

<u>Lecture 14</u> Light

http://web.njit.edu/~sirenko/

Physics 103 Spring 2012

2012 Andrei Sirenko, NJIT

Electromagnetic Spectrum

Visible Light

2012 Andrei Sirenko, NJIT 3

How can we produce light?

What is light, anyways?

$$c = 299792458 \text{ m/s},$$
 $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \text{ (wave speed)}$

$$c = \frac{1}{\sqrt{\pmb{\mu}_0 \epsilon_0}} \quad \text{(wave speed)}$$

2012

Andrei Sirenko, NJIT

Intensity of light

$$I = S_{avg} = \left(\frac{\text{energy / time}}{\text{area}}\right)_{avg} = \left(\frac{\text{power}}{\text{area}}\right)_{avg}$$

$$I = S_{\text{avg}} = \frac{1}{c \, \mu_0} \left[E^2 \right]_{\text{avg}} = \frac{1}{c \, \mu_0} \left[E_m^2 \sin^2(kx - \omega t) \right]_{\text{avg}} \qquad I = \frac{1}{c \, \mu_0} E_{\text{rms}}^2.$$

$$c = 299792458 \text{ m/s},$$
 $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ (wave speed)

$$c=rac{1}{\sqrt{\mu_0\epsilon_0}}$$
 (wave speed)

2012 Andrei Sirenko, NJIT

Point source of light;

Variation of Intensity with Distance

$$I = \frac{P_s}{4\pi r^2}$$

2012 Andrei Sirenko, NJIT

Interference of light;

Variation of Intensity at a certain Distance

Figure 4

8 2012 Andrei Sirenko, NJIT

Light pressure

$$\Delta p = \frac{\Delta U}{c}$$
 (total absorption),

$$\Delta_{\mathcal{P}} = rac{2\Delta U}{c}$$
 (total reflection back along path)

$$p_r = \frac{I}{c}$$
 (total absorption)

$$p_r = \frac{2I}{c}$$
 (total reflection back along path)

Andrei Sirenko, NJIT

O

Light Sail

Photons bounce off

Black Sail →

Photons adsorbed

What color/material is the best for the Light Sail?

A) Black; B) Mirror-type; C) Blue; D) any

Polarization of light

Refraction and Reflection of Light

Some Indexes of Refractiona

Medium	Index	Medium	Index
Vacuum	Exactly 1	Typical crown glass	1.52
Air $(STP)^b$	1.00029	Sodium chloride	1.54
Water (20°C)	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80%)	1.49	Diamond	2.42

$$m{ heta}_1' = m{ heta}_1$$
 (reflection).
 $n_2 \sin m{ heta}_2 = n_1 \sin m{ heta}_1$ (refraction).

2012 Andrei Sirenko, NJIT 12

Refraction and Reflection of Light

$$m{ heta}_1' = m{ heta}_1$$
 (reflection).

 $n_2 \sin m{ heta}_2 = n_1 \sin m{ heta}_1$ (refraction).

2012 Andrei Sirenko, NJIT

(c)

Reflection and Refraction of Light; One and two interfaces

Total internal Reflection

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}$$
 (critical angle)

2012 Andrei Sirenko, NJIT 15

<u>Chromatic Dispersion of the refractive</u> <u>index</u>

Dispersion of the refractive index:

Newton's prism

2012 Andrei Sirenko, NJIT 17

Dispersion of the refractive index:

Rainbow

Water drops

<u>Mirages</u> Example of a virtual image

2012 Andrei Sirenko, NJIT 19

Mirror images: flat mirror point extended object

Andrei Sirenko, NJIT

ZU1Z

Working with Mirror images:

2012 Andrei Sirenko, NJIT 21

Mirror images: Concave and convex mirrors

Concave mirror

Convex mirror

Andrei Sirenko, NJIT

Mirror images: Convex mirror

For convex and plane mirrors only a virtual image can be formed

$$f = \frac{1}{2}r$$
 (spherical mirror)
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$
 (spherical mirror).
$$|m| = \frac{h'}{h}$$
 (lateral magnification).
$$m = -\frac{i}{p}$$
 (lateral magnification).

i of a virtual image is negative

2012 Andrei Sirenko, NJIT 23

Mirror images: Concave mirror

Real images form on the side of a mirror where the object is, and virtual images form on the opposite side.

$$f = \frac{1}{2}r$$
 (spherical mirror)
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$
 (spherical mirror).
$$|m| = \frac{h'}{h}$$
 (lateral magnification).
$$m = -\frac{i}{p}$$
 (lateral magnification).

i of a real image is positive *i* of a virtual image is negative

Working with Mirror images:

Thin Lenses

 $\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ (thin lens in air)

(d)

Thin Lenses

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) \quad \text{(thin lens in air)}$$

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{i} \quad \text{(thin lens)},$$

real inverted image Of the object further away than F from the lens

virtual image
Of the object
between F and L

virtual image (always)

2012 Andrei Sirenko, NJIT