REVIEW 1

Review for the First Common $Q Z$ (HRGW, Chapters 1-4)
http://we 6.njit.edu/~sirenko/

Pfysics 105 ; Summer 2006

Unit Conversions

Common Q Zincludes:
Unit Conversion

Vectors (addition, subtraction, multiplication, angle betweenvectors)

Motion along the Straight line with constant acceleration

Projectile Motion

EX $\mathcal{A M P L E}:$

What is the volume of the book in cm^{3}. (fint: 1 inch $=2.54 \mathrm{~cm}$)

8 inc 反

Vectors:

(variables with magnitude and direction)

Displacement:

Unit Vectors

Components of a vector are still vectors

$\vec{D}=\vec{D}_{x}+\vec{D}_{y} \quad$ Vectors have units (i.e. m / s) \quad| $\hat{i} \rightarrow x$ | |
| :---: | :--- |
| Unit vectors | $\hat{j} \rightarrow y$ |
| Unit Magnitude | $\hat{k} \rightarrow z$ |
| Dimensionless | Used to specify direction |

Components of Vectors:

(a)

(b)

- aligned along axis - add to give vector
- are vectors

(c)

1
$a_{x}=a \cos \theta$ and $a_{y}=a \sin \theta$ $a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad$ and $\quad \tan \theta=\frac{a_{y}}{a_{x}} . \quad$ Length (Magnitude)

Example

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=12 m \cdot \hat{\mathbf{i}}+5 m \cdot \hat{\mathbf{j}} \\
& \overrightarrow{\mathbf{B}}=2 m \cdot \hat{\mathbf{i}}-5 m \cdot \hat{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{\boldsymbol{C}} & =\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}} \\
& =(12 m \cdot \hat{\mathbf{i}}+5 m \cdot \hat{\mathbf{j}})+(2 m \cdot \hat{\mathbf{i}}-5 m \cdot \hat{\mathbf{j}}) \\
& =14 m \cdot \hat{\mathbf{i}}
\end{aligned}
$$

Displacement:
Displacement is a change of position in time.

$$
\Delta x=x_{2}-x_{1}
$$

It is a vector quantity.
It has both a direction and magnitude.
It has units of [Length]: meters.

Vector Multiplication

Scalar product

$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=\mathrm{A}_{2} \mathrm{~B}_{\mathrm{s}}+\mathrm{A}_{2}, \mathrm{~B}_{y}+\mathrm{A}_{z} \mathrm{~B}$,
θ is the angle between the vectors if you put

their tails together

$\vec{a} \cdot \vec{b}=a b \cos \phi$
Scalar product
Review 1

Kinematic Variables

Position is a function of time: $x=x(t)$

Velocity is the rate Acceleration is the of change of the position
 rate of change of the velocity

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table.

Constant

Acceleration

($a>0$)

$$
\begin{aligned}
& v(t)=v_{0}+a t \\
& x(t)-x_{0}=v_{0} t+a t^{2} / 2
\end{aligned}
$$

(a)

(b)
$x(t)-x_{0}=\left(v(t)^{2}-v_{0}^{2}\right) / 2 a$
$x \cdot x_{0}=1 / 2\left(v+v_{0}\right) t$

Review 1
Andrei Sirenko, NJIT
(c)

14

What does zero mean?

$>t=0$ beginning of the process
$>x=0$ (origin) is arbitrary; can set where you want it
$>x_{0}=x(t=0)$; position at $t=0$; do not mix with the origin!
$\nu v(t)=0 \quad x$ does not change $\quad x(t)-x_{0}=0$
$>v_{0}=0$
$v(t)=a t ;$
$x(t)-x_{0}=a t^{2} / 2$
$>a=0$
$v(t)=v_{0} ;$
$x(t)-x_{0}=v_{0} t$

$r a \neq 0$	$v(t)=v_{0}+a t ;$	
felp:	$t=x_{0}=v_{0} t+a t^{2} / 2$	
	$t=\left(v-v_{0}\right) / a$	
	$a=\left(v-x_{0}\right) / t$	
	$\left.x-x_{0}=1 / 2\left(v^{2}-v_{0}^{2}\right) / a+v_{0}\right) t$	

, Acceleration and velocity are positive in the same
direction as displacement is positive
Andrei Sirenko, NJIT

Free Fall Motion

As leamed in an eartier unit, free-fall is a special type of motion in which the only force acting upon an object is gravity. Objects whech are said to be undergoing frwo-fall, are not encountering a sigificant are sadd to be undergoung /rwo-fall, are not encounterng a sigulicant torce of are resitance; they are taling lander the sole ratuence of gravily. Under such conditions, all obiects will all with the same free-foling motion of a $1000-\mathrm{kg}$ baby elephant and a $1-\mathrm{kg}$ overgrown mouse.

a=wivws
Andrei Sirenko, nJIT $\mathcal{Y}=\mathbf{0}$

More general case of the
Free Fall Motion
$a=-9 \quad$ where $9=9.8 \mathrm{~m} / \mathrm{s}^{2}$
(defining "up" as the positive direction)

Example:

Car starts at rest and accelerates for 10 seconds with $a=+5 \mathrm{~m} / \mathrm{s}^{2}$. Then the driver pushes the breaks and comes to a complete stop with accelerates of $a=-3 \mathrm{~m} / \mathrm{s}^{2}$. What is the total traveled distance?

Example:

Car starts at rest and accelerates for 10 seconds with $a=+5 \mathrm{~m} / \mathrm{s}^{2}$. Then the driver pushes the Greaks and comes to a complete stop with accelerates of $a=-3 \mathrm{~m} / \mathrm{s}^{2}$. What is the total traveled distance?

$$
\begin{aligned}
& x_{1}=v_{0} t+a t^{2} / 2=5 \mathrm{~m} / \mathrm{s}^{2} * 100 \mathrm{~s}^{2} / 2=250 \mathrm{~m} ; \\
& \quad v=a t=5 \mathrm{~m} / \mathrm{s}^{2} * 10 \mathrm{~s}=50 \mathrm{~m} / \mathrm{s} \quad(\text { ticket ?) } \\
& x_{2}=\left(v(t)^{2}-v_{0}^{2}\right) / 2 a=\left(0-50 * 50 \mathrm{~m}^{2} / \mathrm{s}^{2}\right) /\left(-2^{*} 3 \mathrm{~m} / \mathrm{s}^{2}\right)=417 \mathrm{~m} \\
& x_{1}+x_{2}=250 \mathrm{~m}+417 \mathrm{~m}=667 \mathrm{~m}
\end{aligned}
$$

Projectile Motion

Horizontalmotion + Verticalmotion

"Free fall with horizontal motion"

$x \equiv$ horizontal
$y \equiv$ vertical (take positive direction as "up")
z is not relevant
\vec{a} is only in the vertical direction: $\vec{a}=-g j$

$$
a_{y}=-g \quad a_{x}=0
$$

Projectile Motion

Horizontal motion
$a_{x}=0$
Verticalmotion
$a_{y}=-9$

In both directions the acceleration is constant

Projectile Motion; General Case
Trajectory and forizontal range
$y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \quad \quad R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}$

Example: Projectile Motion

1. Find the magnitude of the final velocity and find the velocity components when it touches the ground
2. What is the forizontal distance X ?

Projectile Motion

EXASMPLE for the Horizontal range:

A football is thrown toward a receiver with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 25° above the horizontal. At what horizontal distance the receiver should be to catch the football at the level at which it was thrown?

A) Impossible to solve; need the mass of the football B) 11 m ;

$$
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}
$$

C) 21 m

(D) 31 m

Review

Newton’s Laws

I. If no net force acts on a body, then the body's velocity cannot change.
II. The net force on a body is equal to the product of the body's mass and acceleration.
III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction ($\mathbf{F}_{12}=-\mathbf{F}_{21}$)

Force is a vector
Force fas direction and magnitude
Mass connects Force and acceleration;
$\vec{F}_{\text {tot }}=0 \Leftrightarrow \mathbb{d}=0$ (constant velocity) $\vec{F}_{\text {tot }}=$ ma for any object

Review 1
Andrei Sirenko, NJIT
26

TABLE 2-1 Equations for Motion with Constant Acceleration ${ }^{\text {a }}$

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

[^0]
Problem 1: Please mark the version of the exam you are taking

A) YOU ARE TAKING VERSION A
B)
C)
D)
E)

Problem 2: Find the mass of an object whose initial speed of $4 \mathrm{~m} / \mathrm{s}$ is reduced to zero with a constant 4 N foree in 2
seconds.
B) 0.5 kg

$$
\begin{aligned}
& F=m a ; a=\frac{F}{m} ; \quad m=\frac{F}{a} \\
& v=V_{0}-a \cdot t \Rightarrow V_{0}=a \cdot t \Rightarrow \\
& \\
& m=\frac{V_{0} / t}{F} \cdot t=\frac{4 \mathrm{~N}}{4 \mathrm{~m} / \mathrm{s}} \cdot 2 \mathrm{~s}=\overbrace{0} \cdot(2 \mathrm{~kg} \\
& \text { ss } 5.0 \mathrm{~kg} \text { give rise to an acceleration } \mathrm{a}=\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{i}+\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{j}
\end{aligned}
$$

C) 2 kg
c) 4 kg
E) 16 kg

Problem 3: Two forces acting on an object of mass 5.0 kg give
One of the forces is $\mathbf{F}_{1}=(10 \mathrm{~N}) \mathrm{i}-(4 \mathrm{~N}) \mathrm{j}$. The other must be
One of the forces is $\mathbf{F}_{1}=(10$
A) $\mathbf{F}_{2}=(10 \mathrm{~N}) \mathrm{i}+(15 \mathrm{~N}) \mathrm{j}$
B) $\mathrm{F}_{2}=(20 \mathrm{~N}) i+(11 \mathrm{~N})$
C) $\mathrm{F}_{2}=(10 \mathrm{~N}) i$
D) $\mathrm{F}_{2}=(12 \mathrm{~N}) \mathrm{i}-(1 \mathrm{~N}) \mathrm{j}$
E) $\mathrm{F}_{2}=(19 \mathrm{~N}) \mathrm{j}$

Review 1
Andrei Si

$$
\begin{aligned}
& m=5 \mathrm{~kg} \quad \vec{f} \quad a=2 \hat{i}+3 j\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& \vec{F}_{2}=? \quad \vec{F}_{\text {wet }}=\vec{F}_{1}+\vec{F}_{2} \Rightarrow \vec{F}_{2}=\vec{F}_{\text {net }}-\vec{F}_{1} \\
& \vec{F}_{\text {net }}=m \cdot \vec{a}=10 \hat{i}+15 \hat{j}(\mathrm{~N}) \\
& \begin{aligned}
\vec{F}_{2} & =10 \hat{i}+15 \hat{j} \\
& -(10 i-4 \hat{j})
\end{aligned} \\
& =19 \hat{j}(N)
\end{aligned}
$$

Problem 4: A 5 kg lamp is suspended by a string from the ceiling inside an elevator moving up with decreasing speed. If the magnitude of the elevator's acceleration is $3 \mathrm{~m} / \mathrm{s}^{2}$, what is the

ension in the string?

A) 64 N
C) 34 N
C) 34 N
E) 60 N

$m g-T=m a$

$$
T=m g-m a=
$$

$$
\begin{gathered}
T=m(g-a) \\
\left.T=S_{\mathrm{kg}}(9.8-3) \times / s\right\rangle=5 \cdot 6.8=34 \mathrm{~N}
\end{gathered}
$$

Problem 5: A 10 kg block is dragged along a horizontal frictionless surface with a 100 N force that makes an angle of 25° with the horizontal. The normal force exerted by the surface on the block is

Problem 6: A block initially moving at $4 \mathrm{~m} / \mathrm{s}$ upwards on an incline comes to rest after traveling 5 m up the incline. What is the angle between the incline and the horizontal in degrees?

A) 9.4	$v^{2}-v_{o}^{2}=-2 a x ; \rightarrow a=v_{o}^{2} / 2 x$
B) 81 C) 45 D) 53 E) 6.7 $\mathcal{F}=m g \sin \theta ; \rightarrow a=g \sin \theta \rightarrow \sin \theta=v_{o}^{2} /(2 g x) ;$ $\theta=\sin ^{-1}\left(v_{o}^{2} /(2 g x)\right)=\sin ^{-1}(0.16)=9.4^{\circ}$;	

Andrei Sirenko, NJIT
30

Problem 7: The tension in the string on the right of the right block is 36 N . Fach block has a mass of 2 kg . The surface is frictionless. What is the tension in the string between the blocks?
A) 9 N
B) 36 N
C) 18 N
$m_{1}+m_{2}=M ; M a=T \Rightarrow a-\frac{T}{m_{1}+m_{2}}, ~(12 \mathrm{M}$
D) $12 \mathrm{~N} T-T^{\prime}=m_{1} a ; T^{\prime}=T-m_{1} a=T\left(1-\frac{m_{1}}{m_{1}+m_{2}}\right)=T / 2$

$$
\mathcal{T}^{\prime}=18 \mathcal{N}
$$

Problem 8: A 2000 kg car slides on the iee and stops in 20 m due to the frictional force between the car and the ice. If the initial speed of the car is $5 \mathrm{~m} / \mathrm{s}$, the coefficient of kinetic friction between the ice and car is
A) 0
B) $0.0 .643 \quad v^{2} \cdot v_{o}^{2}=-2 a x ; \boldsymbol{C} a=v_{o}^{2} / 2 x$
D) $1.0 \quad \mathcal{F}=m g \mu ; a=g \mu \rightarrow \mu=v_{0}{ }^{2} /(2 g x)$;
E) 9.8

$$
\left.\mu=25 /\left(19.6^{*} 20\right)\right)=0.064 \text { (mass is not important!) }
$$

Problem 9: A block of mass 5 kg is pulled along a borizontal floor by a force of 20 N as shown in the figure. The coefficient of static friction is 0.4 . The coefficient of dynamic friction is 0.2 . the magnitude of the aceeleration of the block is A) The block does not accelerate. The 20 N force is not strong enough
C) $2.04 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
E) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathcal{F}>\mathcal{F}_{s t}(20 \mathcal{N}>19.6 \mathcal{N})$ or $\mathcal{F} \cong \mathcal{F}_{s t}(20 \mathcal{N} \cong 19.6 \mathcal{N})$
$a=\left(\mathcal{F}-\mathcal{F}_{k i n}\right) / m=(20-9.8) / 5=2.04 \mathrm{~m} / \mathrm{s}^{2}$ (too many sign. Figs.)

Problem 10: As shown in the Figure below, a sled is pulled up a snow covered hill by a force F. The angle of the slope is 25 degrees. The weight of the sled is 100 N . Which of the labeled arrows below indicate the DIRECTION of the frictional force?
A) Arrow 1
B) Arrow 2
C) Arrow $3 \quad m a=\mathcal{F} \cdot m g \sin \theta \cdot f$
D) Arrow 4
E) None of the above
$m a=\mathcal{F}-42 \mathcal{N}-f$
f is directed as " 3 "

Problem 11: Referring to the sled problem above, the coefficient of static friction is 0.25 and the coefficient of kinetic friction is 0,15 . What value of F is required such that the sled moves at a constant velocity'?

A) 56 N	
B) 65 N	$\mathscr{Y}: \quad m g \cos \theta=\mathcal{N} ; \quad f=\mu \mathcal{N} ; \quad \rightarrow=\mu m g \cos \theta$
C) 42 N	$m a=0=\mathcal{F} \cdot m g \sin \theta-\mu m g \cos \theta$
D) 91 N	$\mathcal{F}=m g(\sin \theta+\mu \cos \theta)$
E) 100 N	$\mathcal{F}=100(\mathcal{N})^{*}\left(\sin 25^{\circ}+0.15 \cos 25^{\circ}\right)=55.8(\mathcal{N}) \approx 56(\mathcal{N})$

$\mathcal{F}=(\sin \theta+\mu \cos \theta)$
D) 91 N
$\mathcal{F}=100(\mathcal{N})^{*}\left(\sin 25^{\circ}+0.15 \cos 25^{\circ}\right)=55.8(\mathcal{N}) \approx 56(\mathcal{N})$

QZ\#7

$v_{0}=5 \mathrm{~m} / \mathrm{s}$;
$f=2 m$

A ball rolls off a table of height h. The ball has horizontal velocity vO when it leaves the table.
How far away does it strike the ground?
How long does it take to reach the ground?

$$
\begin{aligned}
x-x_{0} & =v_{0 x} t \\
& =\left(v_{0} \cos \theta_{0}\right) t
\end{aligned}
$$

$y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}$
$=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}$
$v_{y}=v_{0} \sin \theta_{0}-g t$
$v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right)$

$$
\begin{array}{ll}
v_{0 x}=v_{0 ;} & x_{0}=0 \\
v_{0 y}=0 ; & y_{0}=f
\end{array}
$$

$$
\text { For } x \text { direction: } t=\Delta x / v_{0}
$$

$$
\text { For } y \text { direction: } y(t)=0
$$

$$
y(t)-f=v_{0 y} t-g t^{2} / 2
$$

$$
\Delta \chi=v_{0} \cdot(2 f / g)^{1 / 2}
$$

Review 1
Andrei Sirenko, NJIT

[^0]: ${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table.

