Situation A

A 4.0-kg body is freely pivoted about a point 0.15 m from the center of mass. The period of small-amplitude oscillations of this physical pendulum is 1.2 s .

1) In Situation \mathbf{A}, the centroidal moment of inertia of the body is closest to:
A) $0.12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.15 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.18 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
D) $0.21 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.09 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
2) In Situation \mathbf{A}, the length of a simple pendulum that has the same frequency of oscillation and the same amplitude as the physical pendulum is closest to:
A) 0.34 m
B) 0.32 m
C) 0.36 m
D) 0.38 m
E) 0.40 m
3) A meter stick is freely pivoted about the 20 cm mark. The frequency of small amplitude oscillations is closest to:
A) 0.7 Hz
B) 0.5 Hz
C) 1.5 Hz
D) 1.2 Hz
E) 0.9 Hz
4) If both the mass of a simple pendulum and its length are doubled, the period will
A) be unchanged.
C) increase by a factor of 2 .
E) increase by a factor of 1.4
B) increase by a factor of 4 .
D) increase by a factor of 0.71 .

Situation B

A particle is in simple harmonic motion along the x-axis with a period of 1.5 s and an amplitude of 0.60 m . The equilibrium position of the particle is at $x=0$. At time $t=0$, the particle is at $x=+0.30 \mathrm{~m}$ and it is moving in the negative x -direction.
5) In Situation B, the magnitude of the velocity of the particle, at time $t=0 \mathrm{~s}$ is closest to:
A) $2.1 \mathrm{~m} / \mathrm{s}$
B) $2.2 \mathrm{~m} / \mathrm{s}$
C) $2.3 \mathrm{~m} / \mathrm{s}$
D) $1.9 \mathrm{~m} / \mathrm{s}$
E) $2.0 \mathrm{~m} / \mathrm{s}$
6) In Situation B, the x-component of the acceleration at time $t=0$ is closest to:
A) $-8.4 \mathrm{~m} / \mathrm{s}^{2}$
B) zero
C) $+8.4 \mathrm{~m} / \mathrm{s}^{2}$
D) $-5.3 \mathrm{~m} / \mathrm{s}^{2}$
E) $+5.3 \mathrm{~m} / \mathrm{s}^{2}$
7) In Situation B, the time interval required for the particle to reach $x=-0.60 \mathrm{~m}$ from its initial position at $t=0 \mathrm{~s}$ is closest to:
A) 0.62 s
B) 0.50 s
C) 0.75 s
D) 0.88 s
E) 1.00 s
8) In Situation B, at time $t=0$, the ratio of the potential energy to the total mechanical energy is closest to:
A) 0.75
B) 0.38
C) 0.50
D) 0.62
E) 0.25

Table I

	Mass	Radius	orbital radius	orbital period
Moon A	$4 \times 10^{20} \mathrm{~kg}$		$2 \times 10^{8} \mathrm{~m}$	4×10^{6} s
Moon B	$1.5 \times 10^{20} \mathrm{~kg}$	$2 \times 10^{5} \mathrm{~m}$	$3 \times 10^{8} \mathrm{~m}$	

Ekapluto is an unknown planet that has two moons in circular orbits. The table summarizes the hypothetical data about the moons.
9) In Table \mathbf{I}, the mass of Ekapluto is closest to:
A) $1 \times 10^{24} \mathrm{~kg}$
B) $1 \times 10^{22} \mathrm{~kg}$
C) $3 \times 10^{23} \mathrm{~kg}$
D) $1 \times 10^{23} \mathrm{~kg}$
E) $3 \times 10^{22} \mathrm{~kg}$
10) In Table \mathbf{I}, the orbital period of Moon B is closest to:
A) $6.4 \times 10^{6} \mathrm{~s}$
B) $6.0 \times 10^{6} \mathrm{~s}$
C) $5.6 \times 10^{6} \mathrm{~s}$
D) $7.4 \times 10^{6} \mathrm{~s}$
E) $6.9 \times 10^{6} \mathrm{~s}$
11) In Table I, the maximum gravitational force between the two moons is closest to:
A) $2.0 \times 10^{14} \mathrm{~N}$
B) $1.6 \times 10^{13} \mathrm{~N}$
C) $4.4 \times 10^{13} \mathrm{~N}$
D) $1.0 \times 10^{14} \mathrm{~N}$
E) $4.0 \times 10^{14} \mathrm{~N}$
12) In Table I, a meteoroidal fragment is in circular orbit around Moon B, at a small altitude above the surface. The speed of this body is closest to:
A) $640 \mathrm{~m} / \mathrm{s}$
B) $320 \mathrm{~m} / \mathrm{s}$
C) $220 \mathrm{~m} / \mathrm{s}$
D) $440 \mathrm{~m} / \mathrm{s}$
E) $880 \mathrm{~m} / \mathrm{s}$
13) In Table \mathbf{I}, the gravitational acceleration at the surface of Moon B is closest to:
A) $0.30 \mathrm{~m} / \mathrm{s}^{2}$
B) $0.10 \mathrm{~m} / \mathrm{s}^{2}$
C) $0.25 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.15 \mathrm{~m} / \mathrm{s}^{2}$
E) $0.20 \mathrm{~m} / \mathrm{s}^{2}$

Figure 1

The radius of a 3.0 kg wheel is 6.0 cm . The wheel is released from rest at point A on a 30° incline. The wheel rolls without slipping and moves 2.4 m to point B in 1.20 s .
14) In Figure 1, the moment of inertia of the wheel is closest to:
A) $0.0060 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
B) $0.0048 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
C) $0.0054 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
D) $0.0051 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
E) $0.0057 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
15) In Figure 1, the angular acceleration of the wheel is closest to:
A) $65 \mathrm{rad} / \mathrm{s}^{2}$
B) $48 \mathrm{rad} / \mathrm{s}^{2}$
C) $73 \mathrm{rad} / \mathrm{s}^{2}$
D) $82 \mathrm{rad} / \mathrm{s}^{2}$
E) $56 \mathrm{rad} / \mathrm{s}^{2}$
16) A hoop is released from rest at the top of a plane inclined at 20° above horizontal. How long does it take the hoop to roll 12.0 m down the plane?
A) 2.24 s
B) 2.86 s
C) 3.78 s
D) 2.44 s
E) 1.76 s

Figure 2

A uniform disk is attached at the rim to a vertical shaft and is used as a cam. Two views of the disk and shaft are shown. The disk has a diameter of 10 cm . The moment of inertia of the disk about the axis of the shaft is $4.5 \times 10^{-3} \mathrm{~kg} . \mathrm{m}^{2}$. The shaft rotates uniformly about its axis at 20 rpm .
17) In Figure 2 , the mass of the disk is closest to:
A) 1.4 kg
B) 0.8 kg
C) 1.0 kg
D) 1.2 kg
E) 1.6 kg
18) In Figure 2, the kinetic energy of the disk, in mJ, is closest to:
A) 29
B) 6
C) 3
D) 17
E) 10
19) In Figure 2, the linear velocity of point P is closest to:
A) $0.12 \mathrm{~m} / \mathrm{s}$
B) $0.20 \mathrm{~m} / \mathrm{s}$
C) $0.15 \mathrm{~m} / \mathrm{s}$
D) $0.17 \mathrm{~m} / \mathrm{s}$
E) $0.10 \mathrm{~m} / \mathrm{s}$

Figure 3

An 8-g bullet is shot into a $4.0-\mathrm{kg}$ block, at rest on a frictionless horizontal surface. The bullet remains lodged in the block. The block moves into a spring and compresses it by 3.0 cm . The force constant of the spring is $1500 \mathrm{~N} / \mathrm{m}$.
20) In Figure 3, the initial velocity of the bullet is closest to:
A) $280 \mathrm{~m} / \mathrm{s}$
B) $290 \mathrm{~m} / \mathrm{s}$
C) $320 \mathrm{~m} / \mathrm{s}$
D) $300 \mathrm{~m} / \mathrm{s}$
E) $310 \mathrm{~m} / \mathrm{s}$
21) In Figure 3, the impulse of the block (including the bullet), due to the spring, during the entire time interval in which block and spring are in contact is closest to:
A) $3.5 \mathrm{~N} \cdot \mathrm{~s}$
B) $2.3 \mathrm{~N} \cdot \mathrm{~s}$
C) $4.7 \mathrm{~N} \cdot \mathrm{~s}$
D) $4.1 \mathrm{~N} \cdot \mathrm{~s}$
E) $2.9 \mathrm{~N} \cdot \mathrm{~s}$

Figure 4

Ball A, of mass 3.0 kg , is attached to a 0.4 m light rod, freely pivoted at P . Ball B is suspended from Q by a $0.6-\mathrm{m}$ rope and is at rest. Ball A is raised to a certain level and is released. Ball A descends, and has a speed $v_{1}=3.6 \mathrm{~m} / \mathrm{s}$ at the bottom, prior to striking ball B. The speed of balls A and B after the collision are $v_{1}=1.2 \mathrm{~m} / \mathrm{s}$ and $v_{2}=2.2 \mathrm{~m} / \mathrm{s}$, as shown.
22) In Figure 4, the mass of ball B is closest to:
A) 3.3 kg
B) 6.6 kg
C) 4.9 kg
D) 5.7 kg
E) 4.1 kg
23) In Figure 4, the magnitude of the impulse on ball A is closest to:
A) $3.6 \mathrm{~N} \cdot \mathrm{~s}$
B) $18.0 \mathrm{~N} \cdot \mathrm{~s}$
C) $7.2 \mathrm{~N} \cdot \mathrm{~s}$
D) $10.8 \mathrm{~N} \cdot \mathrm{~s}$
E) $14.4 \mathrm{~N} \cdot \mathrm{~s}$
24) In Figure 4, ball A rebounds and swings through an angle θ, where the speed of v_{4} is zero. The rebound angle θ is closest to:
A) 35°
B) 39°
C) 37°
D) 33°
E) 31°
25) In Figure 4, ball B rises through a height h, where the speed v_{5} is zero. The height h is closest to:
A) 0.33 m
B) 0.25 m
C) 0.21 m
D) 0.37 m
E) 0.29 m

Figure 5

26) In Figure 5, an L-shaped piece is cut from a uniform sheet of metal. Which of the points indicated is closest to the center of mass of the object?
A) B
B) D
C) C
D) A
E) E

Figure 6

A $0.50-\mathrm{kg}$ block is held in place against the spring by a $36-\mathrm{N}$ horizontal external force. The external force is removed, and the block is projected with a velocity $v_{1}=1.2 \mathrm{~m} / \mathrm{s}$ upon separation from the spring. The block descends a ramp and has a velocity $v_{2}=1.8 \mathrm{~m} / \mathrm{s}$ at the bottom. The track is frictionless between points A and B . The block enters a rough section at B , extending to E . The coefficient of kinetic friction is 0.30 . The velocity of the block is $v_{3}=1.4 \mathrm{~m} / \mathrm{s}$ at C . The block moves on to D, where it stops.
27) In Figure $\mathbf{6}$, the force constant of the spring is closest to:
A) $900 \mathrm{~N} / \mathrm{m}$
B) $1300 \mathrm{~N} / \mathrm{m}$
C) $640 \mathrm{~N} / \mathrm{m}$
D) $1800 \mathrm{~N} / \mathrm{m}$
E) $450 \mathrm{~N} / \mathrm{m}$
28) In Figure 6, the initial compression of the spring, in cm , is closest to:
A) 2.8
B) 1.0
C) 2.0
D) 4.0
E) 1.4
29) In Figure 6, the height of the ramp h, in cm , is closest to:
A) 13
B) 11
C) 9
D) 7
E) 15
30) In Figure 6, the work done by friction between points B and C is closest to:
A) -0.40 J
B) -0.64 J
C) -0.56 J
D) -0.32 J
E) -0.48 J
31) In Figure 6, the distance s that the block travels between points B and D is closest to:
A) 0.65 m
B) 0.25 m
C) 0.35 m
D) 0.55 m
E) 0.45 m

Figure 7

An $8.0-\mathrm{kg}$ block is released from rest, $\boldsymbol{v}_{1}=0 \mathrm{~m} / \mathrm{s}$, on a rough incline. The block moves a distance of 1.6 m down the incline, in a time interval of 0.80 s , and acquires a velocity of $v_{2}=4.0 \mathrm{~m} / \mathrm{s}$.
32) In Figure 7, the work done by the weight is closest to:
A) -80 J
B) +100 J
C) -100 J
D) +80 J
E) +120 J
33) In Figure 7, the average rate at which the friction force does work during the 0.80 s time interval is closest to:
A) +20 W
B) -40 W
C) +40 W
D) -20 W
E) zero
34) In Figure 7, the average rate at which the normal force does work during the 0.80 s time interval is closest to:
A) +100 W B) +120 W
C) zero
D) -120 W
E) -100 W
35) In Figure 7, the average rate at which the block gains kinetic energy during the 0.80 s time interval is closest to:
A) 80 W
B) 89 W
C) 83 W
D) 77 W
E) 86 W

Figure 8

36) In Figure 8 , a block of mass M hangs in equilibrium. The rope which is fastened to the wall is horizontal and has a tension of 40 N . The rope which is fastened to the ceiling has a tension of 50 N , and makes an angle Θ with the ceiling. The angle Θ is
A) 37°
B) 45°
C) 60°
D) 53°
E) 39°

Figure 9

A system comprising blocks, a light frictionless pulley, and connecting ropes is shown. The 9-kg block is on a smooth horizontal table $(\mu=0)$. The surfaces of the $12-\mathrm{kg}$ block are rough, with $\mu=0.30$.
37) In Figure 9, the mass M is set so that it descends at constant velocity when released. The mass M is closest to:
A) 3.0 kg
B) 3.3 kg
C) 2.7 kg
D) 3.6 kg
E) 2.4 kg
38) In Figure 9, mass M is set at 5.0 kg . It accelerates downward when it is released. The acceleration of mass M is closest to:
A) $1.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.2 \mathrm{~m} / \mathrm{s}^{2}$
C) $1.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $1.4 \mathrm{~m} / \mathrm{s}^{2}$
E) $1.6 \mathrm{~m} / \mathrm{s}^{2}$

Figure 10

A system of blocks and a frictionless pulley is given. Block A has a mass of 6.0 kg and is on a rou gh surface ($\mu=0.40$). Block C has a mass of 4.0 kg . An external force $\mathrm{P}=8.0 \mathrm{~N}$, applied vertically to block A, maintains the system in static equilibrium as shown.
39) In Figure 10, the mass of block B is closest to:
A) 2.5 kg
B) 2.3 kg
C) 2.7 kg
D) 3.1 kg
E) 2.9 kg
40) In Figure 10, the frictional force on block A is closest to:
A) 24.4 N
B) 23.5 N
C) 25.2 N
D) 26.7 N
E) 25.9 N
41) In Figure 10, the external 8.0 N is removed. The masses of blocks B and C are adjusted, so that the system remains at rest as shown, but is on the verge of moving. The mass of block A is unchanged. The tensions in the two vertical ropes are closest to:
A) 28 N and 37 N
B) 24 N and 31 N
C) 34 N and 44 N
D) 24 N and 37 N
E) 28 N and 44 N
42) The value of $\hat{i} \cdot(\hat{j} \times \hat{k})$ is:
A) zero
B) +1
C) -1
D) 3
E) $\sqrt{3}$
43) The value of $\hat{k} \cdot(\hat{k} \times \hat{i})$ is:
A) zero
B) +1
C) -1
D) 3
E) $\sqrt{3}$
44) If $\vec{A}=(6 \mathrm{~m}) \hat{i}-(8 \mathrm{~m}) \hat{j}$ then $4 \vec{A}$ has magnitude:
A) 10 m
B) 20 m
C) 30 m
D) 40 m
E) 50 m
45) The angle between $\vec{A}=(25 \mathrm{~m}) \hat{i}+(45 \mathrm{~m}) \hat{j}$ and the positive x-axis is:
A) 29°
B) 61°
C) 151°
D) 209°
E) 241°

Answer Key

1) Answer: D
2) Answer: C
3) Answer: A
4) Answer: E
5) Answer: B
6) Answer: D
7) Answer: B
8) Answer: E
9) Answer: C
10) Answer: D
11) Answer: E
12) Answer: C
13) Answer: C
14) Answer: D
15) Answer: E
16) Answer: C
17) Answer: D
18) Answer: E
19) Answer: C
20) Answer: B
21) Answer: C
22) Answer: B
23) Answer: E
24) Answer: A
25) Answer: B
26) Answer: C
27) Answer: D
28) Answer: C
29) Answer: C
30) Answer: D
31) Answer: D
32) Answer: D
33) Answer: D
34) Answer: C
35) Answer: A
36) Answer: A
37) Answer: D
38) Answer: C
39) Answer: D
40) Answer: C
41) Answer: A

Answer Key -- Vectors

42) B
43) A
44) D
45) B
