Lecture 1 Instructor: Prof. Andrei Sirenko Physics 106 and click "Phys106 Fall 2006" http://web.njit.edu/~sirenko/ Fall 2006 http://web.njit.edu/~sirenko/ E-mail: sirenko@njit.edu http://web.njit.edu/~sirenko/ Office: 423F Tiernan Hall Tuesday 11:30 am to 1:00 pm office hours: Thursday 2:30 pm - 4:00 pm or by appointment 09/05/2006 Andrei Sirenko, NJIT 1 09/05/2006 Andrei Sirenko, NJIT 2

Course information:

- <u>Physics 106:</u> Continuation of Classical Mechanics:
- $\boldsymbol{\cdot}$ Rotation and Circular motion
- Harmonic Oscillations
- Gravitation

Course Elements:

- > Textbook
- > Lectures (lecture notes)
- > Recitations
- Homework (due at the beginning of the next Recitation)
- > Exams (3 common exams, final exam)
- > Workshop
- > Lab (separate grade)

3

09/05/2006

Textbook:

Halliday, Resnick, and Walker Fundamentals of Physics, 7th edition Chapters 10-15th Volume 1

7th edition:

6th edition:

(HR&W)

09/05/2006

Andrei Sirenko, NJIT

Web Page: UTexas: http://web.njit.edu/~sirenko/ Class: 41156 and click "Phys 106 Fall 2006" 0 1 2 0.000 (Jacobs @rate 3 1)- 3 2 - 1 Andrei Sirenko Assistant Profes PhD in Physics Register yourself in the Homework Com **Contact Informatio** Mailing address office 423E Tiernan 973-596-534; office ph 973-596-579 sirenko@adm.niit.ed y, warganan, Jone, tops, e.g. "dogg/ in you Research Links Publication Soin-Flip to NJIT

09/05/2006

Andrei Sirenko, NJIT

6

Lectures: (Tuesday 2:30 pm; LH1)

- > Presentation of the concepts and techniques of Physics.
- > Demonstrations of Physics in action.
- > Lecture quiz at the end of every lecture
- Lectures are not a substitute for reading the text!
 Text chapters are listed on the lecture schedule.
 Read ahead; you'll get more from lecture.
- Slides will be posted on the course web.
 Use these as a study guide/note taking aid.

Recitations (11:30 am and 1:00 pm; Tier 105)

- Recitations provide an opportunity to do a group activity relevant to the topic being studied, and to ask homework questions.
- > The scenarios presented in the recitation group activities will be on the exams.

Grade Components:

- 45% for all three common exams (15% each)
- 30% for the final exam
- 10% for the total homework grade
- 7% for the total lecture quiz grade
- 8% for the workshop grade submitted by your WS instructor

"Phys 106 Workshop assignments will be posted at the course WebCT site at http://webct.njit.edu/; enter your UCID and password to have an access to this site. Please contact the Help Desk at 973-596-2900 for questions regarding your UCID and password."

"Students are required to bring their own printed copies to the WS and Recitation class."

7

How to Do Well

ABLE 2-1 Equations for Motion with Constant Acceleration ^a			What does zero mean?	
Equation Number	Equation	Missing Quantity	 x = 0 is arbitrary; can set where you want it x₀ = x(t=0); position at t=0; do not mix with the origin 	
2-11 2-15 2-16	$v = v_0 + at$ $x - x_0 = v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a(x - x_0)$	$x - x_0$ v t	<pre>> v (t) = 0 x does not change x(t) - x₀ = 0 > v₀ = 0 v(t) = at; x(t) - x₀ = at²/2 > a = 0 v(t) = v₀; x(t) - x₀ = v₀ t</pre>	
2-17 2-18	$x - x_0 = \frac{1}{2}(v_0 + v)t$ $x - x_0 = vt - \frac{1}{2}at^2$	a v_0	$a \neq 0 \qquad v(t) = v_0 + at; \qquad x(t) - x_0 = v_0 t + at^2/2$ help: $t = (v_0 + at; x_0 + a_0)/a \qquad x = x_0 - \frac{1}{2}(v_0^2 - v_0^2)/a$	
A ake sure that the acceleration is indeed constant before using the equations in this table.			a = $(v - v_0)/d$ $x - x_0 = \frac{1}{2}(v - v_0)/d$ $a = (v - v_0)/t$ $x - x_0 = \frac{1}{2}(v + v_0)/t$ Acceleration and velocity are positive in the same direction as displacement is positive	
09/05/2006	Andrei Sirenko, NJIT	13	09/05/2006 Andrei Sirenko, NJIT	

15

Newton's Laws

- I. If no net force acts on a body, then the body's velocity cannot change.
- II. The net force on a body is equal to the product of the body's mass and acceleration.
- III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction $(\mathbf{F}_{12} = -\mathbf{F}_{21})$

Force is a vector Force has direction and magnitude Mass connects Force and acceleration;

$$\vec{F}_{tot} = 0 \Leftrightarrow \vec{a} = 0 \text{ (constant velocity)}$$
$$\vec{F}_{tot} = m\vec{a} \text{ for any object}$$
$$F_{tot,x} = ma_{x} \quad F_{tot,y} = ma_{y} \quad F_{tot,z} = ma_{z}$$

23

Example: Two equal objects, one initially at rest

$$mv_i = 2mv_f \longrightarrow v_f = v_i/2$$

Half the original Final Kinetic Energy = $\frac{1}{2}(2m)(v_i/2)^2$ **Kinetic Energy** $= \frac{1}{4}m(v_i)^2$ 09/05/2006

Linear Momentum

09/05/2006

Andrei Sirenko, NJIT

22

Lecture 1

Rotation concepts & variables. Motion diagrams, FBD's. **Rotation kinematics** Chapter 10 (1-5) http://web.njit.edu/~sirenko/

27

Changing x,y,z coordinates into spherical polar coordinates

Andrei Sirenko, NJIT

Uniform Circular Motion (Phys 105)

Object travels around a circle at constant speed

Centripetal acceleration

Period: T = $2\pi r/v$ = time to go around once

Angular Acceleration

Plays same role in rotational motion as acceleration in linear motion

 $\alpha = \mathbf{0} \Rightarrow \vec{\mathbf{a}} = \mathbf{0}$

Example: uniform circular motion

Angular variables are vectors

09/05/2006

31

09/05/2006

Example:

 $\alpha \qquad \theta \cdot \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$

 $\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$

35

 $x - x_0 = \frac{1}{2}(v_0 + v)t$

 $_{09/05/2} \quad x - x_0 = vt - \frac{1}{2}at^2$

a

*v*₀

 ω_0^{0}

Rotational Kinematics:

Linear Displacement	\leftrightarrow	Angular D	isplacement			
Linear Velocity	\leftrightarrow	Angular V	elocity			
Linear Acceleration	\leftrightarrow	Angular A	cceleration			
$\overrightarrow{x}, \overrightarrow{v},$	$\overrightarrow{a} \Leftrightarrow \overrightarrow{\theta},$	$\overrightarrow{\omega}, \alpha$				
If α is constant:						
$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$						
$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \rightarrow \omega(t) = \omega_0 + \alpha t$						
combin	e: $2\alpha (\theta - \theta_0)$	$) = \omega^2 - \omega_0^2$				
09/05/2006	Andrei Sirenko, NJIT		34			

TABLE 2-1 Equations for Motion with Constant Acce

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	x - x ₀
2-15	$x - x_0 = v_0 t + \frac{1}{2}at^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	t
2-17	$x - x_0 = \frac{1}{2} (v_0 + v)t$	а
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	ν_0

 a Make sure that the acceleration is indeed constant before using the equations in this table.

$$\vec{a} = \vec{a}_{c} + \vec{a}_{T}$$
; $a = (a_{c}^{2} + a_{T}^{2})^{1/2}$, $\tan \phi = a_{T} / a_{c}$

09/05/2006