Lecture 7

Problem-Solving Tactics:
Friction and Centripetal Motion

$$
\text { (} \mathcal{H R} \mathfrak{G W} \text {, Chapters 5-6) }
$$

http://we b.njit.edu/~sirenko/
Physics 105;Summer 2006

Newton's Laws

I. If no net force acts on a body, then the body's velocity cannot change.
II. The net force on a body is equal to the product of the body's mass and acceleration.
III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction $\left(\mathbf{F}_{12}=-\mathbf{F}_{21}\right)$

Force is a vector
Force has direction and magnitude
Mass connects Force and acceleration;

$\vec{F}_{\text {tot }}$	$=0 \Leftrightarrow \boldsymbol{d}=0$ (constant velocity)
$\vec{F}_{\text {tot }}$	$=m a \quad$ for any object
$F_{\text {tot. }, x}$	$=m a_{x} \quad F_{\text {tot. }, y}=m a_{y} \quad F_{\text {tot }, z}=m a_{z} \quad 2$

$\vec{F}_{\text {tot }}=$ mad for any object
$F_{\text {tot. }, \mathrm{x}}=m \mathrm{a}_{\mathrm{x}} \quad \mathrm{F}_{\text {toot. } \mathrm{y}}=\boldsymbol{m a _ { y }} \quad \mathrm{F}_{\text {tot }, \mathrm{z}}=m \mathrm{a}_{\mathbf{z}} \quad$,

How do we jump ?

A standing person

No acceleration		Acceleration
\Rightarrow	$\overrightarrow{\mathrm{N}}$	\Rightarrow
Net force is zero		$\mathrm{F}_{\mathrm{NET}}=\mathrm{ma}$
$\mathrm{F}_{\text {NET }}=1 \mathrm{~N} \mid-\mathrm{mg}=0$	mg	$\|\mathrm{N}\|-\mathrm{mg}=\mathrm{ma}>0$

Forces:

- Gravitational Force:

$$
\overrightarrow{\mathcal{F}}_{\mathfrak{g}}=\overrightarrow{m g}
$$

down to the ground
\rightarrow Tension Force:
\mathcal{T}
$>$ Spring Force:

- Normal Force:

$$
\underset{\rightarrow}{\mathcal{F}_{s}}=-K x
$$

$$
\begin{aligned}
& \overrightarrow{\mathcal{N}}_{s}=-\kappa \mathcal{X}
\end{aligned}
$$

perpendicular to the support
>Friction Force

> Static; maximum value $f_{s}=\mu_{s t} \mathcal{N}$
opposite to the component of other forces parallel to the support
, Kinetic; value

$$
f_{k}=\mu_{k i n} \mathcal{N}
$$

opposite to the velocity, parallel to the support

$$
\mu_{s t}>\mu_{\kappa i n}
$$

\overbrace{i}^{π}

Relative Motion/Reference Frames

Relative Motion/Reference Frames

Relative Velocity: Rowing a Boat

You can row a boat at $v_{\text {row }}=3 \mathrm{~m} / \mathrm{s}$, and you want to go straight across a river which flows with $v_{\text {river }}=2 \mathrm{~m} / \mathrm{s}$. At what angle should you row?

$\vec{v}_{\text {boat }}=\vec{v}_{\text {row }}+\vec{v}_{\text {river }}$
you want $\vec{v}_{\text {boat }}$ in y-direction to go straight across
Lecture 7a
Andrei Sirenko, NJIT

Relative Motion/Reference Frames
 Rowing a Boat (continued)

$$
\begin{aligned}
& \text { need } v_{\text {row,x }}=-v_{\text {river,x }} \\
& v_{\text {row }} \cos \theta=v_{\text {river }}
\end{aligned}
$$

48.2 degrees; $v_{\text {boat }}=2.2 \mathrm{~m} / \mathrm{s}$

Inertial Frames:

Lecture 7a

Non-Inertial Frame;
There is a Pseudo Force: ma
$\mathfrak{N e}$ wton's Laws do not work!!!

Inertial Frame;
There are no Pseudo Forces:
$\mathcal{T} \cos \theta=m \mathcal{g}$
$\mathcal{T} \sin \theta=m a$
$a=g \cdot \tan \theta$

Lecture 7a
Andrei Sirenko, NJIT

Combination of Forces:
 $\mathcal{N e} t$ Force
 Dealing with Multiple Forces

to keep track of the forces on one object.

Uniform Circular Motion

Centripetal acceleration
Period

$$
T=\frac{2 \pi r}{v}
$$

Lecture 7a

Centripetalforce: $\mathcal{F}=m a$

$$
F=m \frac{v^{2}}{r}
$$

Centripetal Force is a

combination of:
, Gravitational Force :
down to the ground

- Tension Force:
along the string
~Normal Force:
perpendicular to the support

-Normal force: \mathcal{N}
$>$ Static Friction Force
maximum value

Net Force and Centripetal Force

Lecture 7a

Andrei Sirenko, NJIT

Centripetal Force and Tension Force:

$$
\begin{aligned}
m a & =\mathcal{T} \\
m a & =m v^{2} / \mathcal{R}=\mathcal{T}
\end{aligned}
$$

Centripetal Force and

 Kinetic Friction Force:

Rinetic friction does not affect
Centripetalacceleration directly
Lecture 7a
Andrei Sirenko, NJIT

Uniform Circular Motion

Sample Problem

A runner takes 12 seconds
round a 180° curve at one end of an oval track. The distance covered on the curve is 100 meters.
What is her centripetal acceleration?

Centripetalacceleration

$$
a=\frac{v^{2}}{r}
$$

Period
$T=\frac{2 \pi r}{v}$

Uniform Circular Motion

Sample Problem

A runner takes 12 seconds round a 180° curve at one end of an oval track. The distance covered on the curve is 100 meters.
What is her centripetal acceleration?

$$
\begin{aligned}
& v=100 \mathrm{~m} / 12 \mathrm{~s}=8.33 \mathrm{~s} ; \mathcal{R}=100 / \pi=31.8 \mathrm{~m} \\
& a=(8.33)^{2} / 31.8 \mathrm{~m} / \mathrm{s}^{2}=2.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Centripetal acceleration

$$
a=\frac{v^{2}}{r}
$$

$$
\text { Period: } \quad T=\frac{2 \pi r}{v}
$$

Problem \# 1

$m=5 \mathrm{~kg}$
$\mathcal{L}=5 \mathrm{~m}$
$R=2 m$
Find v, \mathcal{T}, and a

Problem solving tactics:
$m=5 \mathrm{~kg}$
$\mathcal{L}=5 \mathrm{~m}$
$R=2 \mathrm{~m}$
Find v, \mathcal{T}, and a

Lecture 7 a
Andrei Sirenko, NJIT

Problem solving tactics:

$$
\begin{aligned}
& m=5 \mathrm{~kg} \\
& \mathcal{L}=5 \mathrm{~m} \\
& \mathcal{R}=2 \mathrm{~m} \\
& \mathcal{F} \text { ind } v, \mathcal{T}, \text { and } a
\end{aligned}
$$

Lecture 7a
Andrei Sirenko, NJIT

Problem solving tactics:

$$
\begin{aligned}
& m=5 \mathrm{~kg} \\
& \mathcal{L}=5 \mathrm{~m} \\
& \mathcal{R}=2 \mathrm{~m} \\
& \mathcal{F} \text { ind } v, \mathcal{T}, \text { and } a
\end{aligned}
$$

Centripetal Force

originates from the
tension force!
$\sin \theta=\mathcal{R} / \mathcal{L}=0.4 ; \quad \tan \theta=(\mathcal{R} / \mathcal{L}) /\left(1-(\mathcal{R} / \mathcal{L})^{2}\right)^{3 / 2}=0.44$
X: $\quad m a=\mathcal{T}^{*} \sin \theta$
2: $\quad m a=0=-m g+\mathcal{T}^{*} \cos \theta$
$m a=m g^{*} \sin \theta / \cos \theta=m g^{*} \tan \theta$

$$
\mathcal{T}=m g / \cos \theta \quad a=g^{*} \tan \theta
$$

Andrei Sirenko, NJIT
Circular motion:

$$
m a=m v^{2} / \mathcal{R}
$$

$$
a=v^{2} / \mathcal{R}
$$

$$
v=(a \mathcal{R})^{1 / 2}
$$

Problem is solved:

$$
\begin{aligned}
& m=5 \mathrm{~kg} \\
& \mathcal{L}=5 \mathrm{~m} \\
& \mathcal{R}=2 \mathrm{~m} \\
& \mathcal{F} \text { ind } v, \mathcal{T}, \text { and } a
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\mathcal{R} / L=0.4 ; \quad \tan \theta=(\mathcal{R} / L) /\left(1-(\mathcal{R} / L)^{2}\right)^{1 / 2}=0.44 \\
& \text { X: } \quad m a=\mathcal{T}^{*} \sin \theta \\
& \text { £: } \quad m a=0=-m g+\mathcal{T}^{*} \cos \theta \\
& \text { Circular motion: } \\
& m a=m g^{*} \sin \theta / \cos \theta=m g^{*} \tan \theta \quad m a=m v^{2} / \mathcal{R} \\
& \mathcal{T}=m g / \cos \theta \quad a=g^{*} \tan \theta \quad a=v^{2} / \mathcal{R} \\
& \mathcal{T}=5 \mathrm{~kg}{ }^{*} 9.8 \mathrm{~m} / \mathrm{s}^{2} /\left(1-(2 \mathrm{~m} / 5 \mathrm{~m})^{2}\right)^{1 / 2}=53 \mathcal{N} \\
& a=4.3 \mathrm{~m} / \mathrm{s}^{2} ; m a=5 \mathrm{~kg}{ }^{*} 4.3 \mathrm{~m} / \mathrm{s}^{\wedge} 2=21 \mathfrak{N} \text {; } \\
& \text { Lecture 7a } \\
& \text { Andrei Sirenko, NJIT } \\
& v=(a \mathcal{R})^{1 / 2} \\
& v=\left(4.3^{*} 2\right)^{1 / 2} \mathrm{~m} / \mathrm{s}=
\end{aligned}
$$

Problem \# 2
$\mathcal{R}=20 \mathrm{~m} ; \mu_{s t}=0.5$
Angle 10°
Find $v_{\text {max }}$

Lecture 7a
Andrei Sirenko, NJIT
26

Problem \# 2
$\mathcal{R}=20 \mathrm{~m} ; \mu_{s t}=0.5$
Angle 10°
Find $v_{\max }$
$x: \quad m a=\mathcal{N} \sin \theta+\underline{\mu}_{\underline{s t}} \underline{\mathcal{N} \cos \theta}$
$\mathcal{Y}: \quad 0=\mathcal{N} \cos \theta-m g-\underline{\mu}_{\underline{s t}} \underline{\mathcal{N} \sin \theta}$

$$
\mathcal{R}=20 \mathrm{~m} ; \mu_{s t}=0.5
$$

Angle 10°
Find $v_{\max }$
$x: \quad m a=\mathcal{N}^{*}\left(\sin \theta+\mu_{s t} \cos \theta\right)$
$\mathcal{Y}: \quad \mathcal{N}=m g /\left(\cos \theta-\mu_{s t} \sin \theta\right)$
$m a=m v^{2} / R$

Problem \# 2
$m a=\mathcal{N}^{*}\left(\sin \theta+\mu_{s t} \cos \theta\right)$
Angle 10°
$\mathcal{N}=m g /\left(\cos \theta-\mu_{s t} \sin \theta\right)$
Find $v_{\max }$
$m a=m v_{\max }{ }^{2} / \mathcal{R}$
$m v_{\max }{ }^{2} / \mathcal{R}=m g{ }^{*}\left(\sin \theta+\mu_{s t} \cos \theta\right) /\left(\cos \theta-\mu_{s t} \sin \theta\right)$
$v_{\text {max }}{ }^{2}=g^{*} \mathcal{R}{ }^{*}\left(\sin \theta+\mu_{s t} \cos \theta\right) /\left(\cos \theta-\mu_{s t} \sin \theta\right)$
Mass m disappeared!!!

$Q Z \# 7$ Analyze the previous problem

1. $\mathcal{R}=20 \mathrm{~m} ; \mu_{s t}=0.5 ; \mathcal{A n g l e} 10^{\circ}$

What is going to fappen to
the static friction force for
the case when the velocity of the
track is doubled: $v=v_{\text {max }} * 2$
What is going to happen to the track? (describe)

2. $\mathcal{R}=20 \mathrm{~m} ; \quad \mu_{s t}=0.5, \quad v=5 \mathrm{~m} / \mathrm{s} ; \quad \quad m=3000 \mathrm{~kg}$, and $\quad \theta=0$
What is the value and direction of the static friction force?
workout Proair il: I peiat for each part|
 tion tos tcman M norrs c

a) Doun fic fice-tad-diagrom of eat of do difects

$$
\begin{aligned}
& \text { M: } M a=M g \sin \theta-T * \quad m \text { ma } \quad m-m g \\
& y: \quad \varnothing=N-M g \cos \theta \\
& T=M(g \sin \theta-a) \\
& T=4\left(98 \cdot \sin 43^{\circ}-2\right)= \\
& =18.7 \mathrm{~N} \\
& \begin{array}{c}
m(a+g)=T \\
m=\frac{T}{a+g}
\end{array} \\
& m=M \frac{(g \sin \theta-a)}{a+g} \\
& m=\frac{4(9.8+443-2)}{2+9.8} \\
& m=1.6 \mathrm{~kg}
\end{aligned}
$$

Lecture 7a

$$
a=0
$$

$$
\begin{aligned}
& T=m^{\prime} g \\
& T=M \cdot(g \sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
& T=M \cdot(g \sin \theta) \\
& m^{\prime}=\frac{T}{g}=M \cdot \sin \theta=4 \cdot \sin 42^{\circ}[\mathrm{kg}]=2.7 \mathrm{mg}
\end{aligned}
$$

32
\qquad
\qquad
9. Two blocks (X and Y) are in contact on a horizontal frictionless surface. A $36-\mathrm{N}$ constant force is applied to X as shown. The magnitude of the force exerted by Y on X is:
\qquad II ${ }^{\text {nd }}{ }^{1}$ Natan:

$a=\frac{F}{m_{x}+M_{y}}=\frac{36 \mathrm{~N}}{20 \mathrm{~kg}_{\mathrm{g}}+4 \mathrm{xg}}=$
(D) 30 N

$$
a_{x}=\frac{36 N-F_{y}}{m x}=1.5 \mathrm{~m} / \mathrm{s}^{2} ; \quad F_{y}=36 \mathrm{~N}-4 \mathrm{~kg} \cdot 1.5 \frac{\mathrm{~m}}{\mathrm{~s} 2}=301
$$

11. A block is at rest on a horizontal plank of wood. The plank is slowly lifted at one end while the other end stays on the floor. If the coefficient of static friction between the block and the plank is 0.5 , what is the steepest angle the plank can have before the block begins to slide without being pushed?
(A) 27°
B) 37°
C) $\quad 45^{\circ}$
D) $\quad 53^{\circ}$

$$
\begin{aligned}
& \mu_{s+}^{\max }=\tan \theta \\
& \theta=\tan ^{-1} 0.5= \\
& =26.5^{\circ}
\end{aligned}
$$

13. Two blocks with the weights of $70-\mathrm{N}$ and $35-\mathrm{N}$ are connected by a string as shown. If the pulley is massless and the surface is frictionless, the magnitude of the acceleration of the $70-\mathrm{N}$ block is:

A) $1.6 \mathrm{~m} / \mathrm{s}^{2}$ B) $3.3 \mathrm{~m} / \mathrm{s}^{2}$ C) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
 D) $6.7 \mathrm{~m} / \mathrm{s}^{2}$

E) $9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { for } 35 \mathrm{~N} \text { block: }-T+m g=m a\} \\
& \left.\begin{array}{l}
\text { for } 70 \mathrm{~N} \text { block: } T=M a \\
\Rightarrow M_{a}+m a=m g ; 1 m=35 \mathrm{~N}
\end{array}\right\} \\
& \begin{array}{l}
M a+m a=m g ; \\
a=\frac{m}{M+m} \cdot g=3.3 \frac{m}{32}
\end{array} \left\lvert\, \begin{array}{l}
m=\frac{35 \mathrm{~N}}{9.8} / \mathrm{s}^{2} \\
M=70 \mathrm{~N} / \mathrm{g} .8
\end{array}\right.
\end{aligned}
$$

14. A horizontal force F is gradually increased until the 40 kg block begins moving to the right. The 10 kg block cannot move because of the cord attaching it to the wall at left. For what force F does the kg block cannot move because

