Lecture 3

Physics 106
Fall 2006

Rotational dynamics:

- Newton's Second Law and examples

http://web.njit.edu/~sirenko/

Torque: $\vec{\tau}$

Not only the force is important,
But how you apply it !

Kinetic Energy of Rotation

$$
K=\frac{1}{2} I \omega^{2} \quad \text { (radian measure) }
$$

$$
\begin{aligned}
& I=\sum m_{i} r_{i}^{2} \quad \text { (rotational inertia) } \\
& I=I_{\text {com }}+M h^{2} \quad \text { (parallel-axis theorem). } \\
& \text { Do a calculation or see the Text Book }
\end{aligned}
$$

$$
\tau=\mathrm{r} \cdot \mathrm{~F} \cdot \sin \phi
$$

Vector Cross Product

(a)
The value of cross product:
$c=a \cdot b \cdot \sin \phi$
$\phi=0 \quad \rightarrow c=0$
$\phi=\pi / 2 \rightarrow c=a \cdot b$ (max)
Cross product is maximized when vectors are perpendicular
$\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{i}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{j}+\left(a_{z} b_{y}-b_{x} a_{y}\right) \tilde{k}$
Order is important:

$$
\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}
$$

09/19/2006
Andrei Sirenko, NJIT

Newton's Second Law for Rotation
Torque causes the
change in ω

09/19/2006

$$
\tau_{\text {net }}=I \cdot \alpha
$$

Rotational equivalent of $F=m a$

$$
\begin{gathered}
F_{t}=m a_{t} . \\
\tau=F_{t} r=m a_{t} r . \\
\tau=m(\alpha r) r=\left(m r^{2}\right) \alpha .
\end{gathered}
$$

Rotational Analogy to Linear Motion

	Translation	Rotation
position	x	θ
velocity	$v=d x / d t$	$\omega=d \theta / d t$
acceleration	$a=d v / d t$	$\alpha=d \omega / d t$
mass	m	$I=\Sigma m_{i} r_{i}^{2}$
Kinetic Energy	$K=\frac{1}{2} m v^{2}$	$K=\frac{1}{2} I \omega^{2}$
Force	$F=m a$	$\tau_{n e t}=I \cdot \alpha$

Work and Rotational Kinetic Energy
Work-kinetic energy theorem

$$
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W
$$

Work, rotation about fixed axis
\square

Work, constant torque
$W=\tau\left(\theta_{f}-\theta_{i}\right)$

Power, rotation about fixed axis

$$
P=\frac{d W}{d t}=\tau \omega
$$

Newton's Second Law for Rotation

Force
$F=m a$
Net Force (or Total Force)

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\text {net }}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2} \\
& \overrightarrow{\mathrm{~F}}_{\text {net }}=\mathrm{m} \overrightarrow{\mathrm{a}}
\end{aligned}
$$

```
\tau net }=I\cdot
```


$$
\begin{aligned}
& \vec{\tau}_{\text {net }}=\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\vec{\tau}_{3}=I \cdot \vec{\alpha} \\
& \overrightarrow{\tau_{\text {net }}}=\left[\overrightarrow{r_{1}} \times \vec{F}_{1}\right]+\left[\overrightarrow{r_{2}} \times \vec{F}_{2}\right]+\left[\overrightarrow{r_{3}} \times \vec{F}_{3}\right]=I \cdot \vec{\alpha}
\end{aligned}
$$

Newton's Second Law for Rotation $\vec{\tau}_{\text {net }}=\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\overrightarrow{\tau_{3}}=I \cdot \vec{\alpha}$ $\overrightarrow{\tau_{\text {net }}}=\left[\overrightarrow{r_{1}} \times \overrightarrow{F_{1}}\right]+\left[\overrightarrow{r_{2}} \times \vec{F}_{2}\right]+\left[\overrightarrow{r_{3}} \times \vec{F}_{3}\right]=\boldsymbol{I} \cdot \vec{\alpha}$
When torque is positive ? τ is positive if it rotates the body to positive direction (CCW)
"clock is negative".

$$
\tau_{1}=0 \quad \tau_{3}>0 \quad \tau_{2}<0
$$

$r_{1}=1.0 \mathrm{~m}$	$r_{2}=1.0 \mathrm{~m}$	$r_{3}=0.5 \mathrm{~m}$
$F_{1}=2.0 \mathrm{~N}$	$F_{2}=3.0 \mathrm{~N}$	$F_{3}=2.0 \mathrm{~N}$
$\phi_{1}=\pi$	$\phi_{2}=-\pi / 2$	$\phi_{3}=2 \pi / 3$

$=0+(-3) \mathrm{m} \cdot \mathrm{N}+(-3) \mathrm{m} \cdot \mathrm{N}+0.87 \mathrm{~m} \cdot \mathrm{~N}=-2.13 \mathrm{~m} \cdot \mathrm{~N}$
$\alpha=\tau_{\text {net }} / I=-2.13 \mathrm{~m} \cdot \mathrm{~N} / 10 \mathrm{~kg} \cdot \mathrm{~m}^{2}=-0.21 \mathrm{rad} / \mathrm{s}^{2}$
This Angular acceleration speeds up CW rotation

Arehimedes' Claw

Avehimedes' Claw

http:/ / www.mcs.drexel.edu/ ~crorres/ Archimedes/ Claw/ illustrations.html 09/19/2006 Andrei Sirenko, NJIT

Hiero: "I s it really 100\% gold ?"

Andrei Sirenko, NJIT
16

H

Archimedes (287 BC-211 BC)

Give Me a Place to Stand and I will Move the Earth Give me a lever long enough and a place to stand, and I will move the world

Is it really possible ???

Is it really possible ???

$\mathrm{F}_{\text {Earth }}=6 \times 10^{25} \mathrm{~N}$
$F_{\text {Arch }}=600 \mathrm{~N}$
($M_{\text {Earth }}=\mathbf{6 \times 1 0 ^ { 2 4 }} \mathbf{k g}$)
(60 kg)

QZ Problem

A rigid sculpture consists of a thin hoop (of mass $m=1 \mathrm{~kg}$ and radius $R=1 \mathrm{~m}$) and a thin radial rod (of mass $M=2 \mathrm{~kg}$ and length $L=2 \mathrm{~m}$). The sculpture can pivot around a horizontal axis in the plane of the hoop, passing through its center.
a) What is the sculpture's rotational inertia I about the rotation axis?
b) Starting from rest, the sculpture rotates around the rotation axis from the initial upright position. What is the change of the sculpture's Potential Energy ΔU when it is inverted?
c) What is the Kinetic Energy of rotation when it is inverted?
d) What is the angular speed ω around the horizontal axis?

Homework

See the Physics 106 Course Syllabus

U of Texas HW is required
http://web.njit.edu/~sirenko/

