

Lecture 15

Light Interference, Reflection and Refraction

http://physics.njit.edu/~sirenko/

Physics 103 Spring 2012

2012 Andrei Sirenko, NJIT 1

Electromagnetic Spectrum

Speed of light

$$c = 299792458 \,\mathrm{m/s}$$

2012 Andrei Sirenko, NJIT 3

Refraction and Reflection of Light

Some Indexes of Refractiona

Medium	Index	Medium	Index
Vacuum	Exactly 1	Typical crown glass	1.52
Air $(STP)^b$	1.00029	Sodium chloride	1.54
Water (20°C)	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80%)	1.49	Diamond	2.42

$$m{ heta}_1' = m{ heta}_1$$
 (reflection).

 $n_2 \sin m{ heta}_2 = n_1 \sin m{ heta}_1$ (refraction).

Andrei Sirenko, NJIT

4

$$\frac{\sin\boldsymbol{\theta}_1}{\sin\boldsymbol{\theta}_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 (law of refraction),

$$n = \frac{c}{v}$$
 (index of refraction)

$$f_n = \frac{c/n}{\lambda/n} = \frac{c}{\lambda} = f$$

Total internal Reflection

$$\boldsymbol{\theta}_c = \sin^{-1} \frac{n_2}{n_1}$$
 (critical angle)

Mirror images: flat mirror

Andrei Sirenko, NJIT

Mirror images: Concave and convex mirrors

Focal Points

Concave mirror

Convex mirror

Mirror images: Convex mirror

For convex and plane mirrors only a virtual image can be formed

$$f = \frac{1}{2}r$$
 (spherical mirror)
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$
 (spherical mirror).
$$|m| = \frac{h'}{h}$$
 (lateral magnification).
$$m = -\frac{i}{p}$$
 (lateral magnification).

i of a virtual image is negative

2012

Andrei Sirenko, NJIT

9

Mirror images: Concave mirror

Real images form on the side of a mirror where the object is, and virtual images form on the opposite side.

$$f = \frac{1}{2}r$$
 (spherical mirror)
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$
 (spherical mirror).
$$|m| = \frac{h'}{h}$$
 (lateral magnification).
$$m = -\frac{i}{p}$$
 (lateral magnification).

i of a real image is positive *i* of a virtual image is negative

2012

Thin Lenses

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
 (thin lens in air)

(b) $\frac{1}{f} = \frac{1}{p} + \frac{1}{i}$ (thin lens).

2012

Andrei Sirenko, NJIT

11

Thin Lenses

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) \quad \text{(thin lens in air)}$$

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{i} \quad \text{(thin lens)}.$$

real inverted image
Of the object
further away than F
from the lens

virtual image
Of the object
between F and L

virtual image (always)

2012

Andrei Sirenko, NJIT

12

Review & Summary

Real and Virtual Images

An *image* is a reproduction of an object via light. If the image can form on a surface, it is a *real image* and can exist even if no observer is present. If the image requires the visual system of an observer, it is a *virtual image*.

Image Formation

Spherical mirrors, spherical refracting surfaces, and thin lenses can form images of a source of light—the object—by redirecting rays emerging from the source. The image occurs where the redirected rays cross (forming a real image) or where backward extensions of those rays cross (forming a virtual image). If the rays are sufficiently close to the central axis through the spherical mirror, refracting surface, or thin lens, we have the following relations between the object distance p (which is positive) and the image distance i (which is positive for real images and negative for virtual images):

1. Spherical Mirror:

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = \frac{2}{r}$$

where f is the mirror's focal length and r is the mirror's radius of curvature. A *plane mirror* is a special case for which $r \to \infty$, so that p = -i. Real images form on the side of a mirror where the object is located, and virtual images form on the opposite side.

13

2012 Andrei Sirenko, NJIT

Thin Lens:

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right),$$

where f is the lens's focal length, n is the index of refraction of the lens material, and r_1 and r_2 are the radii of curvature of the two sides of the lens, which are spherical surfaces. A convex lens surface that faces the object has a positive radius of curvature; a concave lens surface that faces the object has a negative radius of curvature. Real images form on the side of a lens that is opposite the object, and virtual images form on the same side as the object.

Lateral Magnification

The lateral magnification m produced by a spherical mirror or a thin lens is

$$m=-\frac{i}{p}$$

The magnitude of m is given by

$$|m| = \frac{h'}{h}$$

where h and h' are the heights (measured perpendicular to the central axis) of the object and image, respectively.

Diffraction

Young's Interference Experiment

Young's Interference Experiment

The phase difference between two waves can change if the waves travel paths of different lengths.

$$\Delta L = d \sin \theta$$
 (path length difference).

$$d\sin\theta = m\lambda$$
, for $m = 0, 1, 2,...$ (maxima – bright fringes)
$$\theta = \sin^{-1}\left(\frac{2\lambda}{d}\right)$$

$$d \sin \theta = (m + \frac{1}{2})\lambda$$
, for $m = 0, 1, 2,...$ (minima – dark fringes)
$$\theta = \sin^{-1}\left(\frac{1.5\lambda}{d}\right)$$
Andrei Sirenko, NJIT

Fast Internet

- History of Telecom
- Components for Telecom and WDM
- Results for High-speed Modulators and PISOAs
- What is "fast" today? And do we really want 40 Gbit/s?
- Is it ever going to be "fast enough"?

$$1$$
Gbit = 10^9 bit; 1 Tbit = 10^{12} bit

Web

The Web began in March 1989, when Tim Berners-Lee of **CERN** (a collective of European high-energy physics researchers) proposed the project to be used as a means of transporting research and ideas effectively throughout the organization.

From the History of Telecommunication

·St.Petersburg - Moscow (1796)

~200 years ago:

Transmission rate: 1bit/2 ½ hours

 $T = L/S_{sound} = 30 \text{ min}$

History of telecommunication (Cont.)

Transatlantic Cable Communications

(based on Patent for Electromagnetic Telegraph by Samuel Morse, 1837);

Morse Code; about 10 bit/s

A "High-Speed" Coaxial Cable Transmission System (1982)

560 Mb/s per coax

2012 Andrei Sirenko, NJIT 23

Coaxial Cable (electrical waveguide) Loss

Optical fiber24

Selected Milestones in Optics

An Optical Transmission System

- > 100 Gb/s per fiber
- •242 Tbit/s per fiber is possible with EDFA

Optical Fiber (optical waveguide) Loss

/aveiengtn (μm) S-band: 1

1270 nm --- 1530 nm

C-band: 1530 nm --- 1580 nm

L-band: 1580 nm
Andrei Sirenko, NJIT

1580 nm --- 1610 nm

2012

Waveguiding in Optical Fiber

Snell's Law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Total Internal Reflection

$$\theta > \theta_{\rm c} = \sin^{-1}(n_2/n_1)$$

Note: High Speed transmission requires single-mode

Fundamental Loss in Silica Glass I. Rayleigh Scattering

Loss = $A\lambda^{-4}$

- Light scattered by composition and density fluctuations
- Large effect for short wavelengths

2012 Andrei Sirenko, NJIT 29

Fundamental Loss in Silica Glass II. Lattice Vibrations (Phonons)

Extrinsic Loss in Silica Glass Water Vibrations

Reduced or eliminated in modern SMF

2012 Andrei Sirenko, NJIT 31

Conventional Single-Mode Fiber Loss

InP-based Optoelectronic devices

A WDM Optical Transmission System

 λ_1 , λ_2 , λ_3 , λ_4 ,... different lasers or one tunable laser

Dispersion of the refractive index:

Newton's prism

InP-based Optoelectronic devices

Conduction band Valence band

Band structure near a semiconductor p-n junction. Left: No forward-bias voltage. Right: Forward-bias voltage present Polished End ~ UAbe Junction Andrei

2012

37

Light modulation at the GHz frequency

Output

• Direct Modulation with the electrical current

- Electro absorption modulators Franz-Keldysh effect / Stark shift
- LiNbO₃ and InP-based Mach-Zehnder Modulator (E-field controlled constructive-destructive interference in waveguides)

EML SAG Structures for integration of optoelectronic devices

Andrei Sirenko, NJIT

MEMS OXC-- 2N Mirror Design

2012

2N MEMS mirrors in an NxN single-mode fiber optical crossconnect. 2012 Andrei Sirenko, NJIT

Lucent Technologies
Bell Labs Innovations

39

Future of the Fast Telecom: combination of InP-based 40Gbit/s and **CMOS** or/and SiGe technology

Driving Forces:

- Image transfer, sharing, and analysis
- Military and Medical applications
- National Security (40 Gbit/s)
- Fiber-to-the-Premises (FTTP) for High-speed multimedia content and services Interactive Video and TV on demand

2012

Will the customers pay for that ???

41

Michelson's Interferometer

201: , NJIT 42