

Lecture 3

1

Temperature, Thermal expansion, and Heat

(NJIT Physics, Chapter 10)

http://web.njit.edu/~sirenko/Phys-103-2005/Phys-103-2012.htm

Physics 103 Spring 2012

2012

Andrei Sirenko, NJIT

Last Lecture: Bernoulli's Equation

Water flows smoothly through the pipe shown in the figure, descending in the process. Rank the four numbered sections of pipe according to (a) the volume flow rate R_V through them, (b) the flow speed v through them, and (c) the water pressure p within them, greatest first.

Temperature in C and F

TABLE 19-1	Some Co	orresponding Te	emperature	25	
	Temper	rature		°C	Ϋ́F
Boiling point of	water ^a			100	212
Normal body temperature			37.0	98.6	
Accepter comfort level				20	68
Freezing point of water ^a			0	32	
Zero of Fahrenheit scale				≈ -18	0
Scales coincide				-40	-40
$T_F = \frac{9}{5}T_C +$	32°;	Triple point of water 0.01	°C 32.02°F	0° C :	= 32°F
$T_{c} = T - 27$	73.15°.			5C°	=9F°
2012		Absolute 0 K	3.15°C		4

Zero'th law of Thermodynamics

If bodies *A* and *B* are each in thermal equilibrium with a third body *T*, then they are in thermal equilibrium with each other

Zero'th law of Thermodynamics

Pressure, Temperature, and Speed of molecules

 k_B – Boltzman Constant

Boltzmann constant = 1.3806503 × 10⁻²³ m² kg s⁻² K⁻¹

Gas	Molar Mass (10 ⁻³ kg/mol)	v _{rms} (m/s)
Hydrogen (H ₂)	2.02	1920
Helium (He)	4.0	1370
Water vapor (H ₂ O)	18.0	645
Nitrogen (N ₂)	28.0	517
Oxygen (O ₂)	32.0	483
Carbon dioxide (CO ₂)	44.0	412
Sulfur dioxide (SO ₂)	64.1	342

 $v_{rms} = \sqrt{\frac{3RT}{M}}$

 mN_A is the molar mass M

Root-mean-square speed

⁴For convenience, we often set room temperature = 300 K even though (at 27°C or 81°F) that represents a fairly warm room.

The Distribution of Molecular Speeds

Some Molecular Speeds at Room Temperature $(T = 300 \text{ K})^a$ $v_{\rm rms}~{\rm (m/s)}$ Molar Mass (10⁻³ kg/mol) T = 80 KHydrogen (H₂) 2.02 1920 Helium (He) 4.0 1370 3.0 $P(v) (10^{-3} \text{ s/m})$ Water vapor (H₂O) 18.0 645 Nitrogen (N₂) 28.0 517 2.0 Oxygen (O₂) 32.0 483 Carbon dioxide (CO₂) 44.0 412 T = 300 KSulfur dioxide (SO₂) 64.1 342 1.0^aFor convenience, we often set room temperature = 300 K even though (at 27°C or 81°F) that represents a fairly warm room 200 400 800 1000 1200 600 Speed (m/s) 2012 Andrei Sirenko, NJIT 11

Linear thermal expansion

 $\Delta L = L \alpha \Delta T$

Brass
Steel
$T = T_0$
<i>(a)</i>
$T > T_0$
(b)

Some	Coefficients	of Linear	Expansion ^a

Substance	α(10 ⁻⁶ /C°)	Substance	α (10 ⁻⁶ /C°)
Ice (at 0°C)	51	Steel	11
Lead	29	Glass (ordinary)	9
Aluminum	23	Glass (Pyrex)	3.2
Brass	19	Diamond	1.2
Copper	17	Invar ^b	0.7
Concrete	12	Fused quartz	0.5

^aRoom temperature values except for the listing for ice.

^bThis alloy was designed to have a low coefficient of expansion. The word is a shortened form of "invariable.

О D. 0.000012

 $\bar{\mathbb{C}}$ E. depends on the shape of the volume to which it will be applied

What is the ocean level increase due to $+1 \text{ C}^{\circ}$ global warming? Water linear expansion coefficient is ~69e-6/C° at 20 C°. Average ocean depth is 4 km

Properties of Water (H₂O)

negative thermal expansion of water between 0 and 4 C Freezes at 0 C, boils at 100 C

negative thermal expansion in $\rm ZrW_2O_8$

Air Ice Water

2012

Andrei Sirenko, NJIT

The Triple Point of Water

A triple-point cell, in which solid ice, liquid water, and water vapor coexist in thermal equilibrium. By international agreement, the temperature of this mixture has been defined to be 273.16 K. The bulb of a constant-volume gas thermometer is shown inserted into the well of the cell.

Thermal Expansion: QZ#2

When is the Empire State building taller?

- A. On MondaysB. During rush hour
- C. On a sunny Summer day
- D. During Moon eclipse
- E. Valentines Day

Metal pipes, used to carry water, sometimes burst in the winter because:

- C A. metal contracts more than water
- O B. outside of the pipe contracts more than the inside
- C C. metal becomes brittle when cold
- C D. ice expands when it melts
- C E. water expands when it freezes

2012

Andrei Sirenko, NJIT

19