

Vector Cross Product

Newton's Second Law for Rotation

Rotational Analogy to Linear Motion

	Translation	Rotation
position	×	θ
velocity	v = dx/dt	$\omega = d\theta/dt$
acceleration	a = dv/dt	$\alpha = d\omega/dt$
mass	m	$I = \Sigma m_i r_i^2$
Kinetic Energy	$K = \frac{1}{2}mv^2$	$K = \frac{1}{2}I \omega^2$
Force	F = ma	$\tau_{net} = \boldsymbol{I} \cdot \boldsymbol{\alpha}$
09/19/2006	Andrei Sirenko, NJIT	7

Work and Rotational Kinetic Energy

Work-kinetic energy theorem $\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W$ Work, rotation about fixed axis $W = \int_{\theta_i}^{\theta_f} \tau d\theta$ Provide the second se

Power, rotation about fixed axis

P =	dW			
	dt	=	$ au\omega$,

09/19/2006

This Angular acceleration speeds up CW rotation

09/19/2006 Andrei Sirenko, NJIT 11

http://www.mcs.drexel.edu/~crorres/Archimedes/Claw/illustrations.html

09/19/2006

Andrei Sirenko, NJIT

15

mg 09/19/2006

Andrei Sirenko, NJIT

1. raft

mg

2.

16

3.

QZ Problem

A rigid sculpture consists of a thin hoop (of mass m=1 kg and radius R = 1 m) and a thin radial rod (of mass M=2 kg and length L = 2 m). The sculpture can pivot around a horizontal axis in the plane of the hoop, passing through its center.

- a) What is the sculpture's rotational inertia *I* about the rotation axis?
- b) Starting from rest, the sculpture rotates around the rotation axis from the initial upright position. What is the change of the sculpture's Potential Energy ΔU when it is inverted?
- c) What is the Kinetic Energy of rotation when it is inverted?
- d) What is the angular speed ω around the horizontal axis ?

09/19/2006

<u>Homework</u>

See the Physics 106 Course Syllabus

U of Texas HW is required

http://web.njit.edu/~sirenko/

09/19/2006

Andrei Sirenko, NJIT

21