

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	x - x ₀
2-15	$x - x_0 = v_0 t + \frac{1}{2}at^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	Ĺ
2-17	$x - x_0 = \frac{1}{2} (v_0 + v)t$	а
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

Equations for Motion with Constant Acceleration^a

 a Make sure that the acceleration is indeed constant before using the equations in this table.

What does zero mean?

> t = 0 beginning of the process > x = 0 is arbitrary; can set where you want it > x₀ = x(t=0); position at t=0; do not mix with the origin

≻ v (t) = 0	x does not change	$x(t) - x_0 = 0$
≻ v ₀ = 0	v(t) = at;	$x(t) - x_0 = at^2/2$
> a = 0	$v(t) = v_0;$	$x(t) - x_0 = v_0 t$

» a ≠ 0	v(t) = v _o + at;	$x(t) - x_0 = v_0 t + at^2/2$	
help:	t = (v - v _o)/a	$x - x_0 = \frac{1}{2}(v^2 - v_0^2)/a$	
	$a = (v - v_0)/t$	$x - x_0 = \frac{1}{2} (v + v_0)t$	
Acceleration and velocity are positive in the same			

> Acceleration and velocity are positive in the same direction as displacement is positive

Review 3

TABLE 2-1

3

- · -

7

Newton's Laws

- I. If no net force acts on a body, then the body's velocity cannot change.
- II. The net force on a body is equal to the product of the body's mass and acceleration.
- III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction $(\mathbf{F}_{12} = -\mathbf{F}_{21})$

Force is a vector Force has direction and magnitude Mass connects Force and acceleration;

$$\vec{F}_{tot} = 0 \Leftrightarrow \vec{a} = 0 \text{ (constant velocity)}$$

$$\vec{F}_{tot} = m\vec{a} \text{ for any object}$$

$$F_{tot,x} = ma_x \quad F_{tot,y} = ma_y \quad F_{tot,z} = ma_z$$

Review 3 Andrei Sirenko, NJIT

<section-header><equation-block><equation-block><section-header><section-header><section-header><equation-block>

