Lecture 11

Center of Mass
Line ar Momentum and Momentum
Conservation
fttp://we 6.njit.edu/~sirenko/

Physics 105 Summer 2006

Potential Energy Curve

Examples for Energy Conservation

Total Mechanical Energy = Const.

Equilibrium for fun

$$
\begin{aligned}
& \vec{F}_{\text {net }}=\frac{d \vec{P}}{d t}=0 \\
& \vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t}=0
\end{aligned}
$$

Unstable Equil.

Andrei Sirenko, NJIT

Stable Equil.

Symmetry should felpus!

Center of Mass for a system of particles
2 Godies, 1 dimension

COM should be on this line

Center of Mass for a system of particles
2 Godies, 1 dimension

$\mathcal{C O M}$

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Center of Mass for a system of particles
2 Godies, 1 dimension

$$
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Lecture 11

Why do we want Center of Mass?
Can treat extended objects or groups of objects as points

Center of Mass for a System of Particles

The center of mass of a body or a system of bodies moves as though all of the mass were concentrated there and allexternalforces were applied there.
$x_{\text {com }}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \quad 2$ bodies, 1 dimension
Generalcase: n bodies, 3 dimensions
$x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}, \quad y_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}, \quad z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}$
$\vec{r}_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}$
n bodies, 3 dimensions Andrei Sirenko, NJIT

Line ar Momentum

New fundamental quantity (like force,energy...)

Particle:	$\overrightarrow{\boldsymbol{p}}=\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$
System of Particles:	$\overrightarrow{\boldsymbol{P}}=m_{1} \vec{v}_{1}+m_{2} \overrightarrow{\mathrm{v}}_{2}+\ldots$

Extended objects:

$$
\overrightarrow{\boldsymbol{P}}=\boldsymbol{M} \vec{v}_{\mathrm{com}}
$$

Relation to Force: $\vec{F}_{\text {tot }}=m \vec{a}$

$$
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} \quad \vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t}
$$

\mathcal{N} ewton's $2^{\text {nd }}$ Lawfor a System of Particles System of particles Afireworkrocketexplodes

$\vec{F}_{\text {net }}=M \vec{a}_{\text {com }}$

Conservation of Line ar Momentum

$$
\overrightarrow{\boldsymbol{F}}_{\text {net }}=\frac{d \overrightarrow{\boldsymbol{p}}}{d \boldsymbol{t}}
$$

$$
\text { If } \mathrm{F}_{\text {tot }}=0 \text {, then momentum is constant }
$$

For an isolated system (no external forces):

$$
\vec{P}=\text { const. } \quad \Rightarrow \quad \vec{P}_{i}=\vec{P}_{f}
$$

Even if there are internal forces inside the system
If no net external force acts on a system of particles, the total linear momentum \boldsymbol{P} of the system cannot change
If the component of the net external force on a closed system is zero along an axis, then the component of the linear momentum along that axis cannot change

Linear Momentum Conservation

100 g frog jumps to the other end of a motionless floating $200 \mathrm{~g} \log (3 \mathrm{mlong})$.

How far does the log move due to the jump?

Consider frog and log together as a system of objects
No external forces \rightarrow system momentum unchanged
$\mathrm{p}_{\text {initial }}=\mathrm{p}_{\text {final }}=0 \rightarrow$
Center of mass of system does not move

Linear Momentum

(b)

The \log moves 1 m to keep the COM At the same position

Sample Problem 9-4: The figure shows a 2.0 kg toy car before and after taking a turn on a track. Its speed is $0.50 \mathrm{~km} / \mathrm{s}$ before the turn and $0.40 \mathrm{~km} / \mathrm{s}$ after the turn. What is the change $\boldsymbol{\Delta P}$ in the linear momentum of the car due to the turn?

Problems:

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

Lecture 11 Andrei Sirenko, NJIT 21

QZ \# 11

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

$$
V_{1}=4.0 \mathrm{~m} / \mathrm{s}
$$

What minimum coefficient of Kinetic friction
$\mu_{\mathcal{K}}$ is required to bring the crate to a stop over a distance of 10 m along the lower surface ?

