Lecture 9

Potential Energy and Conservation of Energy
(FRoW, Chapter 8)
fttp://we b.njit.edu/~sirenko/

Physics 105 Summer 2006

What does $\quad W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{r}} \quad$ mean?

$\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{r}}$

$$
=\mathrm{F}_{\mathrm{x}} \mathrm{r}_{\mathrm{x}}+\mathrm{F}_{\mathrm{y}} \mathrm{r}_{y}
$$

$$
=\text { Frcos } \theta
$$

force is adding energy to object
$W=0$ if $\theta>90^{\circ} \longrightarrow$ force is reducing energy of object

$W=0$ if $\mathbf{r}=0$ or $F=0$ or $\overrightarrow{\mathbf{F}} \perp \overrightarrow{\mathbf{r}}$
Work Examples
Push on a wall

$$
w=0 \text { since wall does not move }(\vec{r}=0)
$$

Power

Work doesn't depend on the time interval

Work to climb a flight of stairs 3000 J | 10 s |
| :--- |
| 1 min |
| 1 hour |

Power is work done per unit time

Average Power	$P_{\text {avg }}=\frac{W}{\Delta t}$
Instantaneous Power	$P=d W / d t=F \mathrm{dx} / \mathrm{dt}=\mathrm{Fv}$

Units $\frac{\text { Work }}{\text { time }} \quad \frac{1 \mathrm{~J}}{1 \mathrm{~s}}=1 \mathrm{Watt} \quad 1 \mathrm{hp}=746 \mathrm{~W}$

$$
\underset{\text { Andrei Sirenko, NJIT }}{1 / 2 *} 60 \mathrm{~kg}^{*}(5 \mathrm{~m} / \mathrm{s})^{2}
$$

Power

Average Power

$$
P_{\mathrm{avg}}=\frac{W}{\Delta t}
$$

Units: $\mathcal{W a t t s}$

Instantaneous Power

$$
\begin{aligned}
& P=\frac{d W}{d t} \\
& P=\vec{F} \cdot \vec{v} \\
& P=\frac{d E}{d t}
\end{aligned}
$$

Sample Problem 7-10: Two constant forces \boldsymbol{F}_{1} and \boldsymbol{F}_{2} acting on a box as the box slides rightward across a frictionless floor. Force \boldsymbol{F}_{1} is horizontal, with magnitude 2.0 N , force \boldsymbol{F}_{2} is angled upward by 60° to the floor and has a magnitude of 4.0 N . The speed v of the box at a certain instant is $3.0 \mathrm{~m} / \mathrm{s}$.
a) What is the power due to each force acting on the box? Is the net power changing at that instant?
b) If the magnitude \boldsymbol{F}_{2} is, instead, 6.0 N , what is now the net power, and is it changing?

- Potential Energy and Conservation of Energy
- Conservative Forces
- Gravitational and Elastic Potential Energy
- Conservation of (Mechanical) Energy
- Potential Energy Curve
- External and Internal Forces

Energy and Work

$$
\begin{aligned}
& \text { Kine tic energy } \\
& K=\frac{1}{2} \boldsymbol{m} v^{2} \quad\left[\mathrm{~J}=\mathrm{kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right]
\end{aligned}
$$

Units of Work and Energy: Ioule

Work done by a constant force

$$
W=\vec{F} \cdot \vec{d}=F d \cos \theta
$$

Work and Potential Energy

Negative
work done
by the
gravitational
force

Positive
work done
by the
gravitational
force

Genential Energy
$\Delta U=-W$

$\Delta U=-\int_{x_{i}}^{x_{f}} F(x) d x$
x_{i}

Gravitational Potential Energy

$$
U=m g y
$$

Elastic Potential Energy

$$
U=\frac{1}{2} k x^{2}
$$

Conservation of Mechanical Energu

Mechanical Energy

$$
E_{\mathrm{mec}}=\boldsymbol{K}+\boldsymbol{U}
$$

Conservation of Mecfanical Energy

$$
\boldsymbol{K}_{2}+\boldsymbol{U}_{2}=\boldsymbol{K}_{1}+\boldsymbol{U}_{1}
$$

In an isolated system where only conservative forces cause energy changes, the kinetic and potential energy can change, but their sum, the mechanical energy $E_{\text {mec }}$ of the system, cannot change.

Kinetic Energy:

$$
K=\frac{1}{2} m v^{2}
$$

Potential Energy:

$$
\boldsymbol{E}_{\mathrm{mec}}=\boldsymbol{K}+\boldsymbol{U}
$$ $\mathcal{U} \rightarrow \mathcal{K}$

Conservation of Mechanic al Energy

$$
K_{2}+U_{2}=K_{1}+U_{1}
$$

Path Independence of

 Conservative ForcesSample Problem 8-1: A 2.0 kg block slides along a frictionless track from a to point b. The block travels through a total distance of 2.0 m , and a net vertical distance of 0.8 m . How much work is done on the block by the gravitational force?
$U=m g y$

Kine tic Ene rgy: $\quad K=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& \text { Potential Energy: } \\
& \Delta U=-W \\
& \text {-Gravitation: } \\
& U=m g y \\
& \text { - Elastic (due to spring force): } \boldsymbol{U}=\frac{1}{2} \boldsymbol{k} \boldsymbol{x}^{2} \\
& \text { Conservation of } \\
& \text { Mechanic al Energy } \\
& \boldsymbol{E}_{\mathrm{mec}}=\boldsymbol{K}+\boldsymbol{U} \\
& K_{2}+U_{2}=K_{1}+U_{1}
\end{aligned}
$$

Lecture 9 \qquad Andrei Sirenko, NJIT

Sample Problem

A circus beagle of mass $m=6.0 \mathrm{~kg}$ runs onto the left end of a curved ramp with speed $v_{0}=7.8 \mathrm{~m} / \mathrm{s}$ at height $y_{0}=8.5 \mathrm{~m}$ above the floor. It then slides to the right and comes to a momentary stop when it reaches a height $y=11.1 \mathrm{~m}$ from the floor. The ramp is not frictionless. What is the increase $\Delta E_{t h}$ in the thermal energy of the beagle and the ramp because of the sliding?

Examples for Energy Conservation
Kinetic Energy changes

+ Gravitational Potential Energy
+ Elastic Potential Energy

Total Mechanical Energy = Const.
$\mathcal{E}_{f}-\mathcal{E}_{i}=\mathcal{K}_{f}-\left(\mathcal{K}_{i}+m g y\right)=-\left|\mathcal{W}_{\text {friction }}\right|=f_{k} \cdot d \cdot \cos 180^{\circ}=$
$=-\underset{\text { Lecture } 9}{f_{\kappa}} \cdot d=-m g \mu \cdot d \cdot \cos 18^{\circ}$
Lecture 9 Andrei Sirenko, NJIT

Problems:

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

Lecture 9 Andrei Sirenko, NJIT

14

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

$$
V_{1}=4.0 \mathrm{~m} / \mathrm{s}
$$

$$
K=\frac{1}{2} m v^{2}
$$

$$
\mathcal{K}_{f}=0
$$

$$
\mathcal{V}_{2}=8.6 \mathrm{~m} / \mathrm{s}
$$

$4 m$

What minimum coefficient of Kinetic friction $\mu_{\mathcal{K}}$ is required to bring the crate to a stop over a distance of
10 m along the lower surface ?

$$
\begin{aligned}
& 10 m \\
& \mathcal{K}_{f} \cdot \mathcal{K}_{i}=\mathcal{W}_{\text {friction }}=\cdot m g \mu_{k} d \\
& 0 \cdot 1_{k} m v^{2}=\cdot m g \mu_{\kappa} d \\
& 1_{2} m v^{2}=m g \mu_{\kappa} d ; \mu_{k}=v^{2} / 2 g d= \\
& (8.6 m / s)^{2} /\left(2 \cdot 10 m / s^{2} \cdot 10 m\right)=0.37
\end{aligned}
$$

Example of the $3^{\text {rd }}$ Common Exam
Problem 1: What is the work done by a force $\mathrm{F}=(2 \mathrm{~N}) \mathrm{i}+(-4 \mathrm{~N})$ t that causes a displacement $\mathrm{d}=(-3 \mathrm{~m}) \mid+(2 \mathrm{~m}) \mathrm{f}$?
A) 2 J
B) 14 J
Cl
$W=\vec{F} \cdot \vec{d}=2 N \cdot(-3 m)+(-4 N) \cdot 2 m=$
(B) 14 J

$$
=-6-8=-14 J
$$

E) 16 J

Problem 2: A man pushes a 2 -kg block 5 m along a frictionless incline at an angle of 20° with the borizontal an constunt speed. What is the work done by his force?

A) 01 $\Delta K=\varnothing$ B) 98J C) 34J D) 92 J E) 100 J	$W=\Delta U=m g \cdot \Delta y=m g \cdot s \cdot \sin \theta$
	$W=2 \mathrm{~kg} \cdot 98 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 5 \mathrm{~m} \cdot \sin 20^{\circ}=33.5 \mathrm{~J} \approx 34 \mathrm{~J}$

Problem 3: Starting from rost, it takes 8.00 s to lower with constant acceleration an $80.0-\mathrm{kg}$ couch from a $16.0-\mathrm{m}$ high rooftop of a building all the way to the ground with a single vertical rope tied to its body. What is the work high roothop of a buniding ail the
done by the tension in the rope?

Problem 4: A $10-\mathrm{kg}$ mass is attuched to one end of a $50-\mathrm{cm}$-long unstrectched spring. When the other end of the apring is attached to the ceiling the mass reaches a stable stationary position as shown in the adjweot diagram. What is the spring constant of the spring?
A) $490 \mathrm{~N} / \mathrm{m}$

$$
\Delta X=70 \mathrm{~cm}-50 \mathrm{~cm}=20 \mathrm{~cm}
$$

$$
k \Delta x=m g
$$

$$
K=\frac{m g}{\Delta x}=\frac{10 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.2 \mathrm{~m}}=490 \mathrm{~N} / \mathrm{m}
$$

Problem 5: A dog mast apply its full pomer of 100 W in order to move a 5 -kg sled by a distance of 10 m in 4 s .

$$
\begin{array}{ll}
\begin{array}{l}
\text { A) } 49 \mathrm{~N} \\
\text { B) } 250 \mathrm{~N} \\
\text { C } 8 \mathrm{~N}
\end{array} & P \cdot t=W \text { (work) } \\
\begin{array}{c}
\text { D) } 40 \mathrm{~N} \\
\mathrm{E} 200 \mathrm{~N}
\end{array} & F \cdot d=W \text { (work) } \\
& F=\frac{P \cdot t}{d}=\frac{100 \mathrm{~W} \cdot 4 \mathrm{~s}}{10 \mathrm{~m}}=40 \mathrm{~N}
\end{array}
$$

Problem 6. A bicyclist is traveling on a borizontal track at a speed of $20.0 \mathrm{~m} / \mathrm{s}$ as be approaches the bottom of a hill. Probiem . A decides to cosst up the hill and stops upon reaching the top. Deternine the vertical height of the hoill.
A) 28.5 m
C) 11.2 m
D) 40.8 m
E) 20.4 m

$$
\Delta y=\frac{V^{2}}{2 g}=\frac{20^{2}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=
$$

$$
=20.4 \mathrm{~m}
$$

Lecture 9

$$
\frac{m v^{2}}{2}=m g \Delta y ;
$$

Andrei Sirenko, NJIT

Probiem 7. A mass $\mathrm{m}=2.5 \mathrm{~kg}$ is siding lef alcog a finctionies table mis initid that has a force constant $\mathrm{k}=500 \mathrm{~N} / \mathrm{m}$ add compresses it a distance 5.0 cm before coning to a momentary rest. The

$\frac{1}{2} K \Delta X^{2}=\frac{m v^{2}}{2} ; V=\Delta x \cdot \sqrt{\frac{k}{m}}=0.05^{x_{9}=-\sqrt{5 m}} \quad x_{1}=0.0 .71 \mathrm{~m} / \mathrm{s}$
Problem 8 . Two skiens star from rest at the same place and finish at the same place. Skier A tives a straighe, smooth route to finish whereas skijer B takes a cury, bumpy route to the finish. If you assume that friction is

A) Skier A has the same speed as skiar B at the finish.

A: C) Skier A has gracter speed at the finish.
C) Skier A has greater speed at the finish because the route is straight.
D) Skier B has greater speed at the finish because the route is smocoth \quad if $A U=\varnothing$ E) Skier A has greater speed at the finith beccuuse the route is booth straight and smooth.
then $\triangle K=\varnothing$ if $\Delta U \neq 0$, then $\Delta K_{A}=A K_{B}$; if $m_{A}=m_{B} B_{\text {then }} V_{A} V_{A}=V_{B}=$ Problem 9. A block of mass m is released from rest at a height R above, Problem 9 . A block of mass m is released from rest at a height R above a borizontal surfice. The acceleration to gravity is g. The block slides along the inside of a frictionless circular boop
following expressions gives the speed of the mass at the bottom of the hoop?

Lecture 9
Andrei Sirenko, NJIT
18

Problem 10. A $60-\mathrm{kg}$ skier starts from resk from the top of a $50-\mathrm{m}$ high slope. If the work done by friction is -6.0 x $10^{3} \mathrm{~J}$, what is the speed of the skier on reaching the botiom of the slope?

$$
\begin{aligned}
& \left.\begin{array}{l}
\begin{array}{l}
\text { A) } 17 \mathrm{~m} / \mathrm{s} \\
\text { B) } 24 \mathrm{~m} / \mathrm{s} \\
\text { C } 28 \mathrm{~m} / \mathrm{s}
\end{array}
\end{array} K_{i}=0 ; \quad U_{i}=m g \Delta y\right\} \quad \frac{m v_{f}^{2}}{2}=m g \Delta y+W_{f_{k}} \\
& \left.\begin{array}{l}
\text { D) } 31 \mathrm{~ms} \\
\text { E) } 42 \mathrm{~m} / \mathrm{s}
\end{array} \quad K_{f}=\frac{m V_{f}^{2}}{2} ; \quad U_{f}=\varnothing\right\} \frac{m V_{f}^{2}}{2}=(60 \cdot 9.8 \cdot 50) \mathrm{J}-6 \cdot 10^{3} \mathrm{~J} \\
& \begin{aligned}
& V_{f}=\sqrt{\frac{2 k_{f}}{m}}=\sqrt{\frac{2.23400}{60}}=\frac{28 \mathrm{~m} / \mathrm{s}}{2} \\
&=23.4 \times 10^{3} \mathrm{~J} \\
&=20.9 .8 .50) \mathrm{J}-6.10 \\
& \text { is }
\end{aligned}
\end{aligned}
$$

Problem 11. A $2.0-\mathrm{kg}$ ball is attached to a light rod that is 1.2 m long) The other end of the rod is loosely pinned at
a frictionless pivot. The red is raised until it is inverted, with the ball above the pivet. The rod is relesased and the
ball moves in a vertical circle. The tension in the rod as the ball moves through the botiom of the circle is closest to:

$\frac{\text { A) } 20 \mathrm{~N}}{\text { B) } 100 \mathrm{~N}} \begin{array}{l}\text { C) } 20 \mathrm{~N} \\ \text { D) } \\ \text { E) } 80 \mathrm{~N}\end{array}$
00 N

$\frac{m v^{2}}{2}=m g \cdot 2 R \Rightarrow$

Perpetual Motion and "Free Energy"

Perpetumm Mobile
"Machine, which works itself forever"

Englisf: Perpetual Motion

Example 1

Balance of Forces:

$$
\vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t}=0
$$

Balance of Torques:

$$
\vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t}=0
$$

Andrei Sirenko, NJIT

22

More Examples:

[^0]More Examples:

More Examples:

More Examples:

Iron $\mathcal{B a l l}$
Magnets
Pe ndulum

Andrei Sirenko, NJIT

More Examples:

Water

Guoyant force of Archimedes" principle: " \mathcal{A} body immersed in liquid experiences and upward buoyant force equal to the weight of the displaced liquid."

Buoyancy Motor

Sample Problem
A 61 kg bungee-cord jumper is on a 45 m bridge above a river. The elastic bungee cord has a relaxed length of $L=25 \mathrm{~m}$. Assume that the cord obeys Hooke's law, with a spring constant of 160 N / m. If the jumper stops before reaching the water, what is the height h of her feet above the water at her lowest point?
$\mathrm{L}+\mathrm{d}+\mathrm{h}=45 \mathrm{~m}$
$\mathrm{E}=\mathrm{K}+\mathrm{U}_{\mathrm{g}}+\mathrm{U}_{\mathrm{e}}=$ Const; $(\Delta \mathrm{K}=0)$
$\Delta \mathrm{U}_{\mathrm{g}}=-\mathrm{mgy}=-61 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot *(\mathrm{~L}+\mathrm{d})$
$\Delta \mathrm{U}_{\mathrm{e}}=\mathrm{kd}^{2} / 2=160 \mathrm{~N} / \mathrm{m} \cdot \mathrm{d}^{2} / 2$
$80 \mathrm{~d}^{2}-600 \mathrm{~d}-15000=0 ;\left(\mathrm{d}^{2}-7.5 \mathrm{~d}-187.5=0\right)$
$\mathbf{d}=\mathbf{1 8} \mathbf{~ m}$ and $d=-10.5 \mathrm{~m}$
$h=45 m-25 m-18 m=\underline{2 m}$
Andrei Sirenko, NJIT
29

Sample Problem

A 61 kg bungee-cord jumper is on a 45 m bridge above a river. The elastic bungee cord has a relaxed length of $L=25 \mathrm{~m}$. Assume that the cord obeys Hooke's law, with a spring constant of 160 N / m. If the jumper stops before reaching the water, what is the height h of her feet above the water at
her lowest point?
$L+d+h=45 m$
$\mathrm{E}=\mathrm{K}+\mathrm{U}_{\mathrm{g}}+\mathrm{U}_{\mathrm{e}}=$ Const; $(\Delta \mathrm{K}=0)$
$\Delta \mathrm{U}_{\mathrm{g}}=-\mathrm{mgh}=-61 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(\mathrm{~L}+\mathrm{d})$
$\Delta \mathrm{U}_{\mathrm{e}}=\mathrm{kd}^{2} / 2=160 \mathrm{~N} / \mathrm{m} \cdot \mathrm{d}^{2} / 2$
$80 \mathrm{~d}^{2}-600 \mathrm{~d}-15000=0 ;\left(\mathrm{d}^{2}-7.5 \mathrm{~d}-187.5=0\right)$
$\mathbf{d}=\mathbf{1 8} \mathbf{~ m}$ and $\mathrm{d}=-10.5 \mathrm{~m}$
$h=45 m-25 m-18 m=\underline{2 m}$
Andrei Sirenko, NJIT

Sample Problem

A 61 kg bungee-cord jumper is on a 45 m bridge above a river. The elastic bungee cord has a relaxed length of $L=25 \mathrm{~m}$. Assume that the cord obeys Hooke's law, with a spring constant of 160 N / m. If the jumper stops before reaching the water, what is the height h of her feet above the water at her lowest point?
$L+d+h=45 m$
$\mathrm{E}=\mathrm{K}+\mathrm{U}_{\mathrm{g}}+\mathrm{U}_{\mathrm{e}}=$ Const; $\quad(\Delta \mathrm{K}=0)$
$\Delta \mathrm{U}_{\mathrm{g}}=-\mathrm{mgh}=-61 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot(\mathrm{~L}+\mathrm{d}+\mathrm{H})$
$\Delta \mathrm{U}_{\mathrm{e}}=\mathrm{kd}^{2} / 2=160 \mathrm{~N} / \mathrm{m} \cdot \mathrm{d}^{2} / 2$
$80 \mathrm{~d}^{2}-600 \mathrm{~d}-15000=0 ;\left(\mathrm{d}^{2}-7.5 \mathrm{~d}-202.5=0\right)$
$\mathbf{d}=18.5 \mathrm{~m}$ and $\mathrm{d}=-11 \mathrm{~m}$
$h=45 m-25 m-18.5 m=1.5 m$ but $H=2 m \ldots$
Andrei Sirenko, NJIT

Sample Problem

An elevator cab of mass $\mathrm{m}=500 \mathrm{~kg}$ is descending with speed $v_{i}=4.0 \mathrm{~m} / \mathrm{s}$ when its supporting cable begins to slip, allowing it to fall with constant acceleration $\underline{a}=\mathrm{g} / 5$.

During the 12 m fall, what is the work W_{T} done by the upward pull \underline{T} of the elevator cab?
$\mathrm{T}-\mathrm{mg}=-\mathrm{ma}=-\mathrm{mg} / 5$
$\mathrm{T}=0.8 \cdot \mathrm{mg} ;$
$\mathrm{W}=-0.8 \mathrm{mgd}=-0.8 \cdot 500 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 12 \mathrm{~m}=$
$=-47,000 \mathrm{~J}$

Lecture 9

Sample Problem

An elevator cab of mass $m=500 \mathrm{~kg}$ is descending with speed $v_{i}=4.0 \mathrm{~m} / \mathrm{s}$ when its supporting cable begins to slip, allowing it to fall with constant acceleration $\underline{\mathrm{a}}=\mathrm{g} / 5$.

(a)

During the fall through a distance $\mathrm{d}=12 \mathrm{~m}$, what is the work W_{g} done on the cab by the gravitational force F_{g} ?
$\mathrm{W}_{\mathrm{mg}}=+\mathrm{mgd}=500 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s} 2 \cdot 12 \mathrm{~m}=59000 \mathrm{~J}$

(

QZ\#9:

1. An elevator cab of mass $m=500 \mathrm{~kg}$ is descending with speed $v_{i}=4.0 \mathrm{~m} / \mathrm{s}$ when its supporting cable begins to slip, allowing it to fall with constant acceleration $\mathrm{a}=\mathrm{g} / 5, \mathrm{~d}=12 \mathrm{~m}$ What is the elevator's kinetic energy at the end of the fall? Hint: $\mathrm{W}_{\mathrm{mg}}=59000 \mathrm{~J} ; \mathrm{W}_{\mathrm{T}}=-47000 \mathrm{~J}$
$\underline{2}$ We are not using this type of veficle because
a) perpetual motion is forbidden by the $\mathcal{N e w t o n ' s ~ L a w s ~}$
6) police does not allow it
c) sitting next to a strong magnet is not good for the driver's health
d) there are no such strong magnets so far
e) this veficle is not going to start moving by itself, so it is not very practical for plane roads. Can be only used to go down the fill.

[^0]: All parts of the cylinder that fall in the greater gravity (magne tic) level must be pushet out, as well. All the work that a part of

