Lecture 3

, Vectors
, Free Fall again

- Intro to the Motions in Two and Three Dimensions
(HR\&W, Chapters 3 and 4)
http://web.njit.edu/~sirenko/

Physics 105, Summer 2006

Chapter 3: Vectors

- Vectors and Scalars
- Adding Vectors Geometrically
- Components of Vectors
- Unit Vectors
- Adding Vectors by Components
- Vectors and the Laws of Physics
- Multiplying Vectors
- Scalar Product
- Vector or Cross Product

Velocity is a vector!

Velocity has direction!
Velocity can change with time

Writing Vectors

We need to distinguish vectors
From other quantities (scalars)
Common notation:
Bold face: c or Arrow: \vec{c}

Vectors and Scalars

(a)
(b)

Displacement
Lecture 3
Andrei Sirenko, NJIT

Components of Vectors:

(a)

(b)

- aligned along axis
- add to give vector
- are vectors

$a_{x}=a \cos \theta$ and $a_{y}=a \sin \theta$
$a=\sqrt{a_{x}^{2}+a_{y}^{2}}$
Length (Magnitude) and $\tan \theta=\frac{a_{y}}{a_{x}}$

Lecture 3
(c)

Trig Review

Unit Vectors and Coordinate Systems 2D (2 dimensions)

Lecture $3{ }^{(b)}$

(b)

3D (3 dimensions)

Unit Vectors

Components of a vector are still vectors

$\vec{D}=\vec{D}_{x}+\vec{D}_{y}$	Vectors have units (i.e. m / s)
Unit vectors	$\hat{i} \rightarrow x$
Unit Magnitude	$\hat{j} \rightarrow y$
Dimensionless	$\hat{k} \rightarrow z$

Lecture 3

Vector Addition

Consider Two Vectors

$$
\begin{gathered}
\vec{A}=A_{x} \hat{i}+A_{y} \hat{j} \\
\vec{B}=B_{x} \hat{i}+B_{y} \hat{j} \\
\vec{A}+\vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}\right)+\left(B_{x} \hat{i}+B_{y} \hat{j}\right) \\
=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j}
\end{gathered}
$$

Just add components.

Laws of Vector Addition

$\vec{d}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$

Example

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=12 m \cdot \hat{\mathbf{i}}+5 m \cdot \hat{\mathbf{j}} \\
& \overrightarrow{\mathbf{B}}=2 m \cdot \hat{\mathbf{i}}-5 m \cdot \hat{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{\boldsymbol{C}} & =\overrightarrow{\boldsymbol{A}}+\overrightarrow{\mathbf{B}} \\
& =(12 m \cdot \hat{\mathbf{i}}+5 m \cdot \hat{\mathbf{j}})+(2 m \cdot \hat{i}-5 m \cdot \hat{\mathbf{j}}) \\
& =14 m \cdot \hat{\mathbf{i}}
\end{aligned}
$$

Vector Multiplication

Scalar product
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{B}_{\mathrm{z}}$
θ is the angle between the vectors if you put their tails together

Last Lecture:

Motion along the straight line + Vectors

One dimension (1D)
Three dimension (2D)

Position:	$x(t) \mathrm{m}$
Velocity:	$v(t) \mathrm{m} / \mathrm{s}$
Acceleration:	$a(t) \mathrm{m} / \mathrm{s}^{2}$

Position:	$\overrightarrow{r(t)} m$
Velocity:	$\overrightarrow{v(t)} \mathrm{m} / \mathrm{s}$

All are vectors: have direction and magnitude.

Acceleration: $\vec{a}(t) \mathrm{m} / \mathrm{s}^{2}$

Andrei Sirenko, NJIT

TABLE 2-1 Equations for Motion with Constant Acceleration ${ }^{\text {a }}$

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

[^0]Relative Motion/Reference Frames
\mp@subsup{\boldsymbol{r}}{PA}{}}=\mp@subsup{\vec{r}}{PB}{}+\mp@subsup{\vec{r}}{BA}{
\mp@subsup{\boldsymbol{r}}{PA}{}}=\mp@subsup{\vec{r}}{PB}{}+\mp@subsup{\vec{r}}{BA}{
\mp@subsup{v}{PA}{}}=\mp@subsup{\vec{v}}{PB}{}+\mp@subsup{\vec{v}}{BA}{}\mathrm{ and }\mp@subsup{\vec{v}}{BA}{}=\mathrm{ const.
\mp@subsup{v}{PA}{}}=\mp@subsup{\vec{v}}{PB}{}+\mp@subsup{\vec{v}}{BA}{}\mathrm{ and }\mp@subsup{\vec{v}}{BA}{}=\mathrm{ const.
\mp@subsup{\vec{a}}{PA}{}=\mp@subsup{\vec{a}}{PB}{}
\mp@subsup{\vec{a}}{PA}{}=\mp@subsup{\vec{a}}{PB}{}

Relative Motion/Reference Frames

Relative Velocity: Rowing a Boat

You can row a boat at $v_{\text {row }}=3 \mathrm{~m} / \mathrm{s}$, and you want to go straight across a river which flows with $v_{\text {river }}=2 \mathrm{~m} / \mathrm{s}$. At what angle should you row?

Lecture 3
Andrei Sirenko, NJIT

Gravitation is universal

Most important case of constant acceleration: Free fall

```
a=-g where g=9.8 m/\mp@subsup{s}{}{2}
(defining "up" as the positive direction)
```

Gravitational acceleration does not depend on the nature of the material or the mass of the object.

Relative Motion/Reference Frames
 Rowing a Boat (continued)

$$
\begin{aligned}
& \vec{v}_{\text {boat }}=\vec{v}_{\text {row }}+\vec{v}_{\text {river }} \\
& \text { you want } \vec{v}_{\text {boat }} \text { in } y \text { direction } \\
& \text { need } v_{\text {row, } x}=-v_{\text {river, } x} \\
& \mathbf{v}_{\text {row }} \cos \theta=\mathbf{v}_{\text {river }}
\end{aligned}
$$

Lecture 3

Lecture QZ3

$$
\mathbf{A}=(4 \mathrm{~m}) \cdot \mathbf{i}+(2 \mathrm{~m}) \cdot \mathbf{j} \quad \text { and } \quad \mathbf{B}=(-1 \mathrm{~m}) \cdot \mathbf{i}+(2 \mathrm{~m}) \cdot \mathbf{j}
$$

1. What is the length (or magnitude) of the vector \mathbf{C} if $\mathbf{C}=\mathbf{A}+\mathbf{B}$ $|C|=? ? ?$
2. What is the angle between vectors \mathbf{A} and \mathbf{B} $\theta=$???
3. What is the scalar (dot) product of the same vectors \mathbf{A} and \mathbf{B} : ($\mathrm{A} \cdot \mathrm{B}$)=???
4. (huge extra credit) What is the magnitude of the vector (cross) product of the same vectors \mathbf{A} and \mathbf{B} :
$|\mathbf{A} \times \mathbf{B}|=$???

Hint: \mathbf{i} and \mathbf{j} are the unit vectors.

[^0]: ${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table

