Revie w3

Revie w for the CQZ\# 3
Centripetal Motion and Energy Conservation

Kttp://we 6.mjit.edu/~sirenko/

Physics 105 Summer 2006
$>$ Static Friction Force
maximum value

Examples for Energy Conservation
Kinetic Energy changes

+ Gravitational Potential Energy
+ Elastic Potential Energy

$\mathcal{E}_{f} \cdot \mathcal{E}_{i}=\mathcal{K}_{f}-\left(\mathcal{K}_{i}+m g y\right)=-\left|\mathcal{W}_{\text {friction }}\right|=f_{\mathbb{K}} \cdot d \cdot \cos 180^{\circ}=$
$=-f_{\text {Review } 3} \cdot d=-m g \mu \cdot d \cdot \cos 18^{\circ}$
Andrei Sirenko, NJIT

Problems:

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

Review 3 Andrei Sirenko, NJIT 5

A $10.0-\mathrm{kg}$ crate slides along a horizontal frictionless surface at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$. The crate then slides down a frictionless incline and across a second rough horizontal surface as shown in the figure.

Review 3
Andrei Sirenko, NJIT

Example of the $3^{\text {rd }}$ Common Exam

Problem 1: What is the work done by a foree $\mathbf{F}=(2 \mathrm{~N}) \mathrm{i}+(-4 \mathrm{~N})$ that causes a displacement $\mathrm{d}=(-3 \mathrm{~m}) 4+(2 \mathrm{~m})$?

Problem 2: A man pushes a 2 -kg block 5 m along a frictionless incline at an angle of 20° with the borizontal at constunt speed. What is the work done by his foree?

A) 0 J	$\Delta K=\varnothing$
B) 98 J (C) 34 J D) 92 J E) 100 J $W=\Delta U=m g \cdot \Delta y=m g \cdot \mathrm{~s} \cdot \sin \theta$ $W=2 \mathrm{~kg} \cdot 98 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 5 \mathrm{~m} \cdot \sin 20^{\circ}=33.5 \mathrm{~J} \approx 34 \mathrm{~J}$	

Problem 3: Starting fromest, it takes 8.00 s to lower with constant acceleration an $80.0-\mathrm{kg}$ couch from a $16.0-\mathrm{m}$ high rooftop of a building all the way to the ground with a single vertical rope tied to its body. What is the work done by the tension in the rope?

Problem 4: A $10-\mathrm{kg}$ mass is attached to one end of a $50-\mathrm{cm}$-long unstretched spring. When the other end of the pring is attached to the ceiling the mass reaches a stable stationary position as shown in the adjwcent diagram. What is the spring constant of the spring?
B) $245 \mathrm{~N} / \mathrm{m} / \mathrm{m}$
C) $980 \mathrm{~N} / \mathrm{m}$
D) $140 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
& \Delta X=70 \mathrm{~cm}-50 \mathrm{~cm}=20 \mathrm{~cm} \\
& K \Delta x=m g \\
& K=\frac{m g}{\Delta X}=\frac{10 \mathrm{cg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{0.2 \mathrm{~m}}=490 \mathrm{~N} / \mathrm{m},
\end{aligned}
$$

Problem 5: A dog mast apply its full pomer of 100 W in order to move a $5-\mathrm{kg}$ sled by a distance of 10 m in 4 s
What average force does the dog exert on the sled?

Problem 6. A bisyclist is traveling on a borizontal track at a speed of $20.0 \mathrm{~m} / \mathrm{s}$ as be approsches the bottom of a hill. He decides to coast up the hill and stops upon reaching the top. Determine the vertical height of the hill.

$$
\begin{aligned}
\substack{\text { A) } 28.5 \mathrm{~m} \\
\text { B) } 3.70 \mathrm{~m} \\
\text { C) } 11.2 \mathrm{~m} \\
\text { D) } 40.8 \mathrm{~m}} \\
\text { (E) } 20.4 \mathrm{~m}
\end{aligned} \quad \frac{m v^{2}}{2}=m g \Delta y ; \quad \Delta y=\frac{V^{2}}{2 g}=\frac{20^{2}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2.9 .8 \frac{\mathrm{~m}}{\mathrm{~s} 2}}=
$$

Problem 8. Two skiers starl froen rest at the same place and finish at the same place Skier A then $\stackrel{x_{1}=0}{=} 0.71 \mathrm{~m} / \mathrm{s}$
Problem 10. A $60-\mathrm{kg}$ skier starts from rest from the top of a $50-\mathrm{m}$ high slope. If the work done by friction is -6.0 x
$10^{3} \mathrm{~J}$, what is the speed of the skier on reaching the botiom of the slope?

Problem 8. Two skiers star frem rest at the same place and finish at the same place. Skier A tukes a strighth,
smooth route to finish whereas skier B takes a cury, bumpy rovie to the finish. If you assume that friction is
 10 graviy is g . The block slides along the inside of a frictionless circular hoop of radius R. Which one of the
ag expressions gives the speed of the mass at the bottom of the hoop?
A) zerom/s
B) $y=m z R$
$m g R=\frac{m v^{2}}{2}$

C) $v=\frac{\beta}{3} / 2 R$
D) $v^{2}-g^{p} / R$
E) $r^{2}=2 g^{R}$

$$
V^{2}=2 g R
$$

Problem $12 . \mathrm{A}$ block of mass 2.0 kg is placed on a vertical spring, which is kept compressed 0.050 m by a clamp (The clamp is not shown in the diagram). The spring and the block are not attached. When the clamp is removed, the $s p r i n g ~ p r o p e l s ~ t h e ~ b l o c k ~ v e r t i c a l l y ~ u p w a r d . ~ W h e n ~ t h e ~ b l o c k ~ h a s ~ r i s e n ~$
0.60 m above its initial position its velocity is
$1.7 \mathrm{~m} / \mathrm{s}$. How much potential energy was originally stored in the spring?

$$
\begin{aligned}
& E_{i}=\frac{1}{2} k \Delta x^{2} \frac{v=0}{20 \mathrm{~kg}} \underbrace{0.6 m} \mathrm{~J}=\frac{m v^{2}}{2}+m g \Delta y \\
& \mathrm{~J} \approx 15 \mathrm{~J}
\end{aligned}
$$

 E) $42 \mathrm{~m} / \mathrm{s} \quad K_{f}=\frac{m V_{f}^{2}}{2} ; \quad U_{f}=\varnothing \int m V_{f}^{2}=(60 \cdot 9.8 \cdot 50) \mathrm{J}-6.10^{3} \mathrm{~J}$ $\begin{aligned} V_{f}=\sqrt{\frac{2 k_{f}}{m}}=\sqrt{\frac{2 \cdot 23400}{60}}=\frac{28 \mathrm{~m} / \mathrm{s}}{2} & =23.4 \times 10^{3} \\ & \text { not important !!! }\end{aligned}$
Problem 11. A $2.0-\mathrm{kg}$ ball is attached to a light rod that is 1.2 m long) The other end of the rod is loosely pinned at a frictionless pivot. The rod is rais tension in the rod as the ball moves through the botiom of the circle is closest to

$\frac{m v^{2}}{2}=m g \cdot 2 R \Rightarrow$

$5 \cdot m g=$
$\Rightarrow \frac{m v^{2}}{2}=4 \cdot m g$
$T=m g+4 m g=5 \cdot m g \approx 100 \mathrm{~N}$

Centripetal Motion:

$\sin \theta=\mathcal{R} / \mathcal{L}=0.4 ; \quad \tan \theta=(\mathcal{R} / \mathcal{L}) /\left(1-(\mathcal{R} / \mathcal{L})^{2}\right)^{1 / 2}=0.44$
X: $\quad m a=\mathcal{I}^{*} \sin \theta$
$\mathcal{Y}: \quad m a=0=-m g+\mathcal{I}^{*} \cos \theta$

WORKOUT PROBLEM 2:

(a) 13 points \mid A 2000 kg noe e car is rounding a level curve at a sped of $50 \mathrm{~m} / \mathrm{s}$. If the coefficient of state friction between the rood and the ties is 0.5 , what is the minimum radius of the curve for which He car can found the curve without sliding?

$$
\begin{gathered}
R \\
\frac{m V^{2}}{R}=f_{s t} ; \quad \begin{array}{l}
V=50 \mathrm{~m} / \mathrm{s} \\
M_{s t}=0.5 \\
R \min =? \\
\frac{m / V^{2}}{R}=f_{s t}=\mu \cdot N=\mu \cdot m g \\
R=\frac{V^{2}}{M \cdot g}=\frac{50.50}{0.5 .9 .8}=510 \mathrm{~m}
\end{array}
\end{gathered}
$$

Review 3
$v_{\text {max }}=50 \mathrm{~m}$;
$\mu_{s t}=0.5$
Angle 10°
Find $\mathcal{R}_{\text {min }}$

Review 3

What if the road is banked?
$v_{\text {max }}=50 \mathrm{~m}$;
$\mu_{s t}=0.5$
Angle 10° Find $\mathcal{R}_{\text {min }}$

Problem 12: A ball a mass 0.5 kg is tied tasting The bail is swung, in a circle (in the absence of gravity) in a circle of radius 2 m . For the diagrantis below, which correctly shows the elative directions of the centripetal force (P) acting on the ball and the.resocity (v) of the ball.

Problem 13: Referring to the problem above with the ball moving in circular motion, if the time for the ball to Problem 13: Referring to the problem above with the ball moving in circular motion, if
A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $4 \mathrm{~m} / \mathrm{s}^{2}$
B) $4 \mathrm{~m} / \mathrm{s}^{2}$
D) $157 \mathrm{~m} / \mathrm{s}^{2}$
E) $316 \mathrm{~m} / \mathrm{s}^{2}$

Review 3
(b) I1 point| If the curve is banked rather than flat, does the minimum radius at which the car can turn without skidding at $50 \mathrm{~m} / \mathrm{s}$ increase or decrease compared to the case of a flat curve? IN ORDER TO RECEIVE CREDIT, YOU MUST JUSTIFY YOUR ANSWER using a diagram and a Brief explanation.

for this cage
R will decrease
since $N \cdot \sin \theta$
since $N \cdot \sin \theta$
will contribute to the $m a^{c}=f s t \cdot \cos \theta+N \sin \theta$ centripetal force $m a^{c}=N \cdot \mu \cdot \cos \theta+N \cdot \sin \theta \quad N \approx m g / \cos \theta$ $m Q^{c}=N \cdot(\mu \cos \theta+\sin \theta)=m g \cdot \frac{\mu \cos \theta+\sin \theta}{\cos \theta}=$

$$
\frac{m x v^{2}}{R^{\prime}}=\operatorname{mgg}_{2}(\mu+\tan \theta)
$$

$$
R^{\prime}=\frac{V^{2}}{g(\mu+\tan \theta)}<\left(\frac{v^{2}}{g \cdot \mu}=R \Rightarrow R^{\prime}<R^{\prime}<R\right\}
$$

