws

* |s the procedure unique?

No! For instance, we could
have taken the left loop and

the “exteri

or loop”.

» Note that the end result will

be unique!

2012

a +la— b — |+ C
| b ||
ill R, Ry to
4
d
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Example 3 -- A Loop Puzzle:
HRW Q28.12

12, Res-menster maze. In Fig, 28-21, all the resistors have o re-

[ ) AI I resisto rS are equal (4 sistunce .UI 4_” € and atl the lldu.‘{l]. h:llll.'l-'ll_'.\.h.'l\'L' an c.:ml' ol
4.0V, What is the cu through resistor 87 (11 you find the
Q) and al I batteri es are ]’:l;:'[:|\I\n:‘»::]:::r::;u-i_-I]L]nl:::l |L1-::;:-:'I,‘:"lil‘l‘lnL-'i'lll answaer the question with

IDEAL withemf=4V.

» What is the current through
resistor R?

 Hint: potential difference
across the terminals of an

ideal battery is ALWAYS +V -V -V-V-iR=0
- emf! 8V -i4Q =0
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Example 5: Resistors in Parallel

I1 I3
. . + > a >
 Resistors in parallel: i
— SAME POTENTIAL E= A n
DIFFERENCE T 2 1 2

— Total CURRENT thru
resistors in parallel = sum
of currents thru each
resistor

* What is the equivalent
resistance? -- let’s use
Kirchoff’s Laws.
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* First, use junction rule at “a”

 Next, use left loop:

 Then, use outer loop:

Nodea: i, =i, +i,
Leftloop: Z—i,R, =0= §=

Outer loop: E-i;R, =0 = k=1

=z = (1 1 \H
i i, h=—+—=| —+— I
+ > a Rl RZ Rl RZ)
L
== '2[ R, R, 1
-l_ Rt = 1 1 Same as capacitors
[+ j in series.
* Rl RZ
Parallel R is
: _ 1 x| | always SMALLER
Fornresistors: R, = ; R | than each resistor
2012 Andrei Sirenko, NJIT inVOIVed! 17
Example 1
Each resistor = 5Q (a) 5Q
What is the resistance between A and B? (b) 250
(c) 2.5
Equivalent to:
. A B
AN —AN—
NOTE:

* Rin serieswith R = 2R
* R in parallel with R = R/2

R,.., = 5Q|| 10Q]| 10Q = 5Q| 5Q = 2.5Q

total —
2012
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Example 3: Series & Parallel

Resistors
» Assume that battery is IDEAL ﬁ
& all bulbs are identical & that B
brightness is proportional to | B
power dissipated (P = I°R = — ﬁ
V2/R) A -
« Rank the 3 circuits in order of —I _II__
increasing bulb brightness P. == 2R
(a) ABC Pa=E?R ®
(b) C, [A&B same] |
(c) [B&C same], A i i
r © i
2012 Andrei Sirenko, NJIT PC — E 2/(4R) 19

Example 8: Using Symmetry

» All resistors are equal = R; ”}' \I{Z
 |deal battery has emf =
* What is the current 1?

/|'/2

E

i

e Symmetry: no current goes thru the middle resistor!
* S0, you can throw it away!

 Equivalent resistance = (2R||2R) =R

*So, I =2/R

2012 Andrei-Sirenko, NJHT
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Summary:

n
For n parallel resistors: R~ = Z R™
i=1

n
Forn resistorsinseries: R, =) R
i=1

» To solve a circuit, start at any point and “take a
walk” around it.

» Add potential every time you traverse an EMF
from - to +.

» Deduct potential every time you move along a
resistor “with the flow”.

» Take as many walks along INDEPENDENT loops
201?‘S needed to SOIVe tngel‘;'r[;gky LBIT 21

Reminder

» Capacitors: Q =CV
e Current: 1=dQ/dt

» DC circuits: going around a loop, the net
potential difference =0
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Discharging a capacitor

Capacitor C is fully charged by
anemf = -- then we discharge

R
the capacitor thru the resistor R.
Use loop analysis at any instant i l J—"‘ c
in time ‘ -
Discharging a capacitor using an

RC circuit: g, = V,C att =0. ] q(t)
Note that i = -dg/dt i.e. —i(t)R+ c =0
decreasing charge gives a
positive current. ot
Solution: d(t) =CV,e =
q(t) 4

Exponential discharge.

q,=CV Analogy:
2012 Andrei Sirenko, NJIT 23

t

Discharging a capacitor

Kirchhoff’s 2nd law

R
: g dg ¢
C d C i l Q=+ .
da(t
dt  RC " t
t t (1) =~ = Toe ™ =
— "RC __ Y q __t vV ot
q(t)_qoe RC —CVOe RC %e RC _ ?oe RC
q(t) 4 i(t) 4 |
Exponential discharge. Exponential decrease.
q,=CV Iy
2012 Andrei Sirenko, NJIT‘ 24
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Current through a capacitor

» Whent>w

« V=Q/C
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Charging a capacitor - |
Capacitors are NOT conductors ;,
of current! 4—\/\/\/— +
Current can only flow through

wires connected to capacitors to T —
“build up charge” on the plates

Eventually, this current stops. ] q

Loop analysis can be used foran — C q
RC circuit at any instant in time t
Charging a capacitor using an —_
RC circuit: g = 0 at t =0. o R =

t
Solution: q(t) =CE[1—e RC
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_t
qty=czl1-e7 ! AU
) CE

: . i(t =0
The capacitor charges as an exponential. (t= )
Proof that g(t) is a solution: ‘ ”
_t _t
. d _eRre _eke t
I=—=CE == _t — “Re
dt RC R| Rj=F=e RC =H|1l-e
So, E-IR- a9._ 0
C
Analogy:
When tap is opened, the water
Water Tap level in the thin pipe will rise,
tank until it equals the level of the
| big tank. The approach is
L actually exponential as well.
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The Time Constant

t=RC

Charging:

Time constant =t =RC

For capacitor that is being charged, at
t=r, qit)=(1-e)C==0.63C=
7 IS the time required for a charging
capacitor to reach ~63% of maximum

q

t
charge qt)=CZE| 1-e °

Discharge: q(t) =(1/e) CE=0.37CE
Discharge: t is time required to reach
~37% of maximum charge

2012 Andrei Sirenko, NJIT

(t)=CE 1—e‘7

Discharging: t
q(t)=CZ=e *

28




Example 1

The capacitor discharged, starting
with a potential of 100 V. ,

At t=0, close switch (on). At t=10s,
potential=1V e

What is the time constant t?
t t

G0 =gee " =CVe 7=
t In{
t -
V()= % =V,e ’

(10s)
t V(t = =2.17
- S =l # [ 100V S
2012 T 0 Andrei Sirenko, NJIT 1\/ 29

RC Circuits: intuitive approach

» You cannot change the voltage (potential difference)
across a capacitor SUDDENLY'! It takes time.

» S0, just after a switch is closed, the V across a capacitor is
the SAME as just before the switch was closed.

» A capacitor is NOT A CONDUCTOR,; so after a steady
state is reached (i.e. long time after a switch is closed),
there is NO CURRENT in a branch containing a capacitor.

2012 Andrei Sirenko, NJIT 30




Example 2
» The capacitor is initially uncharged J_\N\/l

* |Immediately after the switch is closed, which of
the following quantities are NOT zero?

(@) Current I in the circuit Y

(b) Potential difference V. across capacitor
(c) Potential difference V across resistor *
(d) Charge on capacitor

(e) Power dissipated by resistor *

[1]

10

—]
@]

* Initially, g= 0, so V. = 0;
 So, immediately after switch is closed, V. = 0!

* S0, Y == and current | = R (eitherare zero!) )
 Also, power dissipated by resistor = = /R

Example 2 (continued)

(e} o1

) FR = /R |\
- t

V. ()] Ve (O
t t

Do the experiment: attach a light bulb across 1F capacitor and battery:
BulbAights up IMMEDIATELLY"dAttReR gradually goes out!  *




Example 3: using our intuition

 Capacitor initially
UNCHARGED.
« At t=0, close switch.

« Immediately after the switch is
closed, what is the power
dissipated by the resistor R,?

() ZERO.
(b) =2 %R,
() E22R/(R+R,)?

Ry

— MWT—

= == —_ C SR,

T

* Before switch is closed, capacitor
voltage =0

* So, just after switch is closed,
capacitor voltage =0

» Potential difference across R, = 0
e CurrentthruR, =0

* Power dissipated by R, =0
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Example 4: using our intuition

 Capacitor initially
UNCHARGED.
e At t=0, close switch.

« Long after the switch is closed,
what is the energy dissipated by
the resistor R,?

() ZERO.
(b) 2 2R,/(R;+R,)?
(c)=2R,

* Long time after switch is closed,
NO current thru capacitor branch
* Treat as if C wasn’t there!
e Current=1==2/(R;+R,)
 Power dissipated =

I°R, = 2 2R,/(R;*+R,)?
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Example 5:HRW 76P

e The circuit has been connected for a A

LONG time with S kept open from _| s 1 _L_
.. _ _ . ¢ ' E
the beginning. Suppose = | > = ». 11+ +I 2
« Sisnow closed and, again, we wait R, R,
for a long time. What is the charge on

the capacitor?

* If you wait for a LONG time, there is no current in capacitor branch!
* So: the only current is in the outer loop and you can ignore the
capacitor! -- 1 = (2 ;- 2,)/(R;+R,)

» Now: potential difference across C =V,- Vg ==, - IR,

* S0, the charge on the capacitor = Q = C(V,- Vi)

- = -2 ) [ER,+5,R, )
Q=C(E,-iR)=C|E -R L "2=C| = )
2012 1 1 1Andreisir1en|j§,{wr|’ R2 ) R1—|— %2 }

Example 8: Using Symmetry
I/}v 1/2

» All resistors are equal = R;
 |deal battery has emf =
* What is the current 1?

* Symmetry: no current goes thru the middle resistor!
* S0, you can throw it away!
 Equivalent resistance = (2R||2R) = R

20!230, I==/R Andrei Sirenko, NJIT 36




Resistors: Parallel or in Series ??7?

/
il 12 identical

<>—VVV— resistors R
e e R =77?
< > .
<< 4

AA —

vy * (@) Ry=12R

AL~ * (b) Reg=R/12

* (€) Req= 10R/12
+ (d) Ry = 3R/12
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Resistors: Parallel or in Series ?7?77?
. 12 identical

resistors R

= 777
eq— "¢

AA
AN
VVV
°

VVYV
°

|
<
<
;\ (@) Ry, =12R

>

>

RM: |

W& (b) Req = R/12
Uyl * [(C) Reg= 10R/12
'+ (d)R,, = 3R/12

mANE

%M

% R, =R/3+R/6+R/3=
2012 Andi Hire¥ko, NIIT =5R/6=10R/12 38
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Summary:

Final Exam includes:
R-Z circuits
RC circuirs
RC- = circuits
R and C connected parallel and in series
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