Lecture 1

Physics 106

Fall 2006
http://web.njit.edu/~sirenko/

Instructor:

Prof. Andrei Sirenko
http://web.njit.edu/~sirenko/
and click "Phys106 Fall 2006"
http://web.njit.edu/~sirenko/
E-mail: sirenko@njit.edu
Office: 423E Tiernan Hall
office hours: Tuesday 11:30 am to 1:00 pm Thursday 2:30 pm-4:00 pm
or by appointment

Course information:

- Physics 106:

Continuation of Classical Mechanics:

- Rotation and Circular motion
- Harmonic Oscillations
- Gravitation

Course Elements:

, Textbook

- Lectures (lecture notes)
- Recitations
- Homework (due at the beginning of the next Recitation)
, Exams (3 common exams, final exam)
- Workshop
- Lab (separate grade)

Textbook:

Halliday, Resnick, and Walker Fundamentals of Physics, 7th edition
(HR\&W) Chapters $10-15^{\text {th }}$ Volume 1
$7^{\text {th }}$ edition:

09/05/2006

Web Page:

http://web.njit.edu/~sirenko/
and click "Phys 106 Fall 2006"
UTexas:
Class: 41156

09/05/2006
Andrei Sirenko, NJIT


```
6
```

Lectures: (Tuesday 2:30 pm; LH1)
, Presentation of the concepts and techniques of Physics.

- Demonstrations of Physics in action.
, Lecture quiz at the end of every lecture
- Lectures are not a substitute for reading the text!

Text chapters are listed on the lecture schedule.
Read ahead; you'll get more from lecture.
, Slides will be posted on the course web.
Use these as a study guide/note taking aid.

Recitations (11:30 am and 1:00 pm; Tier 105)

- Recitations provide an opportunity to do a group activity relevant to the topic being studied, and to ask homework questions.
- The scenarios presented in the recitation group activities will be on the exams.

Grade Components:

- 45\% for all three common exams (15% each)
- 30\% for the final exam
- 10\% for the total homework grade
- 7\% for the total lecture quiz grade
- 8\% for the workshop grade submitted by your WS instructor
"Phys 106 Workshop assignments will be posted at the course WebCT site at enter your UCID and password to have an access to this site. Please contact the Help Desk at 973-596-2900 for questions regarding your UCID and password."
"Students are required to bring their own printed copies to the WS and Recitation class."

How to Do Well

- Keep up!
- Do the homework carefully and understand the reason for each step.
- Form a study group to discuss homework problems.
- Do plenty of extra problems and examples.
- The material gets more difficult through the term. Don't slack off if you are doing well!

What should we know?

, Vectors

addition, subtraction, scalar multiplication
Trigonometric functions
$\sin \theta, \cos \theta, \tan \theta, \theta=\tan ^{-1}(a / b)$, etc.
Integration and Derivatives (basic concepts) $2 x=\left(x^{2}\right)^{\prime}$
SI Units
, Newton's Laws

$$
F=m a \quad F_{12}=-F_{21}
$$

Energy Conservation
Kinetic Energy, Potential Energy, and Work
Circular motion and Centripetal Force
$a_{c}=v^{2} / R$
09/05/2006

Components of Vectors:

(a)

(b)

(c)

$a=\sqrt{a_{x}^{2}+a_{y}^{2}}$ and $\tan \theta=\frac{a_{y}}{a_{x}}$
Length (Magnitude)
$a=\sqrt{a_{x}^{2}+a_{y}^{2}}$ and $\tan \theta=\frac{a_{y}}{a_{x}}$
Length (Magnitude)

- are vectors
- aligned along axis - add to give vector

Vector Multiplication

Dot product

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos \theta=\mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{z}}
$$

θ is the angle between the vectors if you put their tails together

What does zero mean?

TABLE 2-1 Equations for Motion with Constant Acceleration ${ }^{\text {a }}$

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

[^0]$\nu t=0$ beginning of the process
$>x=0$ is arbitrary; can set where you want it
$>x_{0}=x(t=0)$; position at $t=0$; do not mix with the origin
\[

$$
\begin{array}{lll}
>v(t)=0 & x \text { does not change } & x(t)-x_{0}=0 \\
>v_{0}=0 & v(t)=a t ; & x(t)-x_{0}=a t^{2 / 2} \\
>a=0 & v(t)=v_{0} ; & x(t)-x_{0}=v_{0} t
\end{array}
$$
\]

, $a \neq 0$
$v(t)=v_{0}+a t ;$
$x(t)-x_{0}=v_{0} t+a t^{2} / 2$
help:

$$
\begin{array}{ll}
t=\left(v-v_{0}\right) / a & x-x_{0}=\frac{1}{2}\left(v^{2}-v_{0}^{2}\right) / a \\
a=\left(v-v_{0}\right) / t & x-x_{0}=\frac{1}{2}\left(v+v_{0}\right) t
\end{array}
$$

, Acceleration and velocity are positive in the same direction as displacement is positive

09/05/2006
Andrei Sirenko, NJIT

Newton's Laws

I. If no net force acts on a body, then the body's velocity cannot change.
II. The net force on a body is equal to the product of the body's mass and acceleration.
III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction ($\mathbf{F}_{12}=-\mathbf{F}_{21}$)

Force is a vector
Force has direction and magnitude
Mass connects Force and acceleration;
$\vec{F}_{\text {tot }}=0 \Leftrightarrow \mathbb{d}=0$ (constant velocity)
$\vec{F}_{\text {tot }}=m a$ for any object
$F_{\text {tot }, x}=m a_{x} \quad F_{\text {tot, } y}=m a_{y} \quad F_{\text {tot }, z}=m a_{z}$
09/05/2006
Andrei Sirenko, NJIT

Uniform Circular Motion

Centripetal acceleration

Period
$T=\frac{2 \pi r}{v}$

$$
m a_{c}=m v^{2} / R=\Sigma F
$$

(all forces along the direction towards the center)

What does $\quad \mathbf{W}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{r}} \quad$ mean?

$W>0$ if $\theta<90^{\circ} \longrightarrow$ force is adding energy to object

$W=0$ if $r=0$ or $F=0$ or $\vec{F} \perp \vec{r}$

Work Examples

Push on a wall
$W=0$ since wall does not move $(\vec{r}=0)$
09/05/2006

Kinetic Energy:

$$
K=\frac{1}{2} m v^{2}
$$

Potential Energy:

$\Delta U=-W \quad \cdot \underline{G r a v i t a t i o n:}: U=m g y$

- Elastic (due to spring force): $U=\frac{1}{2} k x^{2}$

Kinetic Energy:

$$
K=\frac{1}{2} m v^{2}
$$

Potential Energy:

$\Delta U=-W$
Gravitation:
$U=m g y$

- Elastic (due to spring force):

$$
U=\frac{1}{2} k x^{2}
$$

$$
\boldsymbol{E}_{\mathrm{mec}}=\boldsymbol{K}+\boldsymbol{U}
$$

Conservation of Mechanical Energy

Examples for Energy Conservation

Linear Momentum

Particle:	$\overrightarrow{\boldsymbol{p}}=\boldsymbol{m} \overrightarrow{\boldsymbol{v}}$
System of Particles:	$\overrightarrow{\boldsymbol{P}}=m_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{v}}_{2}+\ldots$
Extended objects:	$\overrightarrow{\boldsymbol{P}}=\boldsymbol{M} \overrightarrow{\boldsymbol{v}}_{\text {com }}$
Relation to Force:	$\overrightarrow{\mathrm{F}}_{\text {tot }}=\mathrm{ma}$
$\overrightarrow{\boldsymbol{F}}_{\text {net }}=\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{p}}}{\boldsymbol{d} \boldsymbol{t}}$	$\overrightarrow{\boldsymbol{F}}_{\text {net }}=\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{P}}}{\boldsymbol{d} \boldsymbol{t}}$

Kinetic Energy changes

+ Gravitational Potential Energy
$U=m g y$
$U=m g y$
$U=\frac{1}{2} k x^{2}$
+ Elastic Potential Energy
Total Mechanical Energy = Const.
$k=2.9 \mathrm{~N} / \mathrm{cm}$

$$
K_{f}-K_{i}=W=m g y-\left|W_{\text {friction }}\right|
$$

$E_{f}-E_{i}=-\left|W_{\text {friction }}\right|=f_{k} \cdot d \cdot \cos 180^{\circ}=-m g \mu \cdot d \cdot \cos 18^{\circ}$

$$
\vec{p}=\boldsymbol{m} \vec{v}
$$

$$
\vec{P}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\ldots
$$

Andrei Sirenko, NJIT

Completely Inelastic Collision Collisions in 1D

Example: Two equal objects, one initially at rest

$$
m v_{i}=2 m v_{f} \longrightarrow v_{f}=v_{i} / 2
$$

$\begin{aligned} \text { Final Kinetic Energy } & =\frac{1}{2}(2 m)\left(v_{i} / 2\right)^{2} \\ & =\frac{1}{4} m\left(v_{i}\right)^{2}\end{aligned} \quad$ Half the original \quad Kic Energy
$=\frac{1}{4} m\left(v_{i}\right)^{2}$

$m v_{i}=2 m v_{f}$	$\longrightarrow \quad v_{f}=v_{i} / 2$	
Final Kinetic Energy	$=\frac{1}{2}(2 m)\left(v_{i} / 2\right)^{2}$	Half the original Kinetic Energy
	$=\frac{1}{4} m\left(v_{i}\right)^{2}$	

Lecture 1

Rotation concepts \& variables.
Motion diagrams, FBD's.
Rotation kinematics
Chapter 10 (1-5)
http://web.njit.edu/~sirenko/

Rotation; Examples

http://www.ce.utexas.edu/prof/olivera/Earth.htm

Rotational Motion

Changing x, y, z coordinates into spherical polar coordinates

2D

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}(y / x)
\end{gathered} \Longleftrightarrow \begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Uniform Circular Motion

(Phys 105)
Object travels around a circle at constant speed
Centripetal acceleration

$$
a=\frac{v^{2}}{r}
$$

Period: $T=2 \pi r / v \equiv$ time to go around once

Example:

09/05/2006
$\vec{\omega}$

The length of the vector $\vec{\omega}$ is proportional to the magnitude of ω

Rotational Kinematics:

Linear Displacement	$\leftarrow \rightarrow$		Angular Displacement
Linear Velocity	$\leftarrow \rightarrow$	Angular Velocity	
Linear Acceleration	$\leftarrow \rightarrow$	Angular Acceleration	
$\vec{x}, \vec{v}, \vec{a}$	\Leftrightarrow	$\vec{\theta}$,	$\vec{\omega}, \vec{\alpha}$

If α is constant:

$$
\begin{aligned}
& \theta(\mathrm{t})=\theta_{0}+\omega_{0} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \\
& \omega=\frac{\mathrm{d} \theta}{\mathrm{dt}} \rightarrow \omega(\mathrm{t})=\omega_{0}+\alpha \mathrm{t} \\
& \text { combine: } 2 \alpha\left(\theta-\theta_{0}\right)=\omega^{2}-\omega_{0}^{2}
\end{aligned}
$$

TABLE 2-1 Equations for Motion with Constant Acceleration ${ }^{\text {a }}$

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

[^1]
Homework

See the Physics 106 Course Syllabus

FOP Chapter 10:

U of Texas: Register for the Class 41156
And start working on the first HW!
Bring the printouts to the Recitation class
http://web.njit.edu/~sirenko/

QZ: Our linear velocity with respect to the Sun

When do we move faster?
(a) Day
(b) Night

What is the velocity difference between Day and Night at the Equator line?
$\left|\left(V_{\text {day }}-V_{\text {night }}\right)\right| / V_{\text {average }}$
(a) 0.00008
(b) 0.015
(c) 0.03
(d) 0.3
(e) 100%

Show work!

Acceleration in Circular Motion:

General Case:

The velocity changes with time.
ω is not constant $(\alpha \neq 0)$

There are two components of acceleration:

$$
a_{c}=v^{2} / r=r \omega^{2}
$$

, Centripetal (radial, towards the center) and
, Tangential (along the velocity vector)

$$
a_{\mathrm{T}}=r \alpha
$$

, Total acceleration value:

$$
\vec{a}=\vec{a}_{\mathrm{c}}+\vec{a}_{\mathrm{T}} ; \quad \boldsymbol{a}=\left(\boldsymbol{a}_{\mathrm{c}}^{2}+\boldsymbol{a}_{\mathrm{T}}^{2}\right)^{1 / 2}, \tan \phi=a_{\mathrm{T}} / a_{\mathrm{c}}
$$

[^0]: ${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table.

[^1]: ${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table

