Lecture 6

Physics 106
Fall 2006

- Angular Momentum

-Rolling
http://web.njit.edu/~sirenko/

Angular Momentum:

Definition: $\vec{l}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) \quad\left[\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}\right]$

$$
l=r \cdot m \cdot v \cdot \sin \phi
$$

Angular Momentum $\quad l=I \cdot \omega$ for rotation

System of particles: $\vec{L}=\vec{l}_{1}+\vec{l}_{2}+\ldots+\vec{l}_{n}=\sum_{i=1}^{n} \vec{l}_{i}$

Torque:

$\vec{\tau}=[\vec{r} \times \vec{F}]$
$\tau=r \cdot F \cdot \sin \phi$

$$
\frac{d}{d t}(\overrightarrow{\mathbf{L}})=\vec{\tau}=I \vec{\alpha}
$$

Conservation of Angular Momentum

Angular momentum of a solid body about a fixed axis


```
L=I\omega
```

Law of conservation of angular momentum

$$
\vec{L}=\text { const. } \quad \Rightarrow \quad \vec{L}_{i}=\vec{L}_{f}
$$

(Valid from microscopic to macroscopic scales!) 10/10/2006

Andrei Sir

If the net external torque $\tau_{\text {net }}$ acting on a system is zero, the angular momentum \underline{L} of the system remains constant, no matter what changes take place within the system

$$
\begin{aligned}
& \text { Angular Momentum } \\
& \begin{aligned}
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \quad\left[\mathrm{kg} \mathrm{~m}^{2} / \mathrm{s}\right] \\
\overrightarrow{\mathbf{L}} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=\mathbf{m} \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{r}} \\
L & =m \cdot r \cdot v \cdot \sin \phi
\end{aligned}
\end{aligned}
$$

Both are vectors

$$
\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} \quad \frac{d}{d t}(\overrightarrow{\mathbf{L}})=\vec{\tau}=I \vec{\alpha}
$$

For rotating body:
$\mathbf{L}=\mathbf{I} \omega$
$m \leftrightarrow I$
$\vee \leftrightarrow \rightarrow \omega$
FOR ISOLATED SYSTEM: L IS CONSERVED

Linear Momentum Conservation:

Both, elastic and Inelastic collisions

1. Define a reference frame
2. Calculate \mathbf{P} before the collision
3. Compare with P after the collision

Example:

1. Define a rotational axis and the origin
2. Calculate L before interaction or any change in I
3. Compare with L after the interaction or any change in I

Angular Momentum Conservation:

"If the external torque is equal to zero, L is conserved"

1. Define a rotational axis and the origin
2. Calculate L before interaction or any changes in I
3. Compare with L after the interaction or any change in I

$I=\frac{1}{4} M R^{2}$

Example:

A horizontal disc of rotational inertia $\mathbf{I}=\mathbf{1} \mathbf{~ k g} . \mathbf{m}^{\mathbf{2}}$ and radius $\mathbf{1 0 0}$ cm is rotating about a vertical axis through its center with an angular speed of $1 \mathbf{r a d} / \mathrm{s}$. A wad of wet putty of mass 100 grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it?

1. $\mathrm{L}_{\mathrm{i}}=\mathrm{I}_{\mathrm{i}} \cdot \omega_{\mathrm{i}}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 1 \mathrm{rad} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
2. $I_{f}=\left(I_{i}+m r^{2}\right)=\left(1 \mathrm{~kg} \cdot \mathrm{~m}^{2}+0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
3. $\quad L_{i}=L_{f}$ (angular momentum conserv.)
4. $\quad \omega_{\mathrm{f}}=\cdot \omega_{\mathrm{i}} \mathrm{I}_{\mathrm{i}} / \quad \mathrm{I}_{\mathrm{f}}=1 \mathrm{rad} / \mathrm{s} \cdot(1 / 1.1)=0.91 \mathrm{rad} / \mathrm{s}$

Angular Momentum Conservation:

"If the external torque is equal to zero, L is conserved"

Axis r

1. $M=1 \mathrm{~kg}$
2. $m=10 \mathrm{~g}=0.01 \mathrm{~kg}$
3. $r=1 \mathrm{~m}$
4. $\omega_{\mathrm{i}}=0 \quad \omega_{\mathrm{f}}=1 \mathrm{rad} / \mathrm{s}$
5. $\mathrm{v}_{\text {bullet }}=$? $\quad \mathrm{K}_{\mathrm{f}} / \mathrm{K}_{\mathrm{i}}=$?
6. $\quad L_{i}=L_{\text {bullet }}=m \cdot v \cdot r \cdot \sin (\pi / 2)=$???
7. $L_{f}=I \cdot \omega=\left(M r^{2}+M r^{2}+m r^{2}\right) \omega_{f}=$ $=2 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
8. $L_{i}=L_{f}$ (angular momentum conserv.)
9. $v_{\text {bullet }}=\omega_{f} \cdot\left(2 M r^{2}+m r^{2}\right) / m r=200 \mathrm{~m} / \mathrm{s}$
10. $\mathrm{K}_{\mathrm{i}}=\frac{1}{2} \mathrm{mv}_{\text {bullet }}^{2}=200 \mathrm{~J}$
11. Define a rotational axis and the origin
12. $K_{f}=\frac{1}{2} I \omega^{2}=1 \mathrm{~J}$
Calculate L before interaction or any changes in I
13. $K_{f} / K_{i}=1 / 200$
14. Compare with L after the interaction or any change in I

Rolling

Smooth rolling motion

Reference frame

Rolling of the train wheel

 is it the same or slightly different?

Rolling Motion: without slipping

$$
\begin{gathered}
\mathrm{v}_{\mathrm{c}}=\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{R} \frac{\mathrm{~d} \theta}{\mathrm{dt}}=\mathrm{R} \omega \\
\mathrm{a}_{\mathrm{c}}=\mathrm{R} \alpha
\end{gathered}
$$

There is a slipping tendency for the wheel, while the friction force prevents it.

At any instant the wheel rotates about the point of contact

Kinetic Energy


```
IP}=\mp@subsup{I}{\textrm{com}}{}+M\mp@subsup{R}{}{2
K}=\frac{1}{2}\mp@subsup{I}{\textrm{com}}{}\mp@subsup{\omega}{}{2}+\frac{1}{2}M\mp@subsup{R}{}{2}\mp@subsup{\omega}{}{2
v
    K}=\frac{1}{2}\mp@subsup{I}{\textrm{com}}{}\mp@subsup{\omega}{}{2}+\frac{1}{2}M\mp@subsup{v}{\textrm{com}}{2
```

Sample Problem X12-1: A uniform solid cylindrical disk ($M=1.4 \mathrm{~kg}, r=8.5 \mathrm{~cm}$) roll smoothly across a horizontal table with a speed of $15 \mathrm{~cm} / \mathrm{s}$. What is its kinetic energy K ?

Stationary observer
Parallel-axis theorem

A rolling object has two types of kinetic energy: a rotational kinetic energy due to its rotation about its center of mass and a translational kinetic energy due to translation of its center of mass.

What is more important:
Kinetic Energy Conservation or
Angular Momentum Conservation?

$$
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}
$$

Work of external and internal forces can change K.
K is a scalar variable, which has no direction
$\tau_{\text {tot }}\left(\theta_{\mathbf{f}}-\theta_{\mathbf{i}}\right)=\mathbf{K}_{\mathbf{f}}-\mathbf{K}_{\mathbf{i}}=$ Work

$$
L=I \omega
$$

Only net external torque $\tau_{\text {net }}$ can change the angular momentum.
L is a vector, direction is important

$$
\frac{\mathbf{d}}{\mathbf{d t}}(\overrightarrow{\mathbf{L}})=\overrightarrow{\boldsymbol{\tau}}
$$

Energy of Rolling

$$
\mathrm{K}=\frac{1}{2} \mathrm{I}_{\mathrm{C}} \omega^{2}+\frac{1}{2} \mathrm{M} \mathrm{v}_{\mathrm{C}}^{2} \quad \mathrm{v}_{\mathrm{c}}=\mathrm{R} \omega
$$

$$
\mathrm{K}=\frac{1}{2} \mathrm{I}_{\mathrm{C}}\left(\frac{\mathrm{v}_{\mathrm{C}}}{\mathrm{R}}\right)^{2}+\frac{1}{2} \mathrm{M} \mathrm{v}_{\mathrm{C}}^{2}
$$

$$
\mathbf{K}=\frac{\mathbf{1}}{\mathbf{2}}\left(\frac{\mathbf{I}_{\mathbf{C}}}{\mathbf{R}^{2}}+\mathbf{M}\right) \mathbf{v}_{\mathbf{C}}^{2}
$$

Forces

The acceleration tends to make the wheel slide.

A static frictional force f_{s} acts on the wheel to oppose that tendency.

Torques on a Wheel

The Forces on a wheel

Gravity
Normal Force
Friction (so it won't slide)

Center of Mass View

$\sum \mathrm{F}_{\mathrm{x}}=\operatorname{Mg} \sin (\theta)-\mathrm{F}_{\mathrm{F}}=M \mathrm{a}_{\mathrm{c}}$
Constraint

Rolling without Slipping
$\sum \mathrm{F}_{\mathrm{y}}=\mathrm{Mg} \cos (\theta)-\mathrm{F}_{\mathrm{N}}=0$

$$
\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{g} \sin (\theta)}{1+\mathrm{I}_{\mathrm{C}} / \mathrm{MR}^{2}}
$$

Another View

The wheel rotates about the point of contact

No Torque - Normal Force
Point of Rotation

$$
\tau=\operatorname{MgRsin}(\theta)=\mathbf{I}_{\mathbf{P}} \alpha
$$

$$
I_{P}=I_{C}+M R^{2} \quad a_{c}=\frac{g \sin (\theta)}{1+I_{C} / M R^{2}}
$$

$\operatorname{MgRsin}(\theta)=\left(\mathbf{I}_{\mathrm{C}}+\mathbf{M R}^{2}\right) \alpha$
Same result Don't need x and y motion
10/10/2006
Andrei Sirenko, NJIT

Example 1

Kinetic Energy of Rolling
$\mathbf{K}=\frac{\mathbf{1}}{\mathbf{2}}\left(\frac{\mathbf{I}_{\mathbf{C}}}{\mathbf{R}^{2}}+\mathbf{M}\right) \mathbf{v}_{\mathrm{C}}^{2}$

+ Energy conservation !!!
Kinetic Energy $\leftrightarrow \rightarrow$ Potential Energy

For disk: $\quad \mathrm{Mgh}=1 / 2(1 / 2 \mathrm{M}+\mathrm{M}) \mathrm{v}^{2}{ }_{\text {com }} ; \quad \mathbf{v}_{\text {com }}=(4 / 3 \mathrm{gh})^{1 / 2}$

Summary for rotational motion

360 degrees $=2 \pi$ radians $=1$ revolution. $s=r \theta \quad v_{t}=r \omega \quad a_{t}=r \alpha \quad a_{c}=a_{r}=v_{t}^{2} / r=\omega^{2} r \quad a_{\text {tot }}{ }^{2}=a_{r}^{2}+a_{t}^{2}$
for rotation with constant angular acceleration:
$\omega=\omega_{0}+\alpha t \quad \theta-\theta_{0}=\omega_{0} t+1 / 2 \alpha t^{2} \quad \omega^{2}-\omega_{0}^{2}=2 \alpha\left(\theta-\theta_{0}\right) \quad \theta-\theta_{0}=1 / 2\left(\omega+\omega_{0}\right) t \quad \mathrm{KE}_{\text {rot }}=1 / 21 \omega^{2}$
$I=\Sigma m r_{i}^{2} \quad I_{\text {point }}=m r^{2} \quad I_{\text {hoop }}=M R^{2} \quad I_{\text {disk }}=1 / 2 M R^{2} \quad I_{\text {sphere }}=2 / 5 M R^{2} \quad I_{\text {shell }}=2 / 3 M R^{2} \quad I_{\text {rod (center) }}=1 / 12 M L^{2}$ $I_{\text {rod (end) }}=1 / 3 \mathrm{ML}^{2}$
$\Sigma \mathrm{F}=\mathrm{ma} \quad \Sigma \tau=\mathrm{l} \boldsymbol{\alpha} \quad \tau=\mathrm{rxF} \quad \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
$\tau=$ forcexmoment $\operatorname{arm}=\operatorname{Frsin}(\phi) \quad \tau_{\text {net }}=\Sigma \tau=\mathrm{I} \alpha \quad \mathrm{F}_{\text {net }}=\Sigma \mathrm{F}=\mathrm{m} \mathbf{a} \quad \tau=\mathrm{rxF} \quad \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
$\mathrm{W}_{\text {tot }}=\Delta \mathrm{K}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{l}} \quad \mathrm{W}=\tau_{\text {net }} \Delta \theta \quad \mathrm{K}=\mathrm{K}_{\text {rot }}+\mathrm{K}_{\mathrm{cm}} \quad \mathrm{E}_{\text {mech }}=\mathrm{K}+\mathrm{U} \quad \mathrm{P}_{\text {average }}=\Delta \mathrm{W} / \Delta \mathrm{t}$
$P_{\text {instantaneous }}=\tau . \omega$ (τ constant) $\quad \Delta \mathrm{E}_{\text {mech }}=0$ (isolated system) $\quad \mathrm{V}_{\mathrm{cm}}=\omega r$ (rolling, no slipping)
$\boldsymbol{\ell}=\mathrm{rxp} \quad \mathrm{p}=\mathrm{mv} \quad \mathrm{L}=\Sigma \boldsymbol{\ell} \quad \tau_{\text {net }}=\mathrm{dL} / \mathrm{dt} \quad \mathrm{L}=\mathrm{I} \omega \quad \boldsymbol{\ell}_{\text {noint mass }}=\operatorname{mrvsin}(\mathrm{\phi})$
For isolated systems: $\tau_{\text {net }}=0 \quad L$ is constant $\quad \Delta L=0 \quad L_{0}=\Sigma b_{0} \omega_{0}=L_{f}=\Sigma l_{f}(u)$
$\mathbf{a} \mathbf{x} \mathbf{b}=-\mathbf{b} \mathbf{x a} \quad \mathbf{a} \times \mathbf{a}=0 \quad|\mathbf{a} \mathbf{x} \mathbf{b}|=a \cdot b \cdot \sin (\phi) \quad \mathbf{c}=\mathbf{a} \mathbf{x} \mathbf{b}$ is perpendicular to plane of \mathbf{a} and \mathbf{b} $c_{x}=a_{y} \cdot b_{z}-a_{z} \cdot b_{y} \quad c_{y}=-a_{x} \cdot b_{z}+a_{z} \cdot b_{x} \quad c_{z}=a_{x} \cdot b_{y}-a_{y} \cdot b_{x}$
$\mathbf{i} \mathbf{x} \mathbf{i}=\mathbf{j} \mathbf{x} \mathbf{j}=\mathbf{k} \mathbf{x} \mathbf{k}=0 \quad \mathbf{i} \mathbf{x} \mathbf{j}=\mathbf{k} \quad \mathbf{j} \mathbf{x} \mathbf{k}=\mathbf{i} \quad \mathbf{k x} \mathbf{i}=\mathbf{j}$ etc.

